
Ç.K. Koç, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 51–64, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Architectural Optimization for a 1.82Gbits/sec VLSI
Implementation of the AES Rijndael Algorithm

Henry Kuo, Ingrid Verbauwhede

Electrical Engineering Department, University of California Los Angeles.
henrykuo@ee.ucla.edu ingrid@ee.ucla.edu

Abstract. This paper discusses the architectural optimizations for a special
purpose ASIC processor that implements the AES Rijndael Algorithm. In
October 2000 the NIST chose Rijndael as the new Advanced Encryption
Standard (AES). The algorithm has variable key length and block length
between 128, 192, or 256 bits. VLSI architectural optimizations such as
parallelism and distributed memory are discussed, and several hardware design
techniques are employed to increase performance and reduce area consumption.
The hardware architecture is described using Verilog XL and synthesized by
Synopsys with a 0.18µm standard cell library. Results show that with a design
of 173,000 gates, data encryption can be done at a rate of 1.82 Gbits/sec.

1 Introduction

Although many encryption algorithms can be relatively efficiently implemented in
software on general-purpose or embedded processors, there is still a need for special
purpose cryptographic processors.

First of all, high throughput applications, such as the encryption of the physical
layer of Internet traffic, require an ASIC that does not affect the data throughput. For
example, software implementation of the Rijndael algorithm on a Pentium 200 Pro
yields a throughput of around 100 Mbits/sec [1], which is too slow for high-end
Internet routers.

Moreover, in terms of mobile application like cellular phones, PDA’s, etc.,
software implementation on general-purpose processors consumes much more power
than special purpose ASIC's do. Last of all, it is often the case that applications
require the encryption logic be physically isolated from the rest of the system, so that
the encryption can be secured more easily. In this case a hardware accelerator is a
more suitable solution as well.

The AES Rijndael algorithm was chosen in October 2000 and is expected to
replace the DES and Triple DES because of its enhanced security levels [2]. In this
paper, VLSI optimizations of the Rijndael algorithm are discussed and several
hardware design modifications and techniques are used, such as memory sharing and
parallelism. The circuits are synthesized using a 0.18µm CMOS standard cell library,
and estimations are done on timing and gate counts.

52 H. Kuo and I. Verbauwhede

In the following sections, we will briefly discuss the algorithm flow, followed by
detailed hardware implementations and techniques. After that we will present the
simulation results, followed by future developments and conclusions.

2 Rijndael: Algorithm Flows

The main flow of the algorithm, as shown in Fig. 1, uses many lookup tables and
XOR operations. The algorithm accepts blocks of size 128, 192, or 256 bits.
Independently, the key length can be 128, 192, or 256 bits as well. All encryptions
are done in a certain number of rounds, which varies between 10, 12, and 14, and it
depends on the size of the block length and the key length chosen. An encryption
module is used to generate all the intermediate encryption data, and a separate key-
scheduling module is used to generate all the sub-round keys from the initial key.

For encryption, it can be divided into four blocks: Key Addition, Shift Row, Mix
Column, and Substitution. The Key Addition module is byte XOR between the round
key and the encryption data. The Shift Row and the Substitution modules involve
mainly table lookups. Last of all, the Mix Column module composes of XOR
operations. The algorithm flow is shown in Fig. 1. The Key Scheduling module is
totally independent of the encryption module, and it also involves table lookups and
XOR operations.

There are a total of three sets of tables used by key scheduling and encryption.
One of them is 256 bytes; one of them contains 30 bytes; the remaining one has 24
bytes of entries.

3 Architecture Optimizations

The initial specification of the Rijndael algorithm was implemented mainly in
software. Although the algorithm is designed with hardware implementation in mind,
the transition from software to hardware involves modifications. The main challenge
in the hardware implementation is to maximize the encryption throughput while
minimizing the area consumption at the same time. Maximizing the throughput will
minimize the critical paths and solve the memory access conflicts. As shown in Fig. 2

Fig. 1. Algorithm Flows.

Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm 53

[3], there are a lot of regularities in the design of Rijndael algorithm. Therefore, with
careful VLSI design, the critical path as well as the overall area can be minimized.

S SS S S SS S S SS SS SS SS u b s t i tu t io n

S h if tR o w

M ix C o lu m n

K e y A d d

Fig. 2. 2D diagram illustrating data flow, adapted from [3].

3.1 Basic Architecture Decisions

In our implementation of the algorithm, there is only hardware for one encryption
round and we re-use the same piece of hardware to complete the whole encryption
process. While this implementation can help conserve most area, the main reason for
this design is to incorporate different kinds of feedback modes that are currently
available in the industry. Although NIST is currently initiating another new counter
mode of operation, the common mode of operations used today do not allow
pipelining of encryption modules. Therefore having two or more encryption modules
in the processor is not the most flexible design.

Besides having hardware for one encryption round, we also designed the processor
to complete one encryption round in one clock cycle. This design is very important,
for example, in high throughput systems, because it ensures that the design is run at
the lowest clock frequency possible with the same throughput. The drawback of this
design is that we have to duplicate some of the modules, especially lookup tables, in
order to finish all the required operations in one clock cycle for one encryption round.

The third basic architecture decision we made was the key scheduling. There are
two ways for generating the round keys for encryption, either by generating all the
sub-keys beforehand and storing them in a buffer, or generating all the sub-keys on
the fly in parallel with the encryption module.

Since buffer storage could take up substantial amount of space, we decided to
generate the sub-keys on the fly during encryption. Therefore we implemented the
hardware required to generate one set of sub-key and re-use it for calculating all the
sub-keys, and at the same time also use one clock cycle for one sub-key generation.

54 H. Kuo and I. Verbauwhede

3.2 System Setup

The general block diagram is shown in Fig. 3. Besides the Encryption and Key
Scheduling modules, there are one controller for the input channel, one controller for
the output channel, and a top-level controller interfacing with the user modules.
There is only one system clock, and it is fed to all the modules.

Both the input and output channels are 16 bits wide. Therefore, in order to read in
the whole cipher or key, a handshaking protocol is used. The top-level controller
takes in a 4-bit instruction and returns a ready signal when it is idle. In order to allow
both 128, 192, and 256 bits for Encryption and Key Scheduling, the internal data path
are all 256 bits. The user has the ability to set the block length and the key length
using specific instructions, and the input and output controller will automatically
adjust the input and output sequences.

Specifically, pipelining and unrolling are not implemented in the system. As a
result, there is only one module for Encryption and one module for Key Scheduling,
and these modules are reused to generate all the intermediate data and key. This
design should be the most area efficient with the best module utilization.

As shown in table 1, the instructions are four bits long. Feedback modes (1110 and
0110) take in the raw data and encrypt the data for one thousand times using OFB
feedback mode, and this is used for calculating the maximum operating frequency of
the core during tests. Decryption is not implemented in the current design since it
requires a separate datapath. Nonetheless, in order to implement decryption, either
the generation of the entire sub round-keys has to be done beforehand, or there needs
to be another datapath generating the inverse process of Key Scheduling. The first
case requires an additional 3584 register storage while the second method requires
more routing, both result in much larger area.

Fig. 3. Overall block diagram.

Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm 55

Table 1. Instruction sets used for this processor.

Reset 0000
128 bits 1010
192 bits 1011Set Block Length
256 bits 1100
128 bits 0010
192 bits 0011Set Key Length
256 bits 0100

Input Data 1001
Input Key 0001
Encrypt 1101
Encryption – Feedback Mode (for testing) 1110
Decryption 0101
Decryption – Feedback Mode (for testing) 0110
Output Data 0111

3.3 Memory Architecture Optimization

Since the design is based on one clock cycle for each encryption round, we have to
duplicate memory modules several times. Consequently, the choice of memory
architecture is very critical. Since all the table entries are fixed and defined in the
standard, Random Access Memory (RAM) is not needed, but in fact Read Only
Memory (ROM) is enough. Specifically, the algorithm will require a lot of small
ROM modules instead of one large memory modules, since each lookup will only be
based on a maximum of 8-bit address, which translates to 256 entries. However, the
ROM has to be asynchronous; otherwise several clock cycles would be required for
all the memory reads. In our design, combinational logic is used to implement the
table lookups.

There are three types of tables we used in our design. The first one, which is the
most used, is the S-box. It is a 256-entry table with each entry 8-bit. Using
combinational network we were able to use around 2200 gates to translate the table,
which converts to around 51000µm2. The access time for the table is around 1.89ns.
We have a total of 48 copies of the table in our design; 32 of them in the Encryption
module and 16 in the Key Scheduling module.

The second table lookup is for deciding the shift amount in the shift row module,
which has 24 entries. We implemented four copies of the tables in our design, and we
were able to achieve that using 55 gates with an area of 1000µm2. The last type of
table lookup has 30 entries, and it is used to generate the round constant in the key-
scheduling module. It is only accessed once in each round, so we have only one copy
of the table, with 70 gates occupying 1300µm2.

3.4 Simplification of Modulus Operation

There are several modulus operations in the algorithm: modulo 4, 6, and 8. Since the
modulus values are known already, generic modulo operations are unnecessary since

56 H. Kuo and I. Verbauwhede

they require a lot of area. Therefore, it is beneficial to look into the data set and break
down the modulus operations into more efficient combinational logic, which
consumes less area.

For the modulus 4 and 8 operations, they are relatively easy to implement using
simple shifting. Result of modulus 4 is the last 2 bits in the operand, and result of
modulus 8 is the last 3 bits of the operand. In simplifying modulus 6, it is necessary
to look at the set of values the operands take since there is no simple method for
reducing them. In the algorithm, modulus 6 takes on values from 0 to 13, therefore a
Karnaugh Map was used to implement the operation efficiently using gates.

3.5 Encryption Datapath

As discussed before, the encryption module can be broken down into four different
sub-modules, and the same case applies on the hardware implementation of the
algorithm. We implemented the four modules (Substitution, Shift Row, Mix Column,
and Key Addition) using mainly lookup tables, XOR’s, and pure combinational logic.
Moreover, the datapath is 256 bits wide despite of the actual block length.

3.5.1 Substitution
The 256 bit data is broken down into 32 chunks, 8 bit each, and each of them is used
as the address for S-box table lookup. The S-box contains 256 entries, and each entry
is 8 bits wide. The S-box is implemented using combinational logic with an access
time of around 1.89ns. In order to achieve parallelism and finish one round of
encryption in one clock cycle, the same S-box is duplicated 32 times. Fig. 4 shows
the block diagram for this module.

s s s s s s
8 8 8

8 8 8 8 8 8

8 8 8

3 2 b y t e s

i n p u t

o u t p u t

Fig. 4. Block diagrams for Substitution.

3.5.2 Shift Row
Inside Shift Row, the 256 bit data is broken down into four chunks. Each of the 64-
bit chinks is called a roll and it contains eight bytes. Byte-wise cyclic shifts will be
performed on each “row” (Fig. 5), and the amount of shifts is determined by the block

Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm 57

length through a simple table lookup (24 entries). Modulus 4, 6, and 8 operations
determine the boundaries on which wrap around happens.

in p u t

o u tp u t

shift va lue

b 7 b 5 b 4 b 3 b 2 b 1 b 0b 6

b 7 b 5 b 4 b 3 b 2 b 1 b 0b 6

Fig. 5. Block diagram for Shift Row (only one of the four 8-byte “rows” is shown).

3.5.3 Mix Column
In Mix Column, four bytes in the corresponding position in the four “rows” are used
for matrix multiplication in GF(28), which involves byte-wise multiplication and
addition. Byte-wise additions are easily done by XOR, and several tricks are used for
multiplications.

Byte-wise multiplications include multiplying the data by 1, 2, and 3. Multiplying
by 1 the data remains the same. For multiplication by 2, the 8 bit data is left shifted
by 1 bit, and the LSB is replaced by 0. Then the MSB of the original data is used for
comparison. If it is 0, then the left shifted data is the result; if it is 1, then the left
shifted value is XORed with the reduction polynomial, in this case 00011011, to
generate the result. For multiplication by 3 we simply XOR the original byte with the
result of multiplication by 2.

Using the above method, the multiplications by 1, 2, and 3 of each of the bytes in
the data are determined. Then the correct combinations of values are XORed with
each other to produce a new byte. The same process goes on until all the 32 bytes in
the data are replaced.

Fig. 6 shows the block diagram for generating the first byte of each row.

3.5.4 Key Addition
In Key Addition, the 256 bit data is XORed with the 256 bit keys to generate the
result, as shown in Fig. 7.

3.6 Key Scheduling Datapath

The datapath for Key Scheduling is also 256 bits wide to accommodate different
key lengths. Moreover, the sub-keys are all generated on the fly, meaning that there
is no buffer storage for keys generation.

58 H. Kuo and I. Verbauwhede

b0

Row 0

b0

00011011

0

x2 x3 x1

b0 b0b0

b0b0b0

Row 0 Row 0 Row 0

x2 x3 x1 x2 x3 x1 x2 x3 x1

Fig. 6. Block diagram for Mix Column (only byte 0 calculation is shown).

3 2

K e y

O u t p u t

b 3 1

b 3 1

b 0

b 0

b 3 1

D a ta

b 3 0 b 1 b 0

Fig. 7. Block diagram for Key Addition.

3.6.1 Datapath breakdown
The datapath can be broken down into three parts. In the first part, the 256-bit key is
separated into four 64-bit “rows,” and the lowest byte of each “row” is used as the
address to access the S-box. The returned 8-bit result is XOR with the original byte to
produce the new byte. For parallel access the S-box is duplicated four times.

The second part involves XOR between the zeroth byte with the round constant. A
pointer, which increments every clock cycle, is used as an address to access the 30-
entry round constant table for the round constant.

In the third part, the 256-bit data is again broken down into four “rows” of 64 bits
each. Each “row” contains eight bytes, and each byte is XORed with the previous

Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm 59

byte in a sequential manner. The block diagram is shown in Fig. 8. Since the
datapath is slightly different for Key Length of 256 bits, a MUX is used for the
selection of the fourth byte and is controlled by the key length.

b0b7

b0b7

b0b7

b0b7

S

rcon

pointer

S

BC

Fig. 8. Block diagram for Key Scheduling (only one of the four 8-byte “rows” is shown).

3.6.2 Key Alignment
Since the Rijndael algorithm allows different key lengths and block lengths, each sub-
key is carefully set to have the same length as the data do. From the specification of
the algorithm, the original key is used to generate a sequence of the entire sub-key
stream, and chunks of sub-keys are selected for the encryption module according to
the block length. This algorithm works if we have a buffer storage in our design to
store the whole sub-key sequence, but is not applicable to our implementation.

In the case of 128-128 (block-key), 192-192, and 256-256 the generated sub-keys
could be fed into the encryption module directly with any reorganization (Fig. 9a).
However, in the case of 256-128, since both the encryption and key-scheduling
modules are sharing the same clock, it means that the key-scheduling module has to
create two set of 128-bit sub-keys to combined for the 256-bit sub-key for the
encryption module (Fig. 9b).

On the other hand, in the case of 192-128, the original 128-bit keys are used for the
lower 128 bits of the sub-key fed to the encryption module. Then the 128-bit key
goes through the key-scheduling module to generate the next set of 128-bit sub-key.
The lower half of this key is used as the upper 64 bits of the first sub-key fed into the
encryption module, and the upper half is used for the next sub-key (Fig. 9c). In this
case we will sometimes need to access the next sub-key and sometimes the previous
sub-keys.

60 H. Kuo and I. Verbauwhede

K e y

K e y S c h e d

S u b - k e y
a (1 2 8 - 1 2 8)

1 2 8

1 2 8

K e y

K e y S c h e d

1 2 8

K e y S c h e d

1 2 8

1 2 8

b (2 5 6 - 1 2 8)
2 5 6

K e y

K e y S c h e d

1 2 8

K e y S c h e d

1 2 8

1 2 8

c (1 9 2 - 1 2 8)
1 9 2

Fig. 9. Illustration of alignments of sub-keys.

3.6.3 Key Scheduling Architecture
By careful analysis of all the nine combinations between the Block Length and Key
Length, we noticed that in the worst case the Key Scheduling module will need to
maintain the previous, current, and also the next sub-keys in order to generate the
appropriate set of keys that are fed into the encryption module.

Therefore, we decided to implement two sets of the encryption modules to achieve
this. Fig. 10 shows the block diagram of our design. An extra selection module is
used to select from the three sub-keys, based on the key length, block length, and the
round count, the correct combination of keys that should be fed to the encryption
module.

K e y - p r e v io u s

K e y - c u r r e n t

K e y - n e x t

K e y S c h e d u l in g

K e y S c h e d u l in g

K e y S e le c t io n

r o u n d

b lo c k le n g th

k e y l e n g th

S u b - k e y (fo r e n c r y p t io n)

Fig. 10. Architecture of Key Scheduling used.

Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm 61

4 Results

The hardware design is done using the Cadence Verilog-XL, and synthesis was
done using Synopsys DesignCompiler and National Semiconductor’s 0.18µm
standard cell library. The synthesis was done using two libraries: the worst-case
library, which uses 1.2V at 120F and worst case processing, and the typical-case
library, which uses 1.8V at 60F with best processing parameters. Results are in table
2.

Table 2. Synthesis Results.

Worst-case library Typical-case Library

Critical Path 21ns 10ns

Frequency 48MHz 100MHz

Chip Area 4.23mm2 3.96mm2

Gate Count 184,000 173,000
Max. Throughput (256 bits data
/ 128 bits key) 870 Mbits/sec 1.82 Gbits/sec

Min. Throughput (128 bits data
/ 256 bits key) 435 Mbits/sec 910 Mbits/sec

The critical path lies in the Key-Scheduling module, and it is shown in Fig. 11. It
involves going through a S-box lookup XOR, and then the round constant lookup and
XOR, followed by a sequence of XOR and one more S-box lookup. This path is
duplicated one more time since we have two key-scheduling modules, and since one
path is around 4.5ns, going through the two modules would take a total of 9ns.
Together with the sub-key selection module, which is around 3ns, the whole critical
becomes 10ns.

r o u n d
c o n s t a n t

S S

SS

r o u n d
c o n s t a n t

S u b - k e y S e l e c t io n

S u b - k e y 1

S u b - k e y 2

i n p u t

o u t p u t

Fig. 11. Critical path for Key Scheduling.

62 H. Kuo and I. Verbauwhede

The critical path in the Encryption module is illustrated in Fig. 12. It involves a S-
box lookup, then the shift row module, which includes table lookup and XOR, four
sets of XOR in Mix Column, and a final XOR operation in key addition. The overall
path is around 6ns.

Since the critical path is as long as 10ns, the system could operate under a clock of
100MHz in typical environment. When calculating the throughput, we measure the
critical path of the processor core (Encryption and Key Scheduling modules),
calculate the time to finish one encryption, and determine the throughput.

In the worst case, where the cipher is 128 bits, the key is 256 bits, and the
encryption requires 14 rounds, the throughput is 910 Mbits/sec. In the best case,
where the cipher is 256 bits and the encryption takes 14 rounds, the throughput is 1.82
Gbits/sec. For comparison, in software implementation, on a Pentium Pro 200MHz
Pro system running Linux, the best-case throughput is about 100 Mbits/sec.
Compared to the hardware implementation, the hardware implementation is about 18
times faster.

The whole chip has a size of around 3.96mm2, with a gate count of around 173,000
gates. The input and output controller each takes 1.6% of the overall area, and the
top-level controller takes around 3.9% of the overall area. The Key Scheduling
module consumes about 35% of the area, and the remaining Encryption module
occupies 57.5% of the overall area. All these data are summarized in table 3.

On the other hand, each 256 bytes table consumes about 5100µm2. In the whole
system, together with the four tables for Shift Row and the one for round constant are
very small, all the lookup tables combine to 2.5mm2, around 63% of the overall area.
In terms of register storage, the current design requires a total of 13200µm2 for
registers, which is about 8% of the overall area. Therefore, all memory components,
including registers and table lookups, occupy around 71% of the area of the chip.

Table 3. Comparison between Encryption and Key Scheduling modules.

Encryption Key Scheduling
Area 2.28mm2 1.39mm2

Gate Count 99,300 60,100
Percentage of Chip Size 57.5% 35%
Critical Path 6ns 10ns

Fig.12. Critical path breakup on Encryption module.

Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm 63

Table 4 compares the design described in this paper with the design by National
Security Agency (NSA) [6]. The research conducted by NSA was primary used as a
reference for NIST, therefore it did not include special architecture techniques in
order to create fair results between all AES candidates. Also, notice the library used
was a 0.5µm library.

Table 4. Comparison with results from NSA.

Design from NSA (0.5µm) Design in this paper (0.18µm)
Chip Area 46mm2 3.96mm2

Gate Count 1.000,000 173,000
Max. Throughput 447 Mbits/sec 1.82 Gbits/sec
Min. Throughput 320 Mbits/sec 910 Mbits/sec

From our results, we noticed that the generation of sub-keys on the fly creates a
serious bottleneck for the system. Since the encryption module has a critical path of
around 6ns and the key scheduling module has a critical path of 10ns, the encryption
module is idle for almost 4ns. If we could reduce path inside the key scheduling
module to around 10ns the throughput would be maximized.

This implementation is entirely possible. As we have discussed, one key-
scheduling module has a critical path of around 4.5ns, therefore if we implement
some buffer storage for sub-key generation, where we only need to maintain one key-
scheduling module, the critical path inside key-scheduling drop substantially from
10ns to at most 5ns, which matches precisely with the encryption module.

The tradeoffs with this implementation would be the excessive area for buffer
storage and also the time required to generate all the sub-keys before encryption can
start. By analyzing the current Key Scheduling module, each of the two sub-key
generation parts consumes 0.53mm2 and the sub-key selection module consumes
0.33mm2, whereas 3584 bits of register storage takes up around 0.5mm2. Therefore if
we generate all sub-keys ahead of time, we can save the sub-key selection module and
one sub-key generation module, replace that by 3584 bits of register storage and
actually save around 0.35mm2 of chip size.

On the other hand, although the critical path could be reduced from 10ns to 6ns,
the new design would require time to initialize all the keys. In the worst case, where
block size is 256 bits and key size is 128 bits, it would require 28 cycles to generate
all the required sub-keys for encryption. Compared to the 14 cycles required for
actual encryption, the overhead could be as much as 200%.

5 Conclusion

In this paper, a hardware implementation of the AES Rijndael algorithm is described.
In order to better fit the algorithm for hardware implementation, several modifications
are introduced, including memory access, modulo reduction, and key scheduling on
the fly. Synthesized using a 0.18µm library, the gate count is estimated to be around
173,000. It can sustain a maximum throughput of around 1.82 Gbits/sec at a clock
frequency of 100MHz, which is substantially faster than the software implementation.

64 H. Kuo and I. Verbauwhede

Moreover, area tradeoff for memory sharing and addition of decryption is also
discussed.

For future development, estimation on the real time required for key initialization
and time for a whole encryption should be done on the real chip. Moreover, more
detailed estimation should be done on the actual area increment for the addition of
decryption. Power consumption analysis is essential as well for mobile application,
and research on the actual resistance towards timing and power attack will be
investigated [7]. Last of all, analysis on using buffer and sub-key pre-calculation
should be implemented should be done as well.

Acknowledgements: UC Micro #00-097, Atmel Corporation, Panasonic, and
National Semiconductor Corporation sponsored this work.

References

1. J. Daemen and V. Rijimen, “AES Proposal: Rijndael.” Available at
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

2. E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, J. Nechvatal, and E. Roback,
“Report on the Development of the Advanced Encryption Standard (AES).” Available at
http://csrc.nist.gov/encryption/aes/round2/r2report.pdf

3. J. Savard, “The Advanced Encryption Standard (Rijndael).” Available at
http://home.ecn.ab.ca/~jsavard/crypto/co040801.htm

4. W. Diffic and M. Hellman, “Privacy and Authentication: An Introduction to
Cryptography.” Proceedings of IEEE, 67 (1979), pp. 397-427.

5. I. Verbauwhede, F. Hoornaert, H. De Man, and J. Vandewalle, “ASIC Cryptographical
Processor Based on DES.” Proceedings of EURO-ASIC-91, Paris, May 1991.

6. M. Bean, C. Ficke, T. Rozylowicz, and B. Weeks, “Hardware Performance Simulations of
Round 2 Advanced Encryption Standard Algorithms.” Available at
http://csrc.nist.gov/encryption/aes/round2/NSA-AESfinalreport.pdf

7. J. Jaffe, B. Jun, and P. Kocher. “Introduction to Differential Power Analysis and Related
Attacks.” Available at http://www.cryptography.com/dpa/technical/index.html

	1 Introduction
	2 Rijndael: Algorithm Flows
	3 Architecture Optimizations
	3.1 Basic Architecture Decisions
	3.2 System Setup
	3.3 Memory Architecture Optimization
	3.4 Simplification of Modulus Operation
	3.5 Encryption Datapath
	3.6 Key Scheduling Datapath

	4 Results
	5 Conclusion
	Acknowledgements
	References

