Low Power DSP’s for Wireless Communications

Ingrid Verbauwhede
UCLA, EE Degpt.
7440B Boelter Hall
Box 951594
Los Angeles CA 90095-1594

Ingrid@ee.ucla.edu

ABSTRACT

Wireless communications and more specifically, the fast growing
penetration of cellular phones and cellular infrastructure are the
major drivers for the development of new programmable Digital
Signal Processors (DSP’s). In this tutorial, an overview will be
given of recent developments in DSP processor architectures, that
makes them well suited to execute computationally intensive
algorithms typically found in communications systems. DSP
processors have adapted instruction sets, memory architectures
and data paths to execute compute intensive communications
algorithms efficiently and in a low power fashion. Basic building
blocks include convolutional decoders (mainly the Viterbi
algorithm), turbo coding algorithms, FIR filters, speech coders,
etc. This is illustrated with examples of different commercial and
research processors. Please note that the authors do not endorse
the processors used in this tutorial. These processors are used to
illustrate how different solutions are proposed for the same
problem.

Keywords: Digital Signal Processing,
programmable processors, wireless communications.

architectures,

1. INTRODUCTION

Mobile wireless communications show an incredible growth,
as is illustrated in Figure 1. It is estimated that by the year 2010
wireless phones will surpass wire line phones, each having a
world-wide penetration of more than 20%.

The market for DSP processors has a growth rate of 40%. In
1996 it was a $2B market, by 1999 it has grown to a $4.4B market
and Forward Concepts forecast a $19B market in 2004 [17].
Almost half of all DSP processors will end up in equipment for
wireless communications, such as cellular phones, basestations,
cordless phones, GPS, etc. There are not only new cellular phone
users but it is estimated that in 2000, half of the handsets sold are
replacement units [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISLPED ’00, Rapallo, Italy.

Copyright 2000 ACM 1-58113-190-9/00/0007...$5.00.

303

Chris Nicol
Bell Laboratories
Lucent Technologies
North Ryde, 2113,
Australia

chrisn@lucent.com

i Global P - 7 bill
Subscribers (108) IR A
1,60
1.4001 Wireline CAGR - 5%

’ Global Penetration (2010) - 20%
1,200

1,000
800
600

400 Global Penetration (2010) - 21%
Wireless CAGR 21%

200 (Cellular+PCS+W LAS+Other)

[T o W - o S, S = _g_m__m_s__m__u_m_m__JD
0o o o o O oo © O 9o © o o -
o o O ®© ® © © O © © O © © O © ©°
- - - - > N & N & ¥ N & N & &N «

Figure 1: Mobile Wireless Trends

The first successful DSP processors were introduced in the
early 80’s. Many good overview papers are available that describe
the evolution of these processors and the special features to
support signal processing applications [10][11][5]. Examples in
this category are the Texas Instruments TMS320C1x, C2x, C5x,
series or the Lucent DSP16A and DSP1600 series. This tutorial
will focus on the evolution of DSP processors during the last
couple of years and especially will focus on the special features in
the processors to support the demands from wireless
communications.

Up till recently, the same DSP processors are used both in
the mobile terminal, i.e. the cell phone itself, and the base
stations. However, a trend starts to emerge to place different
processors in the mobile terminal and the base stations. The main
drivers for the processors in the mobile are cost and very low
energy consumption. This leads to processors that have a very
compact but complex instruction set (CISC). The processors in
the base stations need to be very high performant and they tend to
become more compiler friendly, because the software complexity
requires it. Hence, the recent success of VLIW processors for
DSP for the base station applications.

Because of this, this tutorial is also split in two main parts. In
section 2, DSP processors for mobile terminals are covered. In
section 3, processors for base stations are discussed. In section 4,
future trends are discussed. Each section has a similar style: the
main driver functions are explained first, followed by several
processor solutions to the same problem.

It is insightful to first define the meaning of Million
Instructions per Second (MIPS) and Million Operations per
Second (MOPS). Most traditional DSP processors belong to the
class of Complex Instruction Set machines, called CISC
processors. This means that in one instruction, typically 16 bits
wide, several operations, sources and destinations for the
operations are coded. For instance, in one dual-multiply-
accumulate operations of the LODE processor, 6 different
instructions are performed: two memory read operations, two
address calculations and two multiply-accumulate instructions
[19]. Assuming the processor runs at 100 MHz, this corresponds
to 100 Mips and 600 Mops. If the multiply and add’s are
considered 2 operations, this becomes 800 Mops. Similarly, in
one dual-Mac instruction on the Lucent 16210, 7 different
instructions are executed: one 3 input addition, two
multiplications, 2 memory reads and 2 address pointer updates.
This corresponds to 700 Mops.

Cisc type processors are usually compared on the amount of
Mips. Sometimes, to make things confusing, the two multiply-
accumulate operations are counted separately. So, it might be a
100 MHz processor, advertised for “200 Mips”.

One instruction of a very large instruction word (VLIW)
processor consists of a set of small, e.g. 6 or 8, primitive
instructions, issued in parallel (more about these processors later).
1t is custom to muitiply the clock frequency of these processors by
the number of parallel units and define these as “MIPS”. E.g. the
TI Céx is a 200 MHz processor with 8 processing units,
corresponding to 1600 Mips [18].

To make a fair comparison between processors, we will use
the MIPS terminology and count the primitive operations for both
the CISC and VLIW machines.

2. DSP's for the Mobile Terminal.

DSP processors are made to support hard real-time signal
processing applications. This often translates in the rule that 10%
of the code is executed 90% of the time and 90% of the code is
executed 10% of the time. The code executed all the time, tends to
sit in tight loops, of which every instruction or clock cycle counts.
DSP processors are compared based on the number of instructions
and the number of clock cycles it takes to execute basic DSP

kernels.
4

Commjication Ap%caﬁon

\

A Y 4

Demod| {ChannelyISpeech
ttqualiz. ecode ecode
LlVE)duiati

Figure 2: Cellular communication system

hannejgSpeech
ncoder Encode

2 AN

o\

304

The main baseband building blocks of a 2™ generation
cellular phones, such as for GSM, GSM+ and IS-95, are shown in
Figure 2 [15]. About half of the processing functions are at the
physical layer, implementing the modulation/demodulation,
consisting mainly of the equalizer, and the channe] coder and
decoder. The other half of the processing occurs in the application
level. For 2™ generation phones this means the speech coder.

All functions of the system of Figure 2, can be implemented
in one state-of-art DSP processor running at a clock frequency
between 80 MHz to 150 MHz. The differentiation between the
processors and implementations sits in either the power
consumption, and/or the extra features that are included in the
processor such as noise cancellation or more advanced equalizers.

3" generation cellular wireless standards put higher demands
on the modem functions as well as the application functions.
More advanced equalizers and more advanced coding algorithms,
such as turbo coding algorithms will be used. This is combined
with a higher bandwidth requirement. Also on the application
side, more advanced features are required such as lower rate
speech coders, video communication, data communication, etc.
Most of the computations are spent on the following basic
building blocks:

O Filters (FIR, IIR), autocorrelations and other "traditional”
signal processing functions.

O Convolutional decoders based on the Viterbi algorithm.

O Code book search, max-min search, etc for speech coders
and vector search algorithms.

O Turbo decoding for data processing.

2.1 FIR implementation
The basic FIR equation is the following:
i=N-1

y(n)= Zc(i)'x(n—i)

When this equation is executed in software or assembly code,
output samples y(n) are computed in sequence. This means that to
compute one output sample, there are N multiply-accumulate
operations and 2N memory read operations to fetch the data and
the coefficients. N is the number of taps in the filter. It is well
known that DSP processors include datapaths to execute multiply
accumulate operations in an efficient way. Therefore, we will
focus on the memory architecture, which is a much more
fundamental design issue for DSP processors.

Memory architectures:

On a traditional von Neumann architecture, 3N access cycles
are needed to compute one output: for every tap one needs to
fetch one instruction, read one coefficient and read one data
sample sequentially from the unified memory space. Already early
on, DSP processors differentiated themselves from von Neumann
architectures by implementing a Harvard or modified-Harvard
architecture [10]. The main characteristic is the use of two
memory banks instead of one common memory space in the von
Neumann architecture. The Harvard architecture has a separate
data memory from program memory. This reduces the number of
access cycles from 3 to 2, since the instruction fetch from the
program memory can be done in parallel with one of the data
fetches. The modified Harvard architecture improves this even
further. It is combined with a “repeat” instruction. In this case,
one multiply-accumulate instruction is fetched from program

memory and kept in the one instruction deep instruction cache.
Then the data access cycles are performed in parallel: the
coefficient is fetched from the program memory in parallel with
the data sample being fetched from data memory. This
architecture is found in all early DSP processors and is the
foundation for all following DSP architectures.

Newer generation of DSP processors have even more
memory banks, accompanying address generation units and
control hardware, such as the repeat instruction, to support
multiple parallel accesses. The execution of a 32 tap FIR filter on
the dual Mac architecture of the Lucent DSP 16210 is shown in
Figure 3. The corresponding pseudo code is the following:

do 14 { //one instruction !
al=a0+p0+pl
pO=xh*yh pl=x1*yl
y=*r0++ X=*ptO0++

This code can be executed in 19 clock cycles with only 38
bytes of instructions code. The inner loop takes one cycle to
execute and as can be seen from the assembly code, 7 operations
are executed in parallel: one addition, 2 multiplications, 2 memory
reads and 2 address pointer updates.

_ XDB(32)
IDB(32)

Shift/Sat.

Shift/Sat.

v Y
Figure 3: Lucent DSP16210 architecture

The difficult part in the implementation of this tight loop is
the arrangement of the data samples in memory. To supply the
parallel data paths, two 32 bit data items are read from memory
and stored in the X and Y register, as shown in Figure 3. Then the
data items are split in an upper half and a low half and supplied to
the two 16x16 multipliers in parallel. It requires a correct
alignment of the data samples in memory, which is usually a
tedious work done by the programmer, since compilers are not
able to handle this. A similar problem exists in SIMD instructions
on general purpose micro-processors. .

A similar approach is used in [9]. Instead of two multipliers,
only one multiplier working at double the frequency, is used. But
the problem of alignment of data items in memory remains.

In the Lode architecture, a delay register is introduced
between the two MAC units as shown in Figure 4. This halves the
amount of memory accesses. Two output samples are calculated in

parallel as indicated in the pseudo code below. One data bus will
read the coefficient from memory, the other data bus will read the
data sample from memory. The first Mac will compute a multiply-
accumulate for output sample y(n). The second multiply-
accumulate will compute in parallel on y(n+1). It will use a
delayed value of the input sample.

y(0) c(1)x(-1) + c(@)x(-2) + . .. +c(N-1)x(1-N);
y(1) (1) + C(1).+ c(2)x(-1) + ... +c(N-1)x(2-N);
y(2) = c(0)x(2) + c(1)x(1) + c(2)x(0) + . . . + c(N-1)x(3-N);

y(n) = c(0)x(n) + c(1)x(n-1) + c(2)x(n-2)+ . . + c(N-1)x(n-(N-1));

DB1(16)
DBO(16)
x(n-i+

Figure 4: Lode’s Dual Mac Architecture with delay register.

This concept of inserting a delay register can be generalized.
When the datapath has P Mac units, P-1 delay registers can be
inserted and only 2N/(P+1) memory accesses are needed. These
delay registers are pipeline registers and hence if more delay
registers are used, more initialization and termination cycles need
to be introduced. This is summarized in Table 1.

Table 1: Data memory accesses, MAC operations, instruction
cycles and instructions for a N tap FIR filter.

DSP Data MAC’s | Instructio | Instructions
memory n cycles
accesses
Von 2N N 3N 2N
Neumann
Harvard 2N N 2N 2N
Modified | 2N N N 2 (repeat
Harvard instruction)
Dual Mac | 2N N N/2 2 (same)
DualMac | N N N/2 2 (same)
with 1 reg
Dual Mac | 2N/(P+1) N N/(P+1) 2
with P reg

305

2.2 Viterbi acceleration

The Viterbi decoders are used as forward error correction
(FEC) devices in many digital communication devices, not only in
cellular phones but also in digital modems, etc. The Viterbi

algorithm is a dynamic programming technique to find the most
likely sequence of transitions that a convolutional encoder has
generated.

Most practical convolutional encoders are rate 1/n (which
means that one input bit generates n coded output bits). A
convolutional encoder of “constraint length K” can be represented
as a Finite State Machine (FSM) with K-1 memory bits. This
means that the FSM has 25! possible states, also called treliis
states. If the input is binary, there are two possible next states
starting from a current state, since the next state is computed from
the current state and the input bit. The task of the Viterbi
decoding algorithm is to reconstruct the most likely sequence of
state transitions based on the received bit sequence. This approach
is called the “most likelihood sequence estimation.” To compute
this most likely path, a trellis diagram is constructed. It will
compute from every current state, the likelihood of transitioning
to one out of two next states. This leads to the kernel of the
Viterbi algorithm, called the Viterbi butterfly. This is illustrated in
Figure 5.

i 2i

2i+1

i+ s/2

Figure 5: Viterbi butterfly

The basic equations executed in this Butterfly are:

d(2i) = min{d(i)+ a,d(i +s/2) - a}
d(2i +1)=min{d(i)— a,d(i+s/2) - a}

These equations are implemented by an “Add-Compare-
Select” operation. Indeed, one needs to add or subtract the branch
metric from states i and i+s/2, compare them and select the
minimum. Similarly, state 2i+1 is updated. The butterfly
arrangement is chosen because this reduces the amount of
memory accesses by half.

DSP processors have special hardware and instructions to
implement the Add Compare Select (ACS) operation in the most
efficient way. The Lode architecture uses the two MAC units and
the ALU to implement the ACS operation as shown in Figure 6.
The Dual Mac operates as a dual add/subtract unit. The ALU
finds the minimum. The shortest distance is saved to memory and
the path indicator, i.e. the decision bit is saved in a special shift
register A2. This results in 4 cycles per butterfly.

The Texas Instruments TMS320C54x and the processors
described in [9] use a different approach which also results in 4
cycles per butterfly. This is illustrated in Figure 7. The ALU and
the accumulator are split into two halves (much like SIMD
instructions), and the two halves operate independently. A special
compare, select and store unit (CSSU) will compare the two
halves, will select the chosen one and write the decision bit into a
special register TRN. The processor described in [13] describes
two ACS units in parallel. To illustrate the importance of an
efficient implementation of the ACS butterflies, consider the IS-

306

95 cellular standard. The IS-95, uses a rate 2 convolutional
encoder with a constraint length 9 [15]. It has a window size of

192 samples. This corresponds to 2°X192X(ACS)
operations. The most efficient implementation requires four cycles
per butterfly. This still corresponds to close to 100 MIPS.
DR1(15)

DRO(16)

Figure 6: Add compare select on the Lode architecture.

DB1(16)
DBO(16)

to memory
Figure 7: Add compare select on C54x and on [13].

The hardware support for the Viterbi algorithm on the 16210
allows for the automatic storage of decision bits from the ACS
computations. This functionality can be switched on or off as
required. When the built-in comparison function cmpl () is
called, the associated decision bit is shuffled into the auxiliary
register ar0 as shown in Figure 8.

As the additions must be carried out manually, each ACS
takes two cycles (one for the additions, one for the
compare/select) and thus a single butterfly takes a total of four

cycles. The following code segment performs the buiterfly
computations:
do 8 {

a0=a4+y al=a5-y *r3++=alh

az=a4-y a3=aS+y *r5++=az2h
a0=cmpl(al,a0) yh=*r0 rO0=rl+j j=k k=*ptl++
a2=cmpl(a3,a2) a4_Sh=*ptO++

}

*r2++=aro

a0 =cmpi(af,al)

a2 =cmpi{ a3, a2)

a2 =cmpi(a3,a2)

decision bit
ar0 <’

Figure 8: Hardware support for Viterbi on the DSP16210

The 16210 has hardware looping support as described above,
and there is only a single cycle required to initialize this looping
support before the loop executes with zero overhead. When
decoding a standard GSM voice channel, which has a constraint
length of 5 or 16 states in the trellis, the ar0 register is filled with
16 decision bits after the 8 butterflies are processed. Thus, with a
single memory access the decision bits can be stored in memory
and the next symbol pair can be processed. This is an efficient
use of memory bandwidth. For codes with higher constraint
lengths and thus more states, the code segment can merely be
executed multiple times with each decision bit word written to
memory as required.

3. DSPs for Wireless Infrastructure

‘Whereas most low power wireless research efforts focus on
portable handsets, this tutorial also discusses the implications of
next-generation standards on the design of mobile infrastructure
systems. Basestations (BTS) will require flexible, low cost
integrated solutions that are capable of supporting several-
standards. There are several trends in the baseband mobile
wireless infrastructure market that have significant implications
on the design of the DSPs used within.

1. Increased capacity for packet data services.
2. Reduced cost through integration.
3. Multi-standard support.

Increasing the capacity of a network requires an increase in
both the receiver sensitivity and the co-channel interference
rejection. Suburban cells have relatively static user populations
and large area whereas urban cells have dynamic load
requirements and small size. By increasing the receiver sensitivity
in the BTS, we can reduce the transmit power of the mobile
handset. This reduces the co-channel interference in urban cells
(and therefore increases capacity by increasing the frequency re-
use). It also extends the battery life of the handset. Alternatively,
we increase the size of the suburban cells to reduce the cost of
network deployment. Furthermore, increasing the receiver
sensitivity through advanced channel estimation and decoding
techniques reduces the packet-error rate, thereby increasing the
capacity of packet-data networks.

307

Cost-reduction is best-achieved through integration (of both
RF and Baseband) into ASICs. As an example, a GSM BTS
requires approximately 300 DSP-MIPS to implement a single
carrier (transmit & receiver for 8 users). A multi-carrier board
therefore has several programmable DSPs — that dominate the cost
and power consumption of the baseband processing. These may
be integrated into a single-chip solution to reduce cost. A side-
effect is the power reduction that impacts the rating of the power
supply and the cooling requirements of the cabinet — issues that
are crucial in Pico-cell BTS platforms.

IF Input
Equalizer Decoder Other
System Bus
DsP osp DSP
(16210) (16210) (16210)
Micro- TDM Bus
fa—» Controller
(ARM)
Dsp DSP DsP
(16210) (16210) (16210)
Equalizer Decoder Other

Figure 9: Pool of High-Performance DSPs for
Infrastructure Baseband Processing

To satisfy the different bandwidth requirements for different
standards, software architectures can be used. Rather than
sampling a narrowband signal, a wideband “chunk” of the
recetved signal is sampled at high rates to provide flexibility (such
as multi-band and multi-standard support). The digital part of
receiver is subdivided into two parts: inner receiver and baseband
receiver. The inner receiver performs analog-to-digital conversion
(from RF or IF) and filtering. Filtering (including digital down-
conversion, narrow-band filtering, decimation and interpolation)
provides a 'good' signal for the base-band receiver. The processing
of the high frequency signals implies that the inner receiver is
normally implemented by an ASIC and a micro-controller. The
baseband receiver structure includes demodulation,
convolutional/turbo decoding, voice decoding, deciphering, and a
microcontroller for interfacing. A baseband receiver can be
implemented by either a pool of high-performance DSPs, or
DSP-+IP-cores.

These trends in wireless infrastructure require very high
performance DSPs. There are a number of new high-performance
DSPs on the market that will be deployed in future basestation
systems. Some have targetted raw clock speed through simple
RISC instruction sets, while others opt for complex DSP
instructions sets. We now describe some of these processors and
describe the mapping of channel decoding and equalisation
algorithms on them.

3.1 DSPs for Wireless Infrastructure

3.1.1 TI C6x Family of DSPs

The Texas Instruments ‘Céx is a 1600 RISC MIPS, 8-way
VLIW DSP with two separate execution clusters. The RISC
nature of the ‘C6x means there is no hardware support for the
Viterbi algorithm, however the eight execute units of the ‘C62
allow a great deal of parallel execution.

An implementation of the Viterbi algorithm on the ‘C62 [18]

performs each butterfly computation in three cycles.
JLOOP:

{B1] B .81 Jroop ;%% for 3
| (B11 suUB .82 B1,1,Bl i g+
|t {1a2] STH .D1 B12,*+A6(8] ; store new[j+8] = a8
|{{ta2] ADD .D2 BO,B14,Bl4 ; tr = t8
i CMPGT .L1 Al11,A10,A1 i t0 = (b0 > ag)
't CMPGT .L2 B11,B10,B0 ; €8 = (b8 > a8)
" MPY .M1X 1,BS5,A¢ ; copy mj
{a2) SUB .81 A2,1,A2 ; decrement priming
{{taz] STH .D1 Al2,*A6++ ; store newlj] = a0
Program Memory
(16K x 32)
L o & 4
E Instruction Dispatch & Decode J
Reglster Bank A Register Bank B
(16 x 32) (16 x 32)
2225 22 2R 22 iil iil Y
mp | ad AL '
] T T
Data Memory
(32K x 16)

Figure 10. Architecture of the TI C6x DSP

|| (A1) ADD .82 2,B0,B0 ;8 = (t0 << 1)
| | (BO] MPY .M2 1,B11,Bl2 ; if (£8) a8 = b8
[MPY .Ml 1,Al10,Al2 ; copy a0
11 SUB .L2X A7,B5,B10 ; a8 = 0ld0 - mj
11 LDH .D2 *++B9,BS ; load mj = m[j]
SHL .S2 Bl4,2,Bl4 ;tr <<= 2
|]1a1) MPY .Ml 1,Al1,A12 ; if (t0) a0 = bo
Il ADD .81 A7,A4,Al0 ; a0 = 0ld0 + mj
|1 sSuB .L1X B13,A4,All ; b0 = oldl - mj
I ADD .L2 B13,B5,Bll ; b8 = oldl + mj
, Program / Data Memory]
S =
$)
Program Address Data Registers
Sequencer Registers (16)
Instruction @7 [] (3 ¢
Dispatcher mac| [mac|i[mac]mac
aullaau! [Aw]jac]acu]ia
EIE EIED
I S SR S
Figure 11. Architecture of Lucent/Motorola Starcore SC140
fl MPY .M2 1,B10,B12 ; copy a8
Il LDH .D2 *B4++[2],A7 ;* load 0ld0 = oldf2+*j)
tl LDH -D1 *A5++{2],B13 ;* load oldl = old([2%j+1]

; end of JLOOP

This implementation is bound by memory bandwidth, as the
‘C62 has only two addressing/data units and can thus load/store a
maximum of two 32-bit words per cycle. The code segment
shows the computation requires the loading of the current path
metric values, loading the branch metrics from a table, and then
storing the new path metrics. Thus, if the branch metrics are

308

stored in a table, there is no way to perform the computations in
less than three cycles. The ‘C62 has two banks of 16 registers, one
for each side of the processor. The implementation of Viterbi
uses only 19 of the 32 registers, and yet is essentially storing the
two branch metric values in a table and taking a full cycle to look
these values up.

3.1.2 The Lucent/Motorola Starcore

The StarCore SC140 is a quad-ALU, 1200 MIPS 6-way
VLIW DSP capable of 1200 MMAC/s at 300 MHz [16]. Like the
DSP16210, the StarCore features hardware support for the Viterbi
algorithm. The StarCore has been specifically targeted towards
3G Wireless infrastructure. The emerging 3G Wireless standards
demand greater DSP MIPS than the current 2G standards, and
thus it is important that it handles wireless algorithms like Viterbi
well. Indeed the StarCore is the industry-best programmable DSP
at Viterbi, able to process a butterfly every cycle — a factor of four
better than the DPS16210 and three better than the ‘C6x.

The hardware Viterbi support also takes the form of the
automatic storage of decision bits, via a specialized version of the
maximum operation called max2vit. StarCore is a 32-bit
processor capable of performing arithmetic operations on the
higher and lower 16-bit words independently, via instructions
such as add2 and sub2. This doubles the throughput in
computations that can use these double operands, and the Viterbi
algorithm is an ideal candidate for such an optimization as it does
not require any multiplications. Butterflies can then be done in
parailel within the core loop kermel. The max2vit flavor of the
max2 instruction independently selects the maximum in both the
higher and lower words of the two operands, storing the result in
the second register operand. It also sets the Viterbi Flags in the
status which are extracted when the decision bit words are stored.

The extraction of decision bits is done with a specialized
store instruction called vsl, or Viterbi Shift Left. This instruction
takes two new path metric values and two decision bit words,
shifts in the new decision bits and write all four words back into

memory.
move.21 (r2}+,do:d1 move.21 (r3)+,d2:d3 tfr d7,d4 tfr 47,ds
add2 do,d4 sub2 d4,d0 sub2 dé6,d2 add2 d2,de

max2vit d4,d2 max2vit d0,dé

vsl.f d2:d6:d1:43, (x5)+no0

3.2 Turbo Decoding

While convolutional decoding remains a top priority (the
decoding requirement for EDGE has been identified at greater
than 500 MIPS), the performance needed for Turbo decoding is
an order of magnitude greater, We therefore describe the Turbo
decoders needed in 3G systems. Turbo decoding (shown in Figure
12) is a collaborative structure of soft-input/soft-output (SISO)
decoders with the inclusion of interleaver memories between
decoders to scatter burst errors [3]. Either Soft-Output Viterbi
Algorithm (SOVA) [8] or Maximum A Posteriori (MAP) (2] can
be used as SISO decoders. Within a turbo decoder, the two
decoders can operate on the same or different codes. Turbo codes
have been shown to provide coding performance to within 0.7dB
of the Shannon limit (after a number of iterations).

The Log-MAP algorithm can be implemented in a manner
very similar to the standard Viterbi algorithm. Perhaps the most
important difference between the algorithms when they are
implemented is the use of a correction factor on the new ‘path
metric’ value (the alpha, beta and log-likelihood ratio values in

vsl.w d2:d6:d1:d3, (r4) +n0

Information Bits
Parity Turbo Encoder
Constituent | Bits
Decoder 1 MUX
Encoded
Parity Output
Constituent | Bits
Interleaver || Decoder 2
Turbo Decoder
Soft- Soft-
Decision De- Decision
Interieaver
Parity Bits Soft-
1stCode "] Constituent | Decision | interleaver Constituent
Decoder 1] Decoder 2
Info Bits
interteaver De-
Interleaver
Decoded V.
Parity Bits 2nd Code Output

Figure 12: Turbo decoding

Log-MAP) from each ACS, which is dependant on the difference
between the values being compared. This is typically
implemented using a lookup table, with the absolute value of the
difference used as an index into this table and the resulting value
added to the selected maximum before it is stored.

Without hardware assistance, these operations alone will
increase the number of cycles far beyond those needed for a
standard Viterbi kernel as shown in the following Starcore kernel:
move.w (xrQ)+,d0

move.yw (rl)+,dl ; load current data

add do,ds,do sub d6,do,d5 ; add/subtract gamma values
sub dé6,d1,d4 add di,dé6,d1

sub do,d4,d2 sub d1,d5,d3 ; calculate difference

max do0,d4 max di,ds ; calculate maximum

abs 42 abs 4d3 ; absolute value of index
move.l d2,ng ; load index

move.l d3,n0 move.w (ré+nd),d2 ; load index, do lookup

add d4,d2,d4 move.w (r6+n0),d3 ; add correction, do lookup
add ds,d3,ds ; add correction

move.2w d4:d5, (r2)+ ; store new data

4. Future Trends

As previously described, the trends in decoding algorithms
are moving away from standard Viterbi and towards more
computationally-expensive algorithms like SOVA and MAP.
These soft-output algorithms, used in turbo decoding and iterative
channel equalization, place heavy MIPS requirements on wireless
infrastructure. However, there is barely enough support for
standard Viterbi in programmable DSPs. The 16210 and other
earlier DSPs do have elegant hardware support, but lack the raw
computational power to handle next-generation wireless
standards. Next-generation DSPs like the ‘C62 have increased
MIPS, but lack any form of hardware support for the algorithms
critical to wireless infrastructure. I7 is critical for next generation
programmable DSP to address the requirements of algorithms
such as SOVA or MAP, since these algorithms are essential for
improved 2G and 3G wireless communications. It is clear that

309

there needs to be a shift in focus for programmable DSPs - to have
the levels of performance required to implement a software radio
system for wireless infrastructure.

4.1 Multi-Processor DSP Systems

The VLIW architectures presented thus-far provide a certain
level of speed-up from a single thread of DSP code. These
solutions are not scalable to provide very high levels of DSP
performance needed by next-generation wireless infrastructure.
Furthermore, the power consumption does not scale linearly with
the number of execution units due to the overhead of the
instruction dispatch logic.

Some type of multi-processor DSP approach is needed to
achieve true performance and power scalability. Fortunately —
many DSP applications can be partitioned into parallel threads.
Examples of this are the channel equalisation and channel
decoding functions. These can be executed on separate DSP
processors. Integrating multiple DSP cores into a single chip is
achieved using a MIMD DSP architecture like Daytona [1][21]
(shown in Figure 13) which uses a high performance split
transaction bus to connect multiple DSP cores with a memory
hierarchy. Each DSP core has a cache for both instructions and
data — to minimize the memory connected to each DSP.

10 Vo External
interfaces {nterfaces Memory

A A A

l J l Chip
Buffered Arbitration

o Synchronization VO Subsystem

)

¢ 0l b
<Ij split transaction bus (128 bits)
{ 3 {

Hardware
Accelerator

DSP
CORE

DSP
CORE

Figure 13. Architecture of Daytona MIMD DSP.

5. ACKNOWLEDGMENTS

We would like to acknowledge the experts of DSP processors
whose sources we use and whose interaction we appreciate:
Wanda Gass, Gareth Hughes, Mihran Touriguian, Katsuhiko
Ueda, Bing Xu.

6. REFERENCES
[1] B. Ackland & P. D’Arcy, “A New Generation of DSP
Architectures”, Proc. IEEE CICC99, Paper 25.1.

[2] L.Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate”, IEEE
Trans. Information Thoery, V IT-20, pp 284-287, Mar 1974

[3] C.Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo-Codes
(1)”, Proc. ICC’93, May 1993.

[4] G.D. Fomey, Jr., “Maximum Likelihood Sequence
Estimation of Digital Sequences in the Presence of
Intersymbol Interference”, IEEE Trans. Inform. Theory, V
IT-18, pp. 363-378, May 1972.

W. Gass, D. Bartley, “Programmable DSPs” Chapter 9
Digital Signal Processing for Multimedia Systems, Marcel
Dekker Inc. 1999.

(5]

[6] A. Gatherer, T. Stelzler, M. McMabhan, E. Auslander, “DSP-
Based Architectures for Mobile Communications: Past,
Present and Future,” IEEE Communications Magazine, pg.

84-90, January 2000.

L. C. Godara, “Application of Antenna Arrays to Mobile
Communications: Part 17, Proc. IEEE, Vol 85, No. 7. pp
1031-1060, July 97.

(7]

(8]
Decision Outputs and its Applications”, Proc. Globecom ’89,
Nov 1989, pp 47.1.1-47.1.7

H. Kabuo, M. Okamoto et al. “An 80 MOPS Peak High
Speed and Low Power consumption 16-bit Digital Signal
Processor, IEEE Journal of Solid-State Circuits, Vol. 31,
No. 4, pp. 494-503, 1996.

[9]

[10]P. Lapsley, J. Bier, A. Shoham, E.Lee, DSP Processor
Fundamentals TEEE Press, 1997.

[11]E.A. Lee, “Programmable DSP Processors: Part I and 11,”
IEEE ASSP Magazine, Oct. 1988 and Jan. 1989.

[12]W. Lee et al., “A 1-V Programmable DSP for Wireless
Communications,” IEEE Journal of Solid-State Circuits,
Vol. 32, no. 11, Nov. 1997.

J. Hagenauer, P. Hoeher, “A Viterbi Algorithm with Soft- .

310

[13]M. Okamoto, K. Stone, T. Sawai, H. Kabuo, S. Marui, M.
Yamasaki, Y. Uto, Y. Sugisawa, Y. Sasagawa, T. Ishikawa,
H. Suzuki, N, Minamida, R. Yamanaka, K. Ueda, “A High
Performance DSP Architecture for Next Generation Mobile
Phone Systems,” 1998 IEEE DSP Workshop.

[14]M.W. Oliphant, “The Mobile Phone meets the Internet”,
IEEE Spectrum pp. 20-28, Aug. 1999.

[15]T. Rappaport, Wireless Communications, Principles &
Practices, Prentice Hall, 1996.

[16] “Starcore Launched First Architecture”, Microprocessor
Report, V12, No. 14. pp 22, Oct 1998.

[17TW. Strauss, “DSP Markets head for record,” EE Times, May
29, 2000, midyear forecast.

[18]7. Turley, H. Hakkaraainen, “TI’s new ‘C6x DSP Screams at
1600 MIPS”, Microprocessor Report, Vol 11, No. 2, pp 14,
Feb 1997.

[19]1. Verbauwhede, M. Touriguian, “A Low Power DSP Engine
for Wireless Communications,” Jowrnal of VLSI Signal
Processing 18, pg. 177-186, 1998, Kluwer Academic
Publishers.

[20]1. Verbauwhede, M. Touriguian, “Wireless digital signal
processors,” Chapter 11 in Digital Signal Processing for
Multimedia Systems, Edited by K.K. Parhi, T. Nishitani,
Publisher: Marcel Dekker Inc., New York, 1999.

[217J. Williams, K.J. Singh, C.J. Nicol, B. Ackland, “A 3.2 GOPs
Multiprocessor DSP for Communication Applications”,
Proc. IEEE ISSCC2000, Paper 4.2.

