LOW POWER SHOWDOWN: COMPARISON OF FIVE DSP PLATFORMS
IMPLEMENTING AN LPC SPEECH CODEC

David Hwang, Cimarron Mittelsteadt, Ingrid Verbauwhede
UCLA, Electrical Engineering Department, 7440B Boelter Hall, Box 951594, Los Angeles CA 90095-1594
e-mail: dhwang@ee.ucla.edu, cimarron@ee.ucla.edu, ingrid@ee.ucla.edu

ABSTRACT

An identical LPC Speech Coder has been implemented on a
set of signal processing specific implementation platforms.
The main goal of this experiment was to compare energy
consumption. In addition, area/memory requirements and
design time are also compared. The coder was first
designed in floating-point C. Then, the fixed-point
wordlengths were determined. Depending on the platform,
either compiled code was generated, assembly code written
or a Verilog/VHDL design was created. The platforms
reported in this paper include the DSP processors TI C55x,
TI C54x, TI C6x and the design environments Ocapi and
ART designer. Energy consumption ranges from 2 pJ to
288 WJ per speech frame. Upon scaling the results to the
same technology, our results indicate that the lowest power
DSP processor (TI C55x) still consumes a factor of four
more energy than an application specific processor.

1. INTRODUCTION
In recent years, the technological trend toward high-perfor-
mance mobile communications devices has caused a bur-
geoning interest in the field of low-power design. Indeed,
with the proliferation of portable devices such as digital cel-
lular phones, designing for low-power with high throughput
is becoming increasingly necessary.

It is often claimed that a full-custom ASIC will be
“lower power” than a programmable approach. This is cer-
tainly the case when compared to a general purpose proces-
sor, but less apparent when compared to a programmable
DSP processor. The goal of this experiment was to verify
this claim for a realistic signal processing application. A
meaningful example, one larger than a simple FIR building
block, will for the most part execute signal processing func-
tions but will also include some control code and book-
keeping operations. An LPC speech coder was chosen for
this task. It is described in Section 2.

In this paper, we investigate five signal processing spe-
cific platforms: three programmable DSP processors—the
TI C55x, the TI C54x, and the TI C6x; and two signal pro-

The authors thank the UCLA EE213A class of Spring 2000. This
work is in part funded by the Fannie and John Hertz Foundation
and by the Atmel Corperation /UC-Micro Grant #98-162.

0-7803-7041-4/01/$10.00 ©2001 [EEE

1125

cessing design environments—Ocapi, and A[RT Designer.
Each design was optimized to reduce cycle count and
power consumption. All five designs were compared based
on energy, area, clock frequency/MIPS and design time.

This paper will briefly describe the LPC Speech Coder
algorithm, explain details of the design methodology,
present introductions to each of the five platforms, and then
discuss the final comparison results.

2. SPEECH CODEC

Linguistically, sounds can be divided into two mutually
exclusive categories: vowels and consonants. Vowels are
produced by periodic vibrations of vocal chords. The period
of vibrations is known as the pitch. Hence, excitation of
vowels can be approximated simply by an impulse train
with a period equal to the pitch. For consonants, the excita-
tion is produced by air turbulence, which is approximated
by a white Gaussian noise (WGN) model (4]. If every
frame is classified as voiced (periodic) or unvoiced (noisy),
we only need to transmit a single bit indicating voiced/
unvoiced and the value of pitch period (in the case of voic-
ing). On the receiving side, excitation can then be modeled
by either an impulse train or WGN.

In order to classify each frame as voiced/unvoiced we
examine the autocorrelation function. Indeed, if the frame is
voiced, it must be periodic, thus forcing its autocorrelation
to be periodic with an identical period.

2. 1. Algorithm
The algorithm used is due to Sondhi [5] and described
below:

1. The frame is low-pass filtered at 1 kHz.

2. A clipping level C; is set to 30% of maximum value
in the frame.

3. The frame, x(n), is then clipped according to:
+1ifx(n) >C;
-1ifxm) <-Cf

0 otherwise

4. Finally, the autocorrelation function R(n) is com-

puted on the clipped frame C/x(n)] according to:

R(k) = Z Clx(n)]- Clx(n+ k)]

n=90

Clxm)] =

where N is the length of the frame. Since minimum and
maximum pitch frequencies for men and women are 80 Hz
and 350 Hz, we only need to compute R(k) for k between 22
and 100 inclusive (for an 8 kHz sampling rate).
5. If the largest peak of R(k), max[R(k)], satisfies:
max[R(k)] = 0.3 - R(0)

the frame is classified as voiced and the index £ is transmit-
ted as the pitch period, else the frame is classified as
unvoiced.

2. 2. Transfer Function (LPC Analysis)
An all-pole function H(z) is assumed:
G

[1 - ia,{-z("‘)l

k=1
where p is the model order, chosen to be 10. The predictor
coefficients a; can be found from solving the linear system:

H(z) =

R(0)
R(1)

R(1)
R(0)

. R(p-1) aj R(1)
. R(p-2)| lay| — |R(2)
R(p)
where R(k) is K* lag autocorrelation function of a frame.
The Toeplitz structure of the leftmost matrix can be
exploited and the linear system can be solved iteratively

with the Levinson-Durbin recursion [4]. The set of 10 linear
prediction coefficients (LPC) as well as the prediction error

R(p—-1)R(p-2) ... R(0) a

E® are computed and transmitted for each frame.

From an implementation viewpoint, the computation
intensive modules are the following:

+ Pitch detection. A total of 78 correlations have to be
computed—R(22) through R(100). The computations are
simplified using the “clipped” coefficients to reduce the
intensity of this module.

* Levinson-Durbin algorithm. This involves 11 correla-
tions as well as a division algorithm.

Execution times on the DSP processor show that
around 60% of the cycles are spent on the pitch detection
while 25% are spent on the Levinson-Durbin algorithm.
The remaining 15% are used for the Hamming window,
low-pass filter and miscellaneous memory transfers.

3. DESIGN METHODOLOGY

This section describes the design methodology for imple-
menting the LPC speech coder on the various platforms.
The coder was first designed in floating-point format in
MATLAB. Then, the challenge was to efficiently map the
software algorithm onto the fixed-point hardware. This
involved the conversion of floating-point computations into
fixed-point wordlengths (along with the ensuing design
decisions) as well as the allocation and software mapping/
scheduling on the available hardware.

1126

3. 1. Floating-Point to Fixed-Point Conversion

Since our design performs in real-time on fixed-point hard-
ware, we had to make decisions concerning the internal
wordlengths of each of the system hardware modules. An
inadequate wordlength can lead to reduced SNR, deteriora-
tion of sound quality, and clipping. However, a surfeit of
wordlength can create extraneous hardware, leading to
wasted area and power.

For some of the platforms (i.e. the TI DSPs), the inter-
nal wordlengths are fixed to a particular number (i.e. 16
bits). However, on the other platforms, the wordlengths can
be decided by the designer. There are several criteria which
affect the fixed-point wordlength decision, including recog-
nizable synthesized speech, pitch frequency matching,
avoidance of signal overflow/saturation at each point in the
algorithm, and avoidance of saturation of the synthesized
speech output.

Of all these factors, the most restrictive criterion is the
avoidance of synthesized speech saturation. This particular
problem, related to instability (and hence the poles of the
system), is inherent to the Levinson-Durbin algorithm. In
the fixed-point implementation, the quality of voice is
dependent on the number of input bits in a highly non-linear
fashion. If the number of bits is insufficient, the algorithm
is unstable and clipping occurs. On the other hand, if the
number of bits is sufficient, the Levinson-Durbin algorithm
is stable and the reconstructed signal is virtually the same as
the floating point signal. Hence, by adjusting the
wordlength parameters and checking output saturation, the
minimum bit requirements for each module can be found.
This iterative refinement was done on the Ocapi and A|RT
Designer platforms with the built-in fixed point C++ librar-
ies. This resulted in varying wordlengths according to the
modules. Even within one module, the position of the deci-
mal point (Q-format) is adjusted at each point in the algo-
rithm. The hardware modules for the Ocapi implementation
vary from 8-bit clipped correlator units to a 24-bit multi-
plier and a 30-bit accumulator.

The fixed-point processors (TI 54x, TI 55x, TI 6x)
have internal wordlengths set to 16 bits for most arithmetic
operations. To obtain a fixed-point C++ code suitable for
such a processor, we rewrote the entire algorithm using 16~
bit C arithmetic (i.e. using ANSI C short format). We then
heavily modified the code to exploit the TI Q15 library
function. The Q15 format maps each 16-bit word into a
fractional two’s complement number in the range [-1,1).

After the fixed-point code was completed using Q15
functions, data scaling needed to be performed to prevent
saturation. For example, the autocorrelation function has its
maximum value at R(0), which itself has a worst case value
of 240 (if every C/x(n)] = 1 for all 240 samples). This
would require the scaling of each C/x(n)] by 1/240 to insure
that R(0) remains in the range [-1,1). However, this is a pes-
simistic approach to scaling, as a speech pattern would

AN

never be DC. Hence, we took a more optimistic view of

scaling and scaled each C/[x(n)] by a factor of 1/128 (2'7).
This allows for a greater dynamic range, while still keeping
R(0) confined to the range [-1,1) for most cases. In the few
cases this range is exceeded, R(0) saturates to the boundary
points.

3. 2. Hardware Allocation

A[RT Designer [12] assumes a VLIW architecture, where
the user is free to choose the datapath modules in the archi-
tecture. Ocapi [11] gives the user only an environment to
specify the architecture and does not impose a particular
architecture. This has the advantage that any architecture
can be described, but the disadvantage that the designer has
to describe all features and details of the architecture.

Thus in both environments, the user allocates the data
path modules (ROM, RAM, ALU, MAC, etc.) necessary to
complete the design, as well as designate which modules
perform each function in the algorithm code. Hence, by
examining processor use statistics and by keenly examining
the code structure, one can pinpoint design bottlenecks and
alleviate them by reallocation and reassignment.

An example of this can be seen in the iterative design
flow of AJRT Designer. The initial design (using the A|RT
Designer default hardware allocation) requires 8000 cycles
to complete. By examining the processor use statistics, it is
found that the autocorrelation function occupies 80% of the
processing time. Thus, the cycle count can be reduced by
4000 cycles by inserting an additional ACU (Address Con-
trol Unit) and a second MAC in the autocorrelation routine.
By further investigation of the code, one finds that the win-
dowing filter can be reallocated onto a ROM instead of
being soft coded. This modification reduces the cycle count
by another 1000, bringing the total cycle count down to
3000 cycles—a 63% decrease from the original design.
These are examples of the design processes required to
optimize performance (cycle count) using the various tools.

4. PLATFORMS

As mentioned previously, we chose five implementation
platforms, which are described briefly below.

4. 1. Texas Instruments TI C54x

The TI C54x fixed-point DSP is a signal processor com-
monly used in cellular phones, digital audio players, and
other low-power communications devices [1]. The TI core
uses an advanced modified Harvard architecture that maxi-
mizes processing power with eight buses (four program
data buses and four address buses). The core consists pri-
marily of a 40-bit ALU, a barrel shifter, two accumulators,
a 17 x 17-bit MAC unit and an addressing unit. The pro-
gram fetch is 16 bits and the instruction length is also 16
bits. According to [9], the power consumption is 0.32 mW/
MIPS and the processor can run 30-160 MIPS.

1127

4. 2. Texas Instruments TI C55x

The TI C55x processor is the most recent DSP in the
TMS320C5000 series. It builds on the C54x generation
with a one-sixth reduction in power consumption alongside
a (maximally) 500% increase in performance [9]. The C55x
has additional hardware, including a 17 x 17 bit MAC, a 16-
bit ALU and a total of four 40-bit accumulators. These
additions, together with the scaling of the semiconductor
technology, allow the C55x to operate at 0.05 mW / MIPS
and perform at 140-800 MIPS [9].

4. 3. Texas Instruments TI Cé6x

The Texas Instruments TMS320C6000 series is the line of
fixed-point and floating-point processors which emphasize
high-performance as the key metric. As such, they are used
in base stations and other systems in which bandwidth and
processing power is crucial. In our experiment, we tested
the C62x processor, a fixed-point DSP used for multi-chan-
nel broadband communications. The core implements a
VLIW architecture with eight functional modules. These
consist of six parallel 40-bit ALUs and two 16-bit multipli-
ers (with 32-bit outputs). The C62x processor operates at
150-300 MHz and is capable of operating at 1200-2400
MIPS [10].

4. 4.0Ocapi

Ocapi is a C++ based design environment developed by
IMEC [7][11]. The Ocapi environment is based upon a
library of fixed-point C++ classes that allow the user to
fully describe an ASIC at the highest algorithmic and
behavioral level. Through different design stages, the C++
code is refined and enhanced with architectural detail. The
Ocapi toolset then maps the final code into an RTL level
bit-parallel HDL code which is fully capable of synthesis.

4. 5. A|RT Designer

A|RT Designer is a software environment designed by
Frontier Design [2][12]. As with Ocapi, A|RT Designer’s
purpose is to bridge the gap between the software algorithm
design and the hardware implementation. The design is first
created in floating-point C and then converted to fixed-
point C using a fixed-point library. Upon completion of
fixed-point code, the user directs the software tools to per-
form resource allocation, resource assignment, and opera-
tion scheduling (based upon data interdependencies). A|RT
generates synthesizable RTL level code which describes the
entire VLIW machine.

5. FINAL SIMULATION AND RESULTS

5. 1. Area / Memory

In circuit design, a measure of the cost for a particular
design can be estimated from the total area. Similarly, on an
embedded software platform, cost can be estimated by

memory and cycle counts to perform the algorithm. In
Table 1, the overall area/memory and cycle counts for each
platform are summarized.

The Ocapi solution is a slightly over half the size of the
A|RT Designer solution. However, these figures are some-
what deceptive. The reason for this large difference in size
is mostly due to the process libraries we had to synthesize
each circuit. For the Ocapi design, a 0.25 um process was
used while for A|RT Designer, a 0.35 um process was used.
Assuming perfect scalability, the A|RT Designer circuit

would be only 1.63 mm?. This is comparable to the Ocapi
design area of 1.4 mm? as one would expect.
Table 1: Implementation results

Area— Cycles Energy/| Techno-| Power
Memory y Frame | logy Supply
TIC5402) 8.7kB| 240K} 42.7 ullg 18 um?|1-8V core
3.3V IO
TIC55100 10.2kB| 120K} 3.2 ullg 15 um?|1.6V core
33V IO
TIC6211 16 kBP| 30K| 288 nJ| 0.18 um|1.8V core
3.3VI/O
Ocapi 1.4mm2 1K| 2.1 0.25 um|2.5V
AJRT 3.2 mm2 3K| 4.3)| 0.35um3.3V

3 The technology is not specified in the technical documentation,
therefore it is estimated based on the power supply.

® This includes only the program code, since the data memory
requirement depends on the number of channels.

5. 2. Power

Power figures for each design are given in Table 1 in units
of energy per frame. The circuit designed with Ocapi
resulted in the lowest energy per frame with 2.1 pJ of
energy consumed in one frame. Not far behind was the TI
C5510, with only 3.2 pJ per frame, and the A|RT designer
solution at 4.3 pJ per frame. It might seem quite shocking
how close the CS5510 comes to the custom design from
Ocapi in terms of power, but this small difference can be
explained by the difference in technology.

Scaling with a 1/S? factor (S is 0.35/0.15 and 0.25/
0.15) reduces the energy for the full custom designs of
Ocapi and A[RT Designer to 0.76 pJ and 0.79 uJ respec-
tively. This shows that for the same technology and the
same supply voltage, the full custom application specific
processors are a factor of four lower in energy consumption

compared to the lowest power DSP processor. The 1/8%
scaling factor corresponds to the power scaling in a general

1128

scaling model [3]. In this application, energy scales as the
power since the time frame remains the same, as this is dic-
tated by the application.

It is worth nothing that the application specific solu-
tions use regular standard cell libraries, thus losing some
energy advantage compared to fully custom designed data-
paths for the low power DSP processors.

The TI C6211 DSP had, by far, the highest energy per
frame consumption with 288 pJ. Clearly, this is an unac-
ceptable amount when compared to all the other target plat-
forms if the C6211 were used to encode only one voice
channel. However, within this energy budget, the C6211
was capable of processing 75 simultaneous voice channels.
When looking at each channel separately, this amounts to
only 3.8 uJ per frame.

6. CONCLUSIONS

While large efforts have been made to make programmable
DSP processors extremely low power, they still trail in
comparison to application specific solutions, by a factor of
four in this experiment. The above results were obtained in
the span of one quarter, indicating the “ease of use” of both
the TI programming environment (Code Composer) as well
as the design environments, Ocapi and A|RT designer. This
includes installing, learning and running each of the soft-
ware tools.

7. REFERENCES
W. Lee, et al., “A 1-V programmable DSP for wireless
communications,” IEEE Journal of Solid-State Circuits,
Vol. 32, No. 11, pp. 1766 -1776, Nov. 1997.
P. Mosch, et al., “A 720 uW 50 MOPS 1V DSP for a Hear-
ing Aid Chip,” 2000 IEEE International Solid-State Cir-
cuits Conference, pp. 238-239, Feb. 2000.
J. Rabaey, Digital Integrated Circuits: A Design Perspec-
tive, Prentice Hall, 1996.
L.Rabiner, R. Schafer, Digital Processing of Speech Sig-
nals, Prentice Hall, Englewood Cliffs, New Jersey, 1978.
M.M. Sondhi. New Methods of Pitch Extraction. IEEE
Trans. Audio and Electroacoustics, Vol. AU-16, No. 2, pp.
262-266, June 1968.
I. Verbauwhede, C. Nicol, “Low Power DSP’s for Wireless
Communications,” Proc. of the 2000 International Sympo-
sium on Low Power Electronics and Design, pp. 303-310.
S. Vernalde, P. Schaumont, I. Bolsens, “An Object Oriented
Programming Approach for Hardware Design,” IEEE Com-
puter Society Workshop on VLSI, 1999, Orlando, April
1999.

(1]

(2]

(3]
4]
[5]

[6]

[8] www.ee.ucla.edu/~ingrid/ee213a/index.html

[9] www.ti.com/sc/docs/products/dsp/c5000/index.htm
[10] www.ti.com/sc/docs/products/dsp/c6000/index.htm
[11] www.imec.be/Ocapi/

[12] www.frontierd.com

