TURBO CODES ON THE FIXED POINT DSP

TMS320C55x
Tri Ngo Ingrid Verbauwhede
Philips Semiconductors Dept. of Electrical Engineering, UCLA
30 Corporate Park, Suite 100 7440B Boelter Hall, Box 951594
Irvine, CA 92606 Los Angeles, CA 90095-1594
Email: tri.ngo@vlsi.com Email: ingrid@ee.ucla.edu

Abstract: Turbo codes are introduced in 3rd generation wireless cellular standards
for their superior coding gain. The MIPS requirements of turbo codes are however
extremely high. This paper describes the implementation of a turbo-decoding
algorithm on the TMS320C55x processor. The coding performance is evaluated with
fixed-point arithmetic. A methed to optimize the memory is also introduced to address
the large data storage problem. The effect of finite word lengths is carefully examined
to reduce the state metric normalization time and to achieve at the same time an
acceptable bit error rate (BER). The coding gain of 5.8 dB for a BER of 102 in 6
iterations is achieved with frame size of 1K bits and 50 Hz frame rate. Total MIPS
estimate when using the Max Log-MAP algorithm is 46 MIPS.

I. INTRODUCTION

Turbo codes are introduced in 3rd generation wireless cellular standards for their
superior coding gain. The MIPS requirements of turbo codes are however
extremely high. Therefore, its practical feasibility must be evaluated for the
available technology. Unlike other previous DSP generations, the primary
hardware resource of the fixed-point DSP C55x CPU consists of several
application-specific instructions, which offers both high code density for control
tasks and efficient execution for turbo decoding algorithm. For example, the index
search (Max_diff) is twice as fast as the search instruction in the C54x. The
powerful indirect addressing modes will accelerate the Viterbi butterfly through the
entire decoding process.

Turbo codes have been implemented on the DSP-based, C6x [1] and on an
ASIC [2]. Both implementations are designed for deep space applications. In that
case the BER is the most important design issue and the complexity is less
important design issue. In this implementation, we focus on the trade-off between
complexity and BER performance. The intended is in next generation wireless
standard. This paper describes a turbo code implementation on the Texas
Instruments TMS320C55x. First, we describe the turbo code algorithm, that is
being proposed for the CDMA 2000 system in section II. Next, in section HI, we
describe the implementation on the C55x. Important implementation issues are
discussed such as reducing the state metric normalization, and maximizing the data
throughput rate. In section IV, the performance is evaluated. Finally, in section V,
the conclusions and future work are given.

0-7803-6488-0/00/$10.00 © 2000 IEEE 255

II. DECODING ALGORITHM

For a practical implementation, the continuous flow of information is split into
frames. The advantage of using a block code is that the memory requirements of
the Maximum A Posteriori (MAP) decoding can be reduced significantly. Also, the
decoding delay is now set by the length of the block and does not depend on the
transmission rate. The terminated turbo encoder scheme (Fig. 1) is being proposed
in the CDMA 2000 system [3]. The switches inside the encoder scheme are used to
erase the register contents between every frame length transmission. The
interleaver has the same size of the frame and is designed as a pair of row-column
registers, which are used alternatively for the reading and writing operations.

— X

—

Xk

P pi

P P2k

Fig.1 Turbo encoder of rate 1/3.

The turbo decoder is made up of two MAP decoding modules that cooperate in
an iterative scheme (Fig. 2). The soft extrinsic output of one MAP module feeds
into the other MAP module. This algorithm refines the estimate of the information

A
(pl,k) Ail

r
P W
1,kr A Y ‘
Xy — il
k gl Ay

—

X | A4
A—z'_‘ 1'[:’
o] i2
[y—nz A2
M
P2k

Alpy i)

Fig. 2 MAP turbo decoder.

sequence until convergence is reached. The practical issues are thus to reduce the
working memory and to increase the throughput. A sliding window (SW) technique
on the Log-MAP algorithm [4] is well suited to fulfill those issues. The SW
technique is used to transform the convolutional code into a block code by
segmenting the transmitted sequence into adjacent blocks, and periodically force
the trellis termination.

0-7803-6488-0/00/$10.00 © 2000 IEEE 256

The transmission system used in our simulations consists of a random frame
generator, a turbo encoder, BPSK modulators, AWGN channels, and a turbo
decoder as shown on Fig. 3. Each received symbol is given by a Gaussian
distribution with mean +1 and variance 6°. The log likelihood ratios (LLR) of the
received symbols {A(x), A(p1), A(p,)} are computed by multiplying the received
signals with a factor 2A/6”. The scaling factor A is introduced to avoid overflow.

[* o BPsk [X A
’ t
Random | Y| Turbo |P Pi" | AWGN A (p1) | Turbo {x*
Generator Encoder » BPsk Pl Noise Dec. BER
P2 P2 q
P2 ek] A (Do) /'y

Fig. 3 Transmission system

The o metrics are started in known initial states at the beginning of each
window and are computed using the forward recursion.

int int
=M T (s, ,S1)A), s s 1
a4 ® ax[{ak(sl)+ k(ss1)+xk(ssl) k){nzk(sz)«rl"k(ssz)+xk(s52)Ak }:l)]

Where {s), s;} are the states at trellis stage k that merge into state s at trellis
stage k+1 in the forward path. Similarly the B metrics are started in known initial
states at the end of each window and are computed using the backward recursion.

ini

t int
Br_1® = Max[{ﬁk (t1)+r‘k(t,t,)+xk(t,t1)1\k),{ﬂk(t2)+ I‘k (t,t2)+xk(t,t2)/\k)] 2)

Where {t;, t,} are the states at trellis stage k that merge into state t at trellis
stage k-1 in the backward path. The branch metric I'(s, s’) is given in (3), with p;
refers to either p; or p,.

N Gs)=x A)+p AP) 3)
k k i,k i, k

A':t is called the intrinsic information which is used as a priori information by
the next decoder. It has the value of the extrinsic information Ae,f' after interleaving

or de-interleaving according to the diagram in Fig. 2. Ae,f' is determined by the

following equations.

Ael:t = Max L) +T (5.8)+ 8 (s)]- Max [1 ©)+T (5,8)+ B (s)] @
k+1 k k k+1 k k
x =1 x =-1
k k
A fixed point C program has been written and evaluated for several different
formats (X.Y) of 8bits received sample representation, where X and Y are the
integer and fractional bits respectively. The best result for Max-Log-MAP
algorithm (Fig. 4) is achieved for 4 bits of integer and 3 bits of fractional.

0-7803-6488-0/00/$10.00 © 2000 IEEE 257

Frgrre kL Prsssmrane #2183, 206 focents, fosome wigh, = 1024

B3 BE BF 83 94 1 {1 13 i3 44 13
Erthe o 40

Brgwon 10, Partarmasse a0 W3 408 froeas, Soveme mgth» 312

Py o8 BY o DRO¥ 1Y YIE OER Oi4 %3
Stk din 28

HI. TMS320C55X IMPLEMENTATION

The C55x is a programmable fixed point DSP with a variable length instruction set
and parallel execution of instructions. While the variable length instruction offers a
high code density for control tasks, the parallel execution offers an efficient
execution for many DSP applications. With twice the functional units (MACS,
ALUS, and Accumulators) in the C55x core compared to the C54x core, the data
computational unit (DU) supports crucial parallel instructions that increase cycle
efficiency. The additional buses and address generators enable multiple operand
operations and reduce memory bottlenecks.

This section focuses on optimizing the working memory through the SW
technique. Fortunately, careful storage and memory reuse allows for high
throughput with limited memory resources. A circular buffer implementation is the
main key to minimize the pointer manipulation problem in the metric update with
zero overhead hardware. In the metric update section, using parallel instructions
and avoiding pipeline stalls are also investigated to speed up the program.

0-7803-6488-0/00/$10.00 © 2000 IEEE 258

A. Memory Organization

All memory resources are organized around a unified program and data space of
16 Mbytes. The program memory space is linear byte-addressable. The data
memory space is a 8Mword word-addressable, which is segmented into 128 main
data pages of 64Kwords. The eight address registers (AR0-7) and four data
registers (DRO-4) are used to indirectly access to one of the main data pages. Table
I gives an overview of the memory map in the C55x architecture.

Program Address Data Address
00_0000 MMRs 00_0000
00_0c00 DARAM (32K) 00_0060 MMR = Memory Map Register
01_0000 SARAM (128K) | 00_8000 DARAM =Dual Access RAM
05_0000 02_8000 SARAM = Single Access RAM
External
FF_FFFF 7F_FFFF

Table 1. C55x Unified Memory Map

The memory resources that were used in the decoder implementation have been
divided into regions that characterize the size and speed of the memory. The fastest
memory region MMR is used to store the actual DSP executable code. The
DARAM and SARAM regions are used to store the stacks, the local variables and
any variables that require high performance memory. The slowest external memory
region is used for post-processing memory access. Table II shows the memory
assignments for the MAP module.

Region Variable Description Size (bytes)
r Branch metric 2*(WS+P)
DARAM B_prolog | Initial backward recursion 32
B Backward metric 16*WS WS = window size
o Forward metric 32 P = Prolog length
SARAM A Extrinsic data of MAP1 FS FS = Frame size
A Extrinsic data of MAP2 FS N =# frames
A(x) LLR of x (FS+6)*N
External | A(p;) | LLR of parity 1 (FS+3)*N
A(p,) | LLR of parity 2 (FS+3)*N
x_out Output binary data FS*N/8

Table II. MAP Module Memory Section Assignments.
B. Metric Update

The computational complexity of a turbo decoder is dominated by the MAP
module implementation. Since all of the states must be updated at each trellis
stage, most of the decoding time is spent on the metric update. Therefore, much
effort has gone into minimizing the metric update calculation time. The metric
update process involves the four steps of computing T, o, B, and A™. The

0-7803-6488-0/00/$10.00 © 2000 IEEE 259

extremely useful instruction from the C55x processor is “max_diff”, which is well
suited for either Log-MAP or Max-Log-MAP algorithms. This complex instruction
executes several operations in parallel and hence it will speed up the program and
reduce the code size. Also, the pre-modified indirect addressing mode will help us
to compute the forward and backward recursions fast.

1. Compute I'-metrics

First, all the received symbols are converted into LLR by scaling them by the
factor 2A/c”. Then, the I'-metrics are calculated for each trellis stage k and are
reused for the forward and backward recursions. Table III shows that only {I'}o,
Ty1} require to be stored in the I'-buffer.

stage k I" metrics routine Assembly code

x| p T metrics | Hi (ACO) = *ARO++ DRO, ; ACO_H = A(X)+A(p)
0 0 Too=-Tn Lo (ACO) = *ARO+ - DRO 3 ACO_L = A(X)+A(p)
0 1 o= -Tio | DRO = *AR1+ ; DRO = Next A(p)

1| o Tio=[A®) - A@)] >> A | Hi ("AR2+) =Hi (AC0)>>1, ; Store T[], T'to[]

1 1 = [AK)+AQ)]>> A Lo (*AR2+)=Lo (AC0)>>1 ; Assume A =1

Table III. Branch metrics

The scaling factor A is used to scale the T-metrics, to avoid overflow in the
forward recursion. Two address registers ARO, and AR1 are used to access to
A(xy), and A(py), respectively. Using the dual add/subtract instruction and the
explicit parallelism technique, the I'-metrics are computed in just 1 cycle. The dual
add/subtract instruction performs the complementary calculation, storing
subtraction results in the lower accumulator and addition results in the upper
accumulator. The indirect addressing mode will help us to load the results back to
the I'-buffer.

2. Backward recursion

The prolog B metrics are used to initialize the backward recursion in each window.
The process is performed on the butterfly as shown in Fig. 5 over an interval of a
prolog length, P. The process starts when all states, except state 0, are set to the
same initial metric value. In this implementation, the state 0 is set to value of 0,
while all other states are set to the minimum possible values (0x8000), providing
room for growth as the metrics are updated. Except for the last window, the B-
prologs are performed on the terminated trellis.

Due to the symmetry of the RSC code, two starting and ending states are paired
in a butterfly structure including all branches between them (Fig. 5). This structure
provides only one I" metric is needed for each butterfly. It is alternately added and
subtracted from the old B metrics to form the new B metrics. The complete
butterfly structure can be implemented in C55x with the dual add/subtract and the
max_diff instructions. The max_diff compares the two 16-bit signed values in the
upper and lower halves of the accumulator and stores the maximum value to

0-7803-6488-0/00/$10.00 © 2000 IEEE 260

memory. In addition, max_diff instruction also generates the difference between
these two numbers, which can be used as an index pointer to the right corrective
term in the lookup table.

Old B Metric Prelim Values New 3 Metric
1—‘00
S P Bi(s)) tToo Max
Puls) r Bu(s) T Bicr1(5m)
0o k(Sj) -1 00
Lookup —T
Table
T %
Too Bi(si) -Too Ben(on)
Bulsy) ‘ Max L
Bx(s;) +Too
Too

Fig. 5 Butterfly structure to compute § metrics.

The prolog B metric storage requires two buffers, each with a size equal to the
number of states (8 words). At the end of the metric update, these buffers are
swapped so that the recently updated metrics become the old metrics for the next
stage. In order to minimize pointer manipulation, these buffers are usually
configured as a single circular buffer as shown in Fig. 6. The old metrics are
accessed in consecutive order, requiring only one pointer ARQ. The new metrics
are updated in the order {By, B4, B2, Bs, B1> Bs, B3, B7}, requiring two pointers AR1,
AR?2 for addressing. Address register AR3 is used to access to the I" buffer.

DRO=#2 ; increment AR1 by 2 :
DR2 = *AR3+ ;DR2=T
Hi (ACO) = *ARO+ - DR2, ;ACO_H =old_fo-Ty i
Lo (ACO) = *ARO+ + DR2 ; ACO_L =old_BetTy |}
Hi (AC1) = *ARO+ + DR2, JACI_H=old_Bi+Ty |
Lo (AC1) = *ARO+ - DR2 ;ACIL=old BTy i
Max_diff (ACO, AC1, AC2, ACl) ; Select new_fo, new_f, |
Dbl (*(AR1+DR0)) = AC2 ; Store new_po, new_p.

Index of B buffer

Fig.6 B buffer and assembly code to implement the butterfly.

The B computation routine is the same as the prolog B routine. However, the
linear buffer is used to store every update metric. The read pointer ARO is used to
access to the previous array memory in the consecutive order, while two write
pointers (AR1, AR2) are used to store the update metrics to the next memory
array. These write pointers are swapped once during the updating process of each
stage.

3. Forward recursion

Unlike the initialization process in the backward recursion, the last o-metrics of
the recent window can be used as the initial values to start in the next window.

0-7803-6488-0/00/$10.00 © 2000 IEEE 261

These values are normalized to prevent buffer overflow. Normalization is done
only once for each window, except the first window: the state 0 is set to value of 0,
while all other states are set to the minimum possible values (0x8000). At the final
node of the forward recursion, the maximum possible value (0x7fff) is subtracted
from each of them.

The o-metrics are also performed on the same butterfly as show in Fig 5. After
normalization process, eight o-metrics are calculated for every trellis stage and
immediately consumed to produce the extrinsic information A*'. Two circular
buffers are sufficient to perform the forward recursion. At the end of the o-metrics
update, these buffers are interchanged so that the recently updated metrics become
the old metrics for the next trellis stage. The index metrics in the o-buffer is
similar as shown in B-buffer. Except two address registers ARO, ARI are
alternately used to update the old metrics. The address register AR2 is used to
store the new metrics and is incremented by 1.

4. Extrinsic information

The extrinsic computation performs the composition of three sets of quantities (T,
o, B) needed by the Max-Log-MAP algorithm. The algorithm takes all branches
into its calculation, but splits them into two best branches that are associated with
input bits 0 and 1. The extrinsic information is determined from the difference of
these branches. Fig. 7 presents the circuit tree of searching for the extrinsic
information bit where its Max* module is used to select the survivor path.

oy Oy o3 Oy Ay O o Qs

Fig. 7 Implementation of extrinsic bit information.

0-7803-6488-0/00/$10.00 © 2000 IEEE 262

The following code illustrates the implementation of Max* module. A
temporary buffer of size 8 words can be used as the output buffer for all three
levels of computations. The buffer is also organized in table IV in order to simplify
the pointer manipulation. Finally, the saturation mode will be set in order to
convert the intrinsic output back to a byte format.

Temporary Buffer Max* medule assembly code
wor | I [2@ T 3 T pair (DR2) = *(ARO + DRO) ; DR2= 0w, DR3 = a4
d level | level | level | Hi (ACO)=Hi (*(ARI+DR1))+DR2, ;ACO_H=po+ a0
0 Al | A3 | A4 | 10(ACO)=Lo (*(ARI+DRI1))+DR2 ;ACO_L=B,+ a0
1 Cl1 C3 | C4 | Hi(ACl)=Hi (*AR1+)+ DR3, ; ACI_H=P;+ oy
2 Bl B3 Lo (AC1)= Lo (*AR1+) + DR3 s ACO_L=Po+ o
3 1T bl | D3 Max_diff (AC1, ACO, AC2, AC1) ; AC2_H= Al
;AC2_L=Cl

4 A2

5 C2

6 B2

7 D2

Table I'V. Extrinsic Output Computation

IV. CPU PERFORMANCES

Table V summarizes the code performance in terms of the memory usage and
number of cycles for all the functions, which used to implement a fixed-point MAP
module. The decoding cycles per frame is obtained from all the function cycles
except minor processor-initialization tasks. The equivalent MIPS are found by
multiplying the decoding cycles per frame with the frame rate, FR.

Function Log-MAP | Max Log-MAP MIPS/Frame
Cycles/bit Cycles/bit
" metrics 2 2
Prolog B metrics 20 15 1. Log-MAP Algorithm
B metrics 20 15 [86 + (8+20P)/WS]*FS*FR
(x-normah;atlon 8 i 2. Max Log-MAP Algorithm
& metrics 20 15 (71 + (8+15P)/WS]*FS*FR
Extrinsic output 42 37
(De)Interleaver 2 2

Table V. Code Performance for a MAP module

With (FS =1024, P = 24, WS = 100) bits, each MAP module requires 76630 (or
93270) cycles/frame by using Max Log-MAP (or Log-MAP) algorithm, which is
equivalent to 3.83 (or 4.66) MIPS at a 50 Hz frame rate. Thus, the total MIPS for 6
iterations is 3.83*12 = 46 (or 4.66*12 = 56) MIPS. Table VI summarizes the trade-

0-7803-6488-0/00/$10.00 © 2000 IEEE 263

off between complexity and BER performance of different designed frame sizes of
using Max Log-MAP algorithm.

Frame Size # Frames Total MIPS | Memory (Mbytes) BER
0.5K 400 23 1.231712 5.7dB
1K 200 46 1.229312 5.8dB
2K 100 92 1.228112 5.9 dB
Table VI. Total MIPS and BER trade-off
V. CONCLUSION

In this paper, a successful SW technique is introduced in the Log-MAP decoding
algorithm. The methodology has resulted in a significant decrease in memory and
decoding delay. That helps to break down the complexity issue of turbo decoder
implementation in hardware. One single normalization step is sufficient in each
window. Through the MAP module implementation, we show that the turbo
decoder for a long bit stream can be implemented just using the DSP C55x alone.
The memory model should be selected in order to divide the memory up into
regions that characterize the size and speed of the memory. Future work consists of
optimizing the C55x assembly code for both MAX* and Log-MAP algorithms.

ACKNOWLEDGMENTS:

This work was performed while Tri Ngo was a Master Student at UCLA. This
research was supported in part by ATMEL Corporation under the Micro Program #
98-162. We would like to thank Wanda Gass from Texas Instruments for the help
in the fixed-point assembly code implementation and Christina Fragouli for the
help with the fixed-point C simulation.

References:
[1] William J. Ebel, “Turbo Code on The C6x”, Alexandria Research Institute,
Virginia Tech.

[2] G. Masera, G. Piccinini, M.R. Rock, M. Zamboni, “VLSI Architectures for
Turbo Codes, ” IEEE Trans. on VLSI systems, Vol. 7, No. 3, Sept. 1999.

[3] Steve Dennett, “The cdma2000 ITU-R RTT Candidate Submission,” Telecom.
Industry Association (TIA4), May 15, 1998.

[4] A. J. Viterbi, “An Intuitive Justification and a Simplified Implementation of the

MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications, Vol. 16, No. 2, February 1998.

0-7803-6488-0/00/$10.00 © 2000 IEEE 264

