HARDWARE/SOFTWARE CO-DESIGN OF AN
ELLIPTIC CURVE PUBLIC-KEY CRYPTOSYSTEM

S. Janssens:, J. Thomas1 W. Borremansl, P. Gijselsl,
1. Verbauwhede , F. Vercauteren, B. Preneel, and J. Vandewalle
K.U.Leuvep, ESAT/COSIC, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
UCLA EE Dept., Los Angeles, CA 90095-1594, U.S.A.

Abstract. This contribution discusses an implementation of an elliptic curve public-
key cryptosystem on the Atmel FPSLIC, a system on a chip (SOC) that integrates a 40K
FPGA with an AVR micro-controller and a set of peripherals. The FPGA is ideally suit-
ed for an efficient implementation of the underlying finite field arithmetic. The soft-
ware benefits the global control. We use a standard basis representation for the field
elements and projective coordinates to implement the group operation. The results for
area are comparable with existing hardware implementations. Although no attempts
have been made yet to reduce the critical path delay of the hardware part, we obtained
promising results towards speed and throughput. A clock frequency of 10 MHz is real-
ized, but a lot more must be possible after optimization.

1 INTRODUCTION

The goal of this work is to develop a high-speed hardware/software co-design for
computing elliptic curve point multiplications with least development time, the low-
est hardware cost and maximal flexibility. Elliptic curve cryptography is becoming
increasingly common for implementing public-key protocols as the Diffie-Hellman
key agreement. The security of these cryptosystems relies on the presumed intrac-
tability of the discrete logarithm problem on elliptic curves. Elliptic curve public-
key cryptosystems (ECPKC) use smaller key sizes than other public key cryptosys-
tems, such as RSA for the same level of security. Therefore ECPKCs are mainly
used for applications where resources such as memory and computing power are
limited, including smart cards and hand-held devices.

A considerable number of papers have been published on the implementation of
elliptic curve cryptosystems either in software (see [DBV96], [DMPW98], [GP97]
and [KT92]) or in hardware (see [AMV93] and [Ros98]). Most of the software im-
plementations were dealing with problems concerning low performance/cost ratios
and this because of word size mismatches, less parallel computation and algorithm/
architecture mismatches. The main goal of the hardware implementations is to re-
duce the area needed to implement one bit of key length. As a hardware/software co-
design offers the possibility to combine the advantages of both software and hard-
ware, this results in systems with higher performances.

In this paper a hardware/software co-design for performing elliptic curve point
multiplications is introduced and implemented on an Atmel FPSLIC (Field Pro-
grammable System Level Integration Circuit). The FPLSIC implements an AVR mi-
cro-processor, memory, peripherals and a FPGA on the same chip.

1. This paper includes results of Master’s thesis [JT01] and [BGO00], the research
for which was mostly done during a visit to UCLA during the winters of 2001
and 2000, respectively.

0-7803-7145-3/01/$10.00 ©2001 IEEE 209

The remainder of the paper is organized as follows. In Section 2 we present a
short introduction to public-key cryptography using elliptic curves over GF(27).
The hardware/software design architecture is described and analysed in section 3.
Section 4 discusses implementation results, but also the design methodology and
tools used to realize the design in a fast and effective way. Finally, some conclusions
and further work are presented in section 5.

2 THEORETICAL BACKGROUND

The idea behind public key cryptography is explained by the Diffie-Hellman key
exchange protocol: two entities, A and B, can derive and share a common piece of
secret information over an insecure communication channel [M93]. They can then
use this secret as their key in a symmetric cryptosystem such as AES. The security
of the Diffie-Hellman key exchange, based on elliptic curves, relies on the difficulty
of the discrete logarithm problem (DLP): given the curve, the point P and the point
multiplication k. P, it is hard to recover the integer .

Several efficient algorithms [BSS99, p. 57-73] are developed to decompose the
point multiplication k. P into basic operations on points of the elliptic curve, e.g. dou-
bles, additions and subtractions. In turn, each of these operations consists of a series
of additions, squarings, multiplications and inversions in the underlying field. Let
GF(2") be a finite field of characteristic two. These fields are particularly interest-
ing for hardware implementations since operations in this field lack carry propaga-
tion. The most straightforward representation of elements of GF(27) is used, namely
a standard basis. A non-supersingular elliptic curve E over GF(27) is defined to be
the set of solutions (xy) € GF(2") x GF(2") to the Weierstrass equation:

yo+xy = x3+ax2+b

where @ and be GF(2"), b#0 , together with the point at infinity denoted by
O. The use of elliptic curves in cryptography is based on the property that a group
law can be defined on the set of points on an elliptic curve. More information about
the group structure and the formulas for adding and doubling two points can be
found in [BSS99, p. 29-39]. Based on [DV98], projective coordinates are used to
represent the points on the elliptic curve, since these have the advantage that no in-
versions, which are time consuming operations, have to be performed in the under-
lying field.

3 DESCRIPTION OF ARCHITECTURE

The design hierarchy is shown in Fig. 1. The design consists of a Data-path,
which performs the finite field arithmetic, and two finite state machines that each
control a particular part of the functionality at a particular level of hierarchy. At the
highest level the Software Controller is the master. It gives instructions to the Hard-
ware Controller, which translates these instructions in a sequence of direct control
signals for the operators in the Data-path.

The architecture is given in Fig. 2. Its main function is to compute the core op-
eration of an elliptic curve cryptosystem, i.e. the point multiplication. It also pro-
vides communication with a Visual Basic program on a PC through a
Communication module. Hence, it can be used as a fully functional demonstrator.

210

THEORETICAL IMPLEMENTATION
LDifﬁe-He]lman key exchange protocol 1

+

Point Multiplication } — Software Controller
' AVR
Double, add, substract Hardware Controller
on points of the elliptic curve FPGA
addition, substraction, multiplication - Data-Path
and squaring FPGA

Figure 1 : Design hierarchy

3.1 Software Controller

Implementing control in hardware is possible but difficult, because it is error
prone and very hard to modify. Thus the highest level of control is implemented on
the AVR 8 bit micro-controller. The Software Controller has two main tasks to ex-
ecute. First, the FSM Point Multiplication breaks down a point multiplication into
individual group operations (double, add or subtract). The algorithm used for this is
the so-called double-and-add/subtract algorithm, based on a ternary representation
of the multiplier %, [IEEE99, Sect. A.10.3]. Second, the Communication Controller
provides the mutual communication between the outside world (PC), FPGA and
AVR. The communication between PC and AVR is realized via an RS-232 serial
link; between the AVR and the FPGA via an 8 bit bidirectional internal data bus.
Since the parameter size is typically of the order of 200 bits, the data items are di-
vided in chunks of 8 bits, which are handled sequentially.

The Software Controller combines the FSM Point Multiplication and the Com-
munication Controller into one finite state machine. This FSM sequentially reads in
new data from the PC, sends the relevant data to the Data-path, controls the execu-
tion of the point multiplication, and reads out the result to the PC. The communica-
tion between the software controller and both the hardware controller and the Visual
Basic Program on the PC are interrupt driven.

3.2 Hardware Controller

The Hardware Controller is a finite state machine that consists of an FSM Double
Add Substract and an Address Controller. It receives instructions from the Software
Controller for reading field and curve parameters, for reading data of the point P to
be multiplied and the multiplier £, for starting a group operation and for making the
result available to the outside world. The FSM Double Add Substract implements a
single group operation in terms of individual field operations, according to the steps
described in [IEEE99, Sect.A.10.6-7]. The Address Controller is responsible for the
memory management of the two RAM-blocks in the Data-path.

211

T
FPGA | AVR
! 2 interrupt
Hardwarle Controller I §
| "% 10,select line §
FSM = 8)_)it insfruc- = —9"
CAd;irelsls | Double Add E e 23
OMIOTEL T Substract e I =
L reset instruction | g
15 address 7 logic | - g
control signal =5
I+ — — 45
| g
4 status signals | é
- | TEN
| . = 0
2 RAM- Logic ¥ soip || | 278 2
blocks | p Al 5 £
]
| Sl alr—1ES
Daia-path 10 select]in'L o 4
' , LA
Figure 2 : Overview of the architecture 7C—L‘

3.3 Data-path

Fig. 3 shows the architecture of the Data-path. The Data-path is made up of two
main parts: a storage part with 13 memory locations, and a part with the arithmetic
blocks to perform the basic operations in GF(Zn) . Four busses and two multiplex-
ers provide the necessary connections between these two parts.

The input data enters the Data-path through the data register and the software part
fills it byte by byte. After the data is shifted in the [Oregister, it is put in both RAM-
blocks. The two RAM-blocks mimic a single-write, dual-read RAM module. When
a complete point multiplication is executed, the result is written from RAM-block1
in the [Oregister and is then shifted byte after byte in the data register.

Each elliptic curve double, add or subtract is made up of additions, multiplica-
tions and squarings on elements of GF (2") . Therefore there are three operators in
- the Data-path. The output of RAM-block]1 is connected with bus/, RAM-block? is
connected with bus2. These two busses provide the three operators with the right
operands. When a multiplication or a square is executed and the result falls outside
the scope of the finite field, the result must be reduced modulo the irreducible field-
polynomial of the field GF(2”) . Therefore bus3 is implemented to connect the
IOregister to the Data-path module. Since the IOregister is not used during the ex-
ecution of a double, add or subtract instruction, it is used to store the fieldpoly. When
one of these instructions starts, first the fieldpolynomial is read out of RAM-block1
and put in the IOregister.

Adder Addition of elements of GF(Z”) is implemented simply as an array of
XOR gates. This means that there is no carry propagation.

212

% 8 bit Data

JL data re gisteA
serial_in - I TOreg_en serial_out
;_ ——————— d a;m da'a—:‘_" jl
Ain
wen A
oen2 RAM?2 IOreg_en |
bus2 mux2_ IOreg_set2one
!
: P JAN L—% to zero2or3 |
|I Ain ‘_§ to zerol ‘
AO:[AT T T N\ inl
i — RAM1 / [
Q2B busl 4+ { \ ’
| > r__' . in2 I
| AN N~ N~ |
— — = = Z
ul_ready ~N
I ” sl I
| & [fieldpol [
bus4 “ * |
| x s |
1 | in2 |
l E‘ mul_start ’
I mux1_sel \ L _g,o—b.a,fse'— _ I
| Pt N |
| 1 \ inl I
2]
| \ () i fieldpoly '
sqr_start
, E globsal,_reset / |
\ —_— e — =

" 7 TFigure 3 : Overview of the logical structure of the Data-Path ™ -

Multiplier The multiplier is based on the multiplier described in [LC83, p.161].
A multiplication in GF(2”) consists of two steps: a multiplication of binary poly-
nomials, and a reduction modulo the irreducible field polynomial. These two steps
can be combined in an interleaved way. This results in a serial multiplier that con-
sumes relatively little area. A complete multiplication is performed in # clock cycles.
The simplicity and compactness of the multiplier is probably the most important ad-
vantage of a standard basis representation over an (optimal) normal basis. An opti-
mal normal basis multiplier needs an equal number of clock cycles to find the result,
but [{Gei93] concludes that it is considerably more complex.

As can be seen from Fig. 4, a multiplier for GF (2”) consists of a linear feedback
shift register, where the coefficients a; of one of the multiplicands can be added to
the state of the register, depending on the bits b. of the other multiplicand. Each
cycle a new b-coefficient is shifted in, and the c-coefficients are shifted one bit to the
left. A feedback originating from the most significant c-coefficient exists to do the
reduction modulo the irreducible fieldpoly.

OQur multiplier is slightly more complex since it allows for a programmable field
polynomial. Therefore, instead of a fixed feedback path, an array of AND gates mul-
tiplies the feedback bits with the respective coefficients of the field polynomial,
which are stored in the [Oregister. Recall that a multiplication in GF(2) is just a log-

213

03 Je—{ % Je— 21 e %0 |

Figure 4 : Serial multiplier for GF (2:) based on the irreducible field
polynomial x™ +x + 1

ical AND. With this multiplier, there is still room to trade speed for complexity. For
instance, [BG89] describes a multiplier which is slightly more complex but which
handles two bits at a time, and hence is approximately twice as fast.

Squarer The squarer we use in this design has almost the same complexity as
our multiplier. A number of options are explored in [DPV99]. Since the c-coeffi-
cients are shifted over two positions each cycle, they are constructed in two rows:
one for the pair and one for the unpair coefficients. The result is found in [n/2] clock
cycles. This is the case because during the first {n/2] clock cycles, the data on the
feedback path remains zero, and hence the [n/2] most significant bits of a can be
preloaded into the even coefficients of ¢ in one clock cycle. Again, our implemen-
tation is slightly more complex to allow for a programmable field polynomial.

91 Je—{ 9]
Figure 5 : Serial squarer for GF(2° 2‘ bas3ed on the irreducible field polynomial
x +x +x +x+1

Bit Slices The four busses in Fig. 3 all have the width of a field element. This
number is programmable and is typically of the order of 200 bits. Busses of this
width going over a long distance cause high line delays, routing problems and more.
Therefore the Data-path is structured in a bit-sliced way. A number of different types
of bit slices are needed to obtain a correct implementation of the Data-path [BG00].
In our case, the structure of the squarer imposes a distinction between the even and
the odd bits and between the lower half and the upper half of the bits. It turns out
that the complete Data-path can be constructed from 6 different bit slices, since there
is also one for the least significant bit and the second least significant bit. A major
advantage of using bit slices is that it also becomes easier to make the fieldsize » pro-
grammable.

4 IMPLEMENTATION RESULTS

To realise the design we followed to a large extent the design flow which is pro-
posed by the Atmel System Designer software [Atmel]. It includes all the tools, data
bases and flows for making a hardware/software co-design in an integrated way.

214

4.1 Software Design

The software part of the Design is developed in C and compiled with the IAR
compiler. On average, /25n instructions for the AVR are needed to read in data, per-
form the point multiplication and writing out the results. Since the embedded AVR
core achieves throughputs approaching 1 MIPS per MHz, this corresponds with
125n clock cycles.

4.2 Hardware Design

The critical path after synthesis is 33 ns and is located in the Hardware Controller
and not in the Data-path. The corresponding maximum clock frequency of nearly
30 MHz is a fairly good result, keeping in mind that no attempt has been made to
reduce the length of the critical path. Since timing reports show a critical path delay
of 5 ns for the Data-path only, a clock frequency of 200 MHz can be reached by in-
troducing pipelining and/or other optimizations in the Hardware Controller. The
post-synthesis simulation gave the right results and showed no timing violations.

After place-and-route it turned out that 23 Combinatorial Logic Blocks (CLBs)
are needed per bit slice and 496 CLBs for the hardware controller. Since there are
only 2304 CLBs available on the FPGA, a design for a keylength of 72 bits can be
implemented. These results are comparable with [Ros98], taking into account that
the structure of one CLB of the Xilinx FPGA, used in [Ros98], is different from the
Atmel FPGA. The Xilinx FPGA is using 3 look-up tables and 2 registers per CLB
in comparison with 2 look-up tables and 1 register for the Atmel CLB.

4.3 Hardware/Software Co-design

The results above are used estimate the total time it takes to perform a complete
point multiplication. Since the Software Controller is always waiting on an interrupt
from the Hardware Controller before sending a new instruction, the Hardware Con-
troller receives this new instruction almost directly after it has finished performing
the former instruction. Therefore we can take only the number of clock cycles need-
ed by the hardware part, which is in the average case /12 1#< [JT01]. Table 1 presents
the number of clock cycles and the corresponding throughput for different key
lengths. Besides the realized throughputs, also the possible throughputs after opti-
mization of the Hardware Controller are given. The mapping efficiency is represent-
ed with the number of CLBs used.

Value | CLB Usage Clock Cycles | Point mult/sec Point mult/sec
ofn @ 10 MHz @ 200 MHz
8 668 768 13020 260416
16 852 3072 3255 65104
72 2189 62208 160 3215
192 4907 442368 22 452

Tabel 1 : FPSLIC chip area utilization and throughput

215

5 CONCLUSIONS AND FURTHER WORK

The main merit of our work is a working demonstrator which computes a point
multiplication on an FPSLIC. An interface is realized with a Visual Basic program
on a PC. We also explored the field of the hardware/software co-design and con-
clude that if the Hardware Controller is optimized, clock frequencies up to 200 MHz
must be possible.

Also, it might be useful to look for descriptions of the group operation that result
in more efficient hardware. One option is to allow the arithmetic blocks to operate
in parallel. This might be particularly useful for the multiplier, since there is a rather
high degree of independence between the consecutive field multiplications in a
group operation.

ACKNOWLEDGEMENTS

We would like to thank the Atmel support FPSLIC-team, especially Hing Kai Lo
and Itsu Wang. This work was partially sponsored by Atmel, Panasonic and UC Mi-
cro #00-097. This work is dedicated to Erik De Win (April 2001), who originally
started this research.

REFERENCES

[AMV93] G. Agnew, R. Mullin, and S. Vanstone. An implementation of elliptic curve cryp-
tosystems over £,155. IEEE Journal on Selected Areas in Com, 11(5):804-813, 1993.

[Atmel] www.atmel.com/atmel/products/prod39.htm

[BG89] T.Beth and D. Gollman. Algorithm engineering for public-key algorithms. IEEE
Journal on Selected Areas in Com., 7(4):458-466, 1989.

[BGOO] W.Borremansand P. Gijsels. 4 hardware implementation of elliptic curve public-
key cryptosystems. Master’s thesis, K.U.Leuven, 2000.

[BSS99] 1. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. In London
Mathematical Society, Lecture Note Series 265 Cambridge, 1995

[DBV96] E. De Win, et al., A fast software implementation for arithmetic operations in
GF(Z) . In K. Kim and T. Matsumoto, eds., Advances in Cryptology, Proc. of Asia-
crypt’96, LNCS 1163, pg 65-76. Springer-Verlag, 1996.

[DMPW98] E. De Win, S. Mister, B. Preneel, and M. Wiener, On the performance of sig-
nature schemes based on elliptic curves. In J. P. Buhler, ed., Algorithmic Number The-
ory Symposium III, LNCS 1423, pg 252-266. Springer-Verlag, 1998.

[DPV99] Exik De Win, Bart Preneel, and Ingrid Verbauwhede. A fast serial squarer for
GF(2") . draft paper, 1999.

[DV98] E.De Win, I. Verbauwhede, Technical Report: A Hardware Implementation of El-
liptic Curve Public Key Cryptosystems, internal report, EE Dept. UCLA, 1998.

[Gei93] W. Geiselmann. Algebraische Algorithmenentwicklung am Beispiel der Arithme-
tic in endlichen Korpern. PhD thesis, University of Karlsruhe, 1993.

[GP97] J. Guajardjo and C. Paar, Efficient algorithms for elliptic curve cryptosystems. In
W. Fumy, ed., Advances in Cryptology, Proceedings of Eurocrypt’97, LNCS 1233, pag-
es 342-356. Springer-Verlag, 1997.

[JTO1] Sven Janssens and Johan Thomas. Hardware/software co-design of elliptic curve
cryptography. Master’s thesis, K.U.Leuven, 2001.

[IEEES9] IEEE P1363/D13: Standard specifications for public key cryptography. working
draft, November 1999.

[KT92] K.Koyamaand Y. Tsuruka. Speeding up elliptic cryptosystems by using a signed
binary window method. In E. Brickell, editor, Advances in Cryptology, Proceedings of
Crypto’92, LNCS 740, pg 345-357, Springer-Verlag, 1992.

[LC83] Shu Lin and Daniel J. Costello, Jr. Error control Coding : Fundamentals and ap-
plications, Prentice-Hall, 1983.

[M93] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, pages 1-5. 1993.

[Ros98] Martin Rosner. Elliptic curve cryptosystems on reconfigurable hardware. Mas-
ter’s thesis, Worcester Polytechnic Institute, 1998.

216

