0-7803-7147-X/01/$10.00©2001 IEEE

A Reconfiguration Hierarchy for Elliptic Curve Cryptography

Patrick Schaumont, Ingrid Verbauwhede
Electrical Engineering Department
University of California at Los Angeles

Abstract

Embedded cryptographic applications with tight
security and performance constraints require domain
specific processors or co-processors. This contribution
describes the design model of an elliptic curve public
key encryption processor and investigates the design
automation requirements of such a processor.

1. Introduction

Providing privacy, authentication and security in
general is one of the main concerns for embedded
information infrastructure. Electronic encryption and
decryption, two fundamental operations in security
algorithms, rely on highly specialized operators and
algorithms using finite fields and large integer
arithmetic. These operations are well suited for
implementation in a domain specific processor.

A domain specific processor is a programmable

architecture that -has primitives tuned to one particular

application domain. Such a processor typically
augments the standard software environment of an
embedded system. It is well known that specialized
architectures outperform general purpose ones in terms
of power consumption and/or throughput cost factors

[1].

In this contribution, we argue that a domain specific

security processor contains multiple levels of

programming, and thus is not simply programmed by a

closed format language such as C. The reasons for this

are

1. The domain specializations are not well supported
by general purpose programming languages.
Instead, a use model based on API is much more
effective.

2. In order to justify a domain specific processor,
flexibility is of prime importance. Therefore we
want to create a parametrizable device that can
support a class of architectures and applications
rather then a single one.

Secure processing also puts severe constraints to the

accessibility of security engines and the data they

process (e.g. private keys). Software, which operates in

a shared memory environment, is fundamentally

unsecure and hard to protect. A domain specific

processor on the other hand, can be to made operate in

PKI, Cipher,
Key Management, ...

Security
Protoco!
Architecture

Hash, Buclid’s 8Sieve,
AES, ...

Galois Pields,
Large primes, ...

Security Algorithms

/ Number Theory
Cycle Accurate/ .“;:::'::' :::"
Instruction Accurate Models T
reea, risen,
Implementation Cors, ASIC, ...

Figure 1 Security Pyramid

449

a separate data space and, by careful design of access,
resistant to attacks [2].

The organization of this paper is as follows. In section
2, we briefly overview the cryptographic domain and
how it relates to embedded processing. In the next
section we discuss the design of an elliptic curve
encryption processor. We also illustrate the
reconfiguration hierarchy principle (multiple levels of
programming) on this architecture. The next chapter
enumerates the requirements for design technology of
such cryptographic processors, and introduces a design
description language that helps designing them. Finally
conclusions are drawn.

2. Cryptographic Domain

The properties of the cryptographic domain affect
processor design in very peculiar ways. This is clarified
in this section.

2.1. The security pyramid

We first briefly present an engineers view on the
application domain in the form of a security pyramid,
as shown in figure 1. The pyramid form represents the
design space at multiple levels of abstraction [3].

The most abstract representation of a cryptographic
application is the security protocol architecture, which
details what steps make up a secure communication.
Examples are IPSEC, SSL, WEP, etc. This covers
aspects such as key management and distribution, as
well as the placement of cipher blocks within the
information flow of a complete application. At this
level, an encryption processor looks like a single box
that takes care of the implementation of one or more

steps in the overall security protocol. A security
protocol itself is described usually in plain text format,
for example [4].

The next level represents the security algorithms. An
example of an encryption algorithm is Rijndael, the
recently selected AES standard [S]. A security
algorithm is specified by the combination of a signal
flow graph to express the data operations, in
combination with some overall control sequencing like
e.g. feedback modes of operation.

The operations used as cryptographic building blocks
are derived from number theory and make up the next
level. Besides the operations, also the number
representations are specific. For example, in the normal
basis of the Galois field GF(2®), elements are
represented as binary coefficients of a polynomial.
Beyond the level of number theory we run into levels
that deal with implementation issues. Contemporary
embedded platforms express behavior in terms of cycle-
accurate and/or instruction-accurate code. This code is
mostly platform independent. At this level the
algorithm state has been mapped to a storage hierarchy,
so a rather detailed allocation of storage has been done.
Finally, at the bottom level we express all aspects of a
security algorithm in terms of target platform
technology.

It is seen that lower modeling levels become more
generic and thus can potentially be shared with other
application domain pyramids. For example, reed
solomon block coding, used in channel coding, uses
galois field operations and thus can share all levels of
the security pyramid up to the number theory. When
building a domain specific processor, it is important to
keep overlap with related domains in mind.

2.2.Properties of cryptographic processors

The nature of the security pyramid puts very specific
requirements to the implementation of cryptographic
processors. We have to consider the following issues.

1. The large wordlengths found in typical finite fields
(1024 bit for RSA) require wide, bit-sliced data-
paths. Bit-slicing is mandatory to maintain
hardware synthesis quality. On the other hand,
writing bit-slicing in HDL is a tedious and non-
trivial task.

2. Feedback is a fundamental mode of operation for
some cipher operations. Pipelining is not an
effective option to obtain performance
improvement in those cases [6].

3. Number representation is non-standard and can
even take on several different styles within the
same cryptographic processor [7]. This is because
the cost of operators varies widely with the
particular number representation.

450

instruction ready

FSM
Point Mult

v 1

il
1

req_in FSM FSM req_in
ack_in DoubleAddSub OQutput ack_in
data_in Datapath data_out
GF(2%n)

Figure 2 Elliptic Curve Encryption Processor

Integration requires special attention if security is
not to be compromised. This includes the use of a
well-defined and well behaving data and control
interface (API), as well as maintaining strict
isolation of internal processing to eavesdroppers
and less friendly attackers.

3. Elliptic Curve Processor

Figure 2 shows the architecture of an elliptic curve
encryption processor [8] that calculates keys for the
current IEEE public-key encryption standard [9]. We
briefly explain the principles of public key cryptography
and next discuss the architecture in more detail.
3.1.Public Key Cryptography

Elliptic-curve public key cryptography is based on the
operations on points of a specific curve in a finite field,
the so-called underlying field. The point multiplication
is the fundamental operation for the key agreement
protocol. The Diffie-Hellman key agreement protocol
works as follows [10]: given a point P on the curve,
Alice will compute a.P, and Bob will compute b.P.
Alice receives b.P and computes a.b.P. Bob receives
a.P and computes a.b.P. They now share a secret key
a.b.P. The assumption is that an eavesdropper, who has
access to a.P and b.P cannot compute a.b.P because the

‘discrete logarithm problem is a hard problem in the

elliptic curve group. The algorithm can be
implemented across different abstraction levels. At the
highest level, the point multiplication k.P is executed,
where k is an integer and P is a point on the elliptic
curve. The point multiplication can be decomposed into
doublings, additions and subtractions of points on the
elliptic curve.

These primitive operations on points of. the elliptic
curve can again be decomposed in operations on
elements of the underlying field. These operations are
the addition, the multiplication and the squaring of ele-
ments of the underlying field.

3.2.ECC Processor

The architecture of figure 2 has a layered structure,
with the layers corresponding to the operation described
above.

A Galois Field datapath implements addition,
squaring and multiplication of elements of an n-bit
Galois field in normal basis.

e The FSM DoubleAddSub implements the basic
elliptic curve operations that are needed for a point
multiplication. DoubleAddSub will translate those
operations into Galois Field additions, squarings
and multiplications.

e The FSM PointMult implements the top-level
sequencing of the point multiplication, and also
presents a user API in the form of an instruction
set as shown in Table 1.

e The FSM Input and Output implements data-10,

and adapts the host system buswidth to the internal

ECC processor buswidth.

Both the control interface (at FSM PointMult) and the
data interface (at FSM Input and Output) are supported
by two-way handshakes. This allows easy integration of

Table 1: ECC Instruction Set
Instr Opcode Description
SETP 0001 Set Irreducible Polynomial
SETA 0010 Set EC parameter a
SETB 0011 Set EC parameter b
SETN 0100 Set Point Multiplier n
SET3N 0101 Set Point Multiplier 3n
SETX 0110 Set Initial Point X
SETY 0111 Set Initial Point Y
PMLT 1000 Point Multiplication
PMLN 1001 Point Multiplication and

Negate

GETX 1010 Readout X
GETY 1011 Readout Y
GETZ 1100 Readout Z

Default Nop

the ECC processor in a system, and even allows it to
run at an unrelated clock.

3.3.Programming the ECC processor

The ECC architecture has several different parameters
that need to be programmed using the instructions of
table 1 before point multiplications can be performed.
First, the elliptic curve must be uniquely defined. An
elliptic curve over GF(2") is given by
y2+xy=x3+ax2 +b
Parameters a and b must be chosen (SETA, SETB). The
points on this curve are clements of a finite field
GF(2"). This field is defined by an irreducible
polynomial p that has to be selected as well (SETP).
During operation, one presents an initial point (X,Y),
sets the multiplicand integer n and starts the point
multiplication (SETX,SETY,SETN,PMLT). When this

451

last instruction ends, one can read out the resulting
point X,Y,Z) in projective coordinates
(GETX,GETY,GETZ).

Depending on the security protocol architecture, also
other elements can be required to vary. For example,
increasing the finite field size enhances the encryption
speed but at the same time also the cipher strength.
Finite field size can be made reprogrammable by
varying the number of active bitslices in the data-path.

4. Design Aspects

In order to describe this design efficiently, we have
build a language and simulation environment that
allows us to explore the design of such domain specific
processors at a high abstraction level, but without
losing the link to automatic implementation. As we will
show, one of the harder aspects in the design of the
ECC processor is the control architecture. The
hierarchy of FSM introduces complex handshaking
mechanisms in order to maintain synchronization.

4.1.Datapath

We focus on one particular operation out of the ECC
datapath, which is Galois field multiplication. A bit-

Programmable

Feedback PatterN_ ——

Figure 4 GF(2)multiplier for g(x) = x*+x+1

serial multiplication, not yet bitsliced, is shown in
Figure 4. This flowgraph multiplies bitvectors a and b,
both in GF(2*) representation to yield bitvector c.
Arithmetic in GF(2%) is governed by a field polynomial
which is selected by the feedback pattern of the
structure. Listing 1 shows a textual representation of
the same structure. The datapath that is created has a
set of state registers (reg variables) that are subject to
expressions within a signal flowgraph sfg. An sfg
represents one clock cycle of processing, thereby
making this a clock cycle true description. The sfg
uses word-level semantics, which allows compact
descriptions. The structure uses also a local one-hot
controller (ctl), counting the 4 clock cycles the bit-
serial structure needs to complete.

Listing 1: Bit-serial multiplier in GF(2"4)
dp D(in a, b : ns(4); out mul: ns(4);
in mul_st: ns(l);

out mul_done : ns(l)) {

reg ctl, cr, br, ar : ns(4);

sfg s1 {

ctl =mul_st ? 1 : (ctl << 1);

ar = a;

br = ((ctl==0) ? b : (br << 1});

cr = (ctl==0) ? 0 : (cr << 1)
~ (ar & {tc(l)) bri3l)
~ (0b0011 & (tc(1l)) cxr(3]);

mul = acc;

mul_done = ctl[3];

1}

Listing 1 implies allocation of datapath resources since
all operations execute in the same clock cycle and thus
require parallel implementation. By allowing multiple
sfg instances per datapath (instructions), and
introducing a separate controller description in the
form of a sequencer or a finite state machine, we obtain
a description that also supports operator sharing. This
is demonstrated in listing 2.

While the description in listing 2 is bigger then that of
listing 1, it obtains a better separation of concerns [11]
then before. Control is described with a finite state
machine model that expresses datapath sfg execution
on the state transitions.

4.2.Simulation

The descriptions in Listing 1 and 2 can be parsed in to
yield an object hierachy (in C++), as shown in figure 5.
"This object hierarchy next can be analyzed by a
simulation kernel or a code generation kernel for the
purpose of cycle-true simulation and HDL code

Listing 2: FSM-controlled bit-serial multiplier

dp D(in a, b : ns{4); out mul: ns(4);
in mul_st: ns(1);
out mul_done : ns(1l)) {

reg ctl, cr, br, ar : ns(4);

sfg ini (

ar = a; br = b;

}
sfg calc {

cr = (cr << 1) ~ (ar & (tc(l)) Dbr(3}) ~

(00011 & (tc(l)) cx[3]):
}

sfg outactive {

mul = cr; mul_done = 1;

}

sfg outidle {

nul = 0; mul_done = 0;

}
}
fsm F(D) {

state sl, s2, s3, s4, s5;

initial s0;

@s0 (ini, outidle) -> sl1;

@sl if (mul_st_cmd) then (calc,outidle)-
>s2;

else (ini, outidle)-

>s1;

@s2 (calc, outidle) -> s3;

@s3 (calc, outidle) -> s4;

@s4 (calc, outidle) -> s5;

@s5 (ini, outactive) -> sl1;

452

.£d1
description

Domain Specific (FD

parser

Sea—
ation ge
ol Object Generation

structure Kernel

4l

[Simulation API]

[Codegen A}IAA]

Other System
Domains General Purpose (C++)

Figure 5 Design Automation Infrastructure

generation respectively. The kernels are presented to
the user through a simple C++ API. A system
simulation then consists of writing a C++ program and
calling the parsing and simulation API as needed to
execute the domain specific processor.

This approach clearly distinguishes between a domain
specific part, written in a domain specific language,
and a general purpose part in C++. As such, it is a
meet-in-the middle approach between general purpose
approaches such as OCAPI [12] or SystemC, and
language specific approaches such as SpecC [13]. This
setup allows a designer, being expert in a particular
domain, to use descriptions that are concise with the
domain semantics. At the same time, the descriptions
can be easily linked into a system simulation, where
different design domains are combined. We do believe
that domain specific processing presents an area where
higher abstraction levels can be developed easier then
for the generic System design language’case.

The most simple use model of figure 5 is where we
build one generic system simulation model that parses
in a design description and simulates it. In that case we

Listing 3: Testbench for multiplier
// testbench

dp TB(out il, i2 : ns(4); out mul_st: ns(1l))
{
reg ctl : ns{4);
sfg s1 {
ctl = ctl + 1;
i1 = 0b1101;
i2 = 0b1001;
mul_st = (ctl == 4) ? 1 : 0;

}
}
hardwired F2(TB) {sl;}

system S {
D (fp, il, i2, mul, mul_st, mul_done);
B (fp, i1, i2, mul_st);

}

Listing 4: Generic System Simulation Model

#include <fdlsim.h>

int main(int argc, char **argv) {
symbolTable table = call_parser (argv[l]);
rtsimgen simulator;
table.create_simulator (simulator) ;
simulator.run(atoi (argv([2])):;
return 0;

design also a testbench in the same domain language.
An example testbench is shown in listing 3. The
testbench is described in the same datapath semantics
as used for the multiplier. A hardwired controller is
used because TB always executes the same instruction
s1. Finally, a system statement is used to connect
the testbench to the GF multiplier of Listing 2.

The generic system simulation model that parses the
testbench and the multiplier is a small C++ program as
shown in Listing 4.

4.3.Hierarchical Control

The complete ECC processor consists of several
instruction decoding engines on top of each other.
These are implemented as hierarchical finite state
machines that are mutually synchronized. The example
in figure 6 shows two finite state machines out of the
ECC processor on figure 2. The left one is a part of
DoubleAddSub, while the right one is a part of the
GF(2*) datapath. One particular step of the key setup
ECC algorithm is to multiply a coefficient B by itself N
times, with both B and N depending on algorithm
parameters. The left FSM of figure 6 shows the activity
at the DoubleAddSub level. After the parameters are
programmed (state 0 and 1), this FSM enters a double
nested loop (state 2 and 3), with the inner loop
performing bitserial multiplications and the outer loop
counting down the N iterations. The right FSM of
figure 6 shows the bitserial multiplication control.
While the operation of figure 6 is easily cxplained,
capturing it in state diagrams and subsequently in code
is not. This is because figure 6 does not express the real
control hierarchy (two nested loops), but rather the way
in which it is implemented in finite state machines.
Those finite state machines are always active and thus
need be be kept synchronized. Effective description of
the control hierarchy might be obtained using
StateCharts [14] or Esterel [15]. However, for our
application domain we observed that no environment
currently is available that combines effective datapath
description with hierarchical control concepts like
exceptions and behavioral completion [13].

5. Conclusions

In this contribution we have presented design
motivations behind an encryption processor for
cryptography. = We presented an hardware
implementation of this design. The concept of
reconfiguration hierarchy was demonstrated on the
design of this processor. Additionally, a design
language was presented that helps us in creating these
domain specific processors. At this moment, we are
investigating mechanisms to express and implement
control hierarchies in more compact form as can be
done with finite state machines.

453

FSM DoubleAddsSub FSM GF Multipliex

8ot GF imput Wait for Init

Next
Iteration

Figure 6 Design Automation Infrastructure

6. References

[1] J. Rabaey, Silicon platforms for the next generation
wireless systems-what role does reconfigurable
hardware play?, FPL 2000, LNCS 1896, Springer-
Verlag, August 2000, pp.277-85. :

J. Dyer, M. Lindemann, R. Sailer, L. van Doom, S.

Smith, S. Weingart, Building the IBM 4758 Secure

Coprocessor, IEEE Computer, October 2001, pp. 57-66.

B. Kienhuis, “Domain Space Exploration of Stream

Based Architectures for Dataflow Applications”, PhD

thesis, TU Delft.

http://www.ietf.org/internet-drafts/draft-ietf-secsh-

architecture-09.txt SSH Protocol Architecture July 20,

2001.

The Advanced Encryption

http://csre.nist.gov/encryption/aes

R.J. McEliece, Finite Fields for Computer Scientists and

Engineers, Kluwer Academic Publishers, Boston, 1987.

A. Elbirt, W. Yip, B. Chetwynd, C. Paar, An FPGA-

based performance evaluation of the AES block cipher

candidate algorithm finalists, IEEE Trans on VLSI,

August 2001, pp. 545-557.

S. Janssens, J. Thomas, W. Borremans, P. Gijsels et al,

Hardware-Software Codesign of an elliptic curve public-

key cryptosystem, Proc. SIPS 2001, Antwerpen.

[9] IEEE 1363-2000 Standards for Public-Key
Cryptography.

[10] E. Dewin, B. Preneel, Elliptic Curve Public-Key
Cryptosystems: An Introduction, LNCS 1528, Springer-
Verlag, June 1997, pg. 131-141

[11] Keutzer, K.; Newton, A.R.; Rabaey, J.M.; Sangiovanni-
Vincentelli, A. System-level design: orthogonalization of
concerns and platform-based design. IEEE Trans. on
CAD, vol.19, (no.12), IEEE, Dec. 2000. p.1523-43

[12] http://www.imec.be/ocapi

[13] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao,
SpecC: Specification Language and Methodology,
Kluwer Academic Publishers, Boston, MA.

[14] D. Harel, Statecharts: A visual formalism for complex
systems, Sci. Comput. Programming 8, 1987, pp. 231-74.

[15] G. Berry, The Foundations of Esterel, Proof, Language
and Interaction: Essays in Honour of Robin Milner, MIT
Press, 2000

(2

3

(4]

(5] Standard,

[6]
gl

(8]

