
The Energy Cost of Secrets in Ad-hoc Networks (Short Paper)

Alireza Hodjat
ahodjat@ee.ucla.edu

Ingrid Verbauwhede
ingrid@ee.ucla.edu

Department of Electrical Engineering
University of California, Los Angeles

Los Angeles CA-90024

Abstract

Energy consumption of cryptographic algorithms and
security protocols is a crucial factor in wireless ad-hoc
networks. This work explores the energy cost of a key
agreement process between two parties of an ad-hoc
network using public-key encryption techniques and
compares the results with regular networks which use
secret-key based key-exchange protocols. Elliptic Curve
public-key and Rijndael AES secret-key algorithms are
chosen to explore the energy cost of Diffie-Hellman and
Kerberos key agreement protocols on a WINS sensor
network. The results show that the total energy cost of the
Diffie-Hellman key agreement process using Elliptic Curve
point-multiplication in an ad-hoc network is between one to
two orders of magnitude larger than the key exchange
process based on the AES secret-key algorithm in a regular
non ad-hoc network.

1. Introduction

Low-energy security is a crucial requirement for wireless
networks. The very first step in providing security to a
wireless network is the key distribution and key agreement
process. Symmetric or asymmetric techniques can be used
for key exchange between parties in a wireless network.
Protocols based on asymmetric-key encryption algorithms
are the main solution for ad-hoc wireless networks because
there is no need for a trusted third party in these protocols.
On the other hand, symmetric-key encryption algorithms
are applicable to the wireless networks with base stations.
 The main goal of this paper is to compare the energy cost
of security for wireless ad-hoc networks versus non ad-hoc
networks which use base stations as their trusted parties. In
order to achieve this we explore the energy consumption of
the key agreement process between two parties using both
symmetric-key and asymmetric-key encryption algorithms.
 The platform used for this purpose is the Wireless
Integrated Network Sensor. WINS is a StrongARM based
wireless sensor network which was developed at Rockwell
Scientific [1]. In the first step, symmetric-key and
asymmetric-key encryption algorithms are implemented on
the WINS nodes. More specifically the Rijndael AES
secret-key and Elliptic Curve public-key encryption

algorithms are chosen. The energy consumption for these
algorithms is measured for different data and key lengths.
 In the next step we explore the energy cost of a public-
key and a secret-key based key exchange protocol and
examine their suitability for low-power wireless networks.
In the implementation of the whole security protocol the
cost of communication between nodes must be considered
as well. Therefore, the whole energy cost consists of the
energy consumption of computation and communication.
The number of packets exchanged between parties and the
energy cost of radio transmission influences the overall
communication cost, and the type of encryption algorithm
affects the energy cost of computation in each protocol.
 The rest of this paper is organized as follows: In section
2 we explain the Rijndael AES secret-key and Elliptic
Curve public-key cryptography algorithms and present their
energy cost on WINS nodes. Section 3 discusses the energy
cost of communication for the WINS nodes. In section 4 the
Diffie-Hellman and Kerberos key distribution protocols are
presented and the energy cost of implementing these
protocols on ad-hoc and non ad-hoc networks is explored.
Sections 5 and 6 present our conclusion and future work.

2. Energy results for AES and ECC

In this section we explore the energy cost for the underlying
encryption algorithms - Rijndael AES and Elliptic Curve
Cryptography (ECC). AES is the secret-key encryption
standard most recently accepted by NIST. Other choices for
secret-key techniques are DES and RC4. AES was chosen
due to the fact that it is more secure and more complex
compared to DES and RC4. Moreover, it is more useful in
exploring the upper bound of energy for non ad-hoc
networks. As for public-key algorithms, the choices are
RSA and ECC. ECC has recently gained prominence
among public-key algorithms. Furthermore, RSA is more
complex and will require much more energy than ECC and
hence, is not suitable for ad-hoc networks.

Rijndael Symmetric-key Algorithm
 This algorithm was accepted as the Advanced Encryption
Standard by NIST [2]. It consists of key scheduling,
encryption, and decryption primitives [3]. Key scheduling
produces a long array of sub-keys by key expansion and
round key selection routines. This long array of sub-keys is

used in each round of encryption or decryption phase to be
added to data. Depending on the key and data size,
encryption and decryption algorithms are repeated between
10 to 14 rounds. In the encryption primitive, byte
substitution transformation, shift row transformation, mix
column transformation, and round key addition are
performed [3]. In decryption, the steps are the same as those
performed in encryption. However, they are called in
reverse order and the substitute table, shift indexes, and
fixed polynomials used in the decryption steps are the
reverse of those used in encryption.
 Figure 1 shows the energy consumption of Rijndael AES
encryption and decryption algorithms for different data and
key lengths. In the original Rijndael algorithm, the input
data and key blocks are in the range of 128, 192, or 256
bits, and the output has the corresponding size. The energy
consumption for encryption and key scheduling varies from
0.31 mJoules to 0.85 mJoules depending on the choice of
data and key size. For decryption and key scheduling the
variation is from 0.36 mJoules to 1.01 mJoules. The energy
consumption of decryption is 30% more than encryption.
The main reason for this difference is the number of shifts
performed in the shift row routine and the larger GF(28)
elements used in mix column transformation routine.

Elliptic Curve Asymmetric-key Algorithm
 This algorithm is based on the IEEE P1363/D1 public-
key cryptography standard [4]. We use the efficient double-
add-subtract point-multiplication algorithm defined by this
standard. Elliptic Curve point-multiplication refers to
calculating k.P when k is an integer and P is a point on the
Elliptic Curve. The theory of the Elliptic Curve Public-key
cryptography is based on the mathematical mapping of an
Elliptic Curve on a Galois field. The Elliptic Curve points
on GF(2n) and the point in infinity form a group with a
specific addition operation [4]. With this definition, k.P is
equivalent to adding P to itself k times by the group
operation.
 Figures 2, 3, and 4 show the energy consumption of point
multiplication for key lengths of 128, 192, and 256 bits,
respectively. The execution time and the energy for the

ECC algorithm strictly depend on the bit pattern of the
initial random key k. Therefore, the upper bound and lower
bound of energy was measured. In order to calculate the
lower bound of energy, there should be only doubles in the
point-multiplication calculation. Similarly, in order to
calculate the upper bound, there should be a full number of
doubles and the maximum number of additions and/or
subtractions.
 In these figures the X-axis shows the size of the initial
random key k of point-multiplication. This is identical to

Encryption Decryption

0

0.2

0.4

0.6

0.8

1

1.2

256 192 128 256 192 128

Data Size

En
er

gy
 (m

Jo
ul

es
)

256-bit Key 192-bit Key 128-bit Key

Figure 1: The energy cost of Rijndael AES algorithm on
WINS (key scheduling + encryption or decryption)

413.4

702

81.9
132.6

226.2

323.7

351.02

528.48

90.68

177.46

0

100

200

300

400

500

600

700

800

0 16 32 48 64 80 96 112 128 144

Size of the initial key (k)

En
er

gy
 (m

Jo
ul

e)

Figure 2: The energy cost of ECC point-multiplication
for 128-bit session key

1.33

2.24

0.52

0.32

0.72
0.93

1.14

1.88

1.5

1.13

0.76

0.38

0

0.5

1

1.5

2

2.5

0 32 64 96 128 160 192 224

Size of the initial key (k)

En
er

gy
 (J

ou
le

)

Figure 3: The energy cost of ECC point-multiplication
for 192-bit session key

3.06

2.73
2.38

2.03
1.68

1.320.970.62

5.194.54

3.88

3.23

2.58

1.95

1.3

0.64

0

1

2

3

4

5

6

0 32 64 96 128 160 192 224 256 288

Size of the initial key (k)

En
er

gy
 (J

ou
le

)

Figure 4: The energy cost of ECC point-multiplication
for 256-bit session key

the number of doubles for each experiment. Also, in the
case of the upper bound, this axis shows twice the number
of adds and/or subtracts. The Y-axis shows the energy
consumption in terms of mJoules or Joules. For instance, if
the size of k is 64 for 128-bit point multiplication (figure 2),
then the energy consumption will be between 226.2 and
351.02 mJoules depending on the 0 and 1 pattern in k. In
this case 64 doubles are performed for the lower limit, and
64 doubles and 32 adds or subtracts are performed for the
upper limit.
 The results show that the energy consumption of one
Elliptic Curve point-multiplication for the 128-bit key
varies from 0.082 to 0.702 Joules. For the 192-bit key the
variation is between 0.32 to 2.24 Joules. In the case of the
256-bit key the energy cost range is between 0.62 to 5.19
Joules. Also the average energy cost is 0.30, 1.07, and 2.34
Joules for the 128, 192, and 256-bit key, respectively. All
of the above measurements are done on StrongARM based
WINS node running at 133 MHz.

3. Communication costs

[5] presents the power consumption of the radio
transmission on WINS nodes. Radio’s power consumption
varies between 396 to 711 mWatts depending on the
transmission power level. This corresponds to a
consumption of 771 to 1080 mWatts for the whole sensor
node. The power consumption of the receive mode is 376
mWatts for the radio and 751 mWatts for the whole node.
All these numbers are at a transmission rate of 100 kbits/s.

4. Key-exchange energy consumption

[6] introduces Diffie-Hellman and basic Kerberos as two
solutions for the key distribution and key agreement
problem. Diffie-Hellman key agreement protocol is
implemented using a public-key encryption algorithm. It is
applicable to ad-hoc networks due to the fact that it does
not require a trusted third party in the key agreement
process. Using this protocol, any two nodes in an ad-hoc
network can agree on their common session key without
any trusted node or secure link. On the other hand, basic
Kerberos is a key-distribution protocol that is based on a
secret-key encryption technique. It is suitable for non ad-
hoc networks with base stations since it requires a trusted
party in the key-exchange process. In this experiment on
WINS nodes, the Diffie-Hellman protocol is implemented
using the Elliptic Curve public-key cryptography technique
and the Kerberos protocol is based on the Rijndael AES
secret-key cryptography algorithm. In the following
paragraphs these protocols are described and their energy
consumption is explored. It is assumed that the two nodes
performing the key-agreement process are called Alice and
Bob, and if needed, their trusted party is called Trent.
 In the Diffie-Hellman protocol based on Elliptic Curve
point-multiplication, there is a common elliptic curve and a

Diffie-Hellman 128-bits 192-bits 256-bits
Four times point

multiplication with
average energy cost

4 × 300
mJoules

4 × 1070
mJoules

4 × 2340
mJoules

Packet size 128+256 192+256 256+256
Energy cost per packet

transmission at
maximum power level

4.05

mJoules

4.725

mJoules

10.8

mJoules
Energy cost per packet

arrival
2.80

mJoules
3.25

mJoules
7.51

mJoules
Total (mJoules) 1213.7 4296 9378.3
Table 1: Diffie-Hellman based on Elliptic-Curve

specific point on it that is publicly known. Alice and Bob
each generate a random initial key, called a and b. They
apply point-multiplication on the common elliptic curve
point P. They exchange their results. Then, they apply
point-multiplication on the received data (a.P or b.P) with
their own random initial key again and generate a.b.P. This
is their common session key. Both can generate a.b.P but
no one else can generate it without knowing a and b. It can
be shown that it is practically infeasible to generate a.b.P
from a.P, b.P, and P.
 In this protocol Alice does two elliptic curve point-
multiplications (calculating a.P, and a.b.P), once transmits
her results to Bob (a.P), and once listens to receive Bob’s
results (b.P). Bob also follows the same process. Therefore,
this protocol requires four Elliptic Curve point-
multiplications as the computation part, and two data
transmissions and two data receptions for the
communication part.
 Table 1 shows the energy exploration of Diffie-Hellman
protocol using Elliptic Curve point-multiplication. A header
of 256 bits wide is used for each data transmission and the
data is either 128, 192, or 256 bits wide. As it is shown, the
average energy consumption of point-multiplication is used
in each case based on the results of section 2. Transmission
is at the rate of 100 kbits/s and the energy is calculated
based on the maximum transmission power level. From
section 3 it is observed that the transmission costs
maximum 1080 mWatts and the reception 751 mWatts. As
shown in Table 1, the whole energy cost of one Diffie-
Hellman key-agreement protocol in an ad-hoc network is
1213.7 mJoules, 4296 mJoules, and 9378.3 mJoules for key
lengths of 128, 192, and 256 bits, respectively.
 In the basic Kerberos protocol based on the AES secret-
key encryption technique Alice and Bob agree on a common
session key with the help of their trusted third party, Trent.
Here, we focus on the original basic Kerberos key
agreement protocol using secret-key encryption technique
[6]. We do not discuss the Kerberos network authentication
protocol that is used in client/server applications.
 Alice and Bob want to agree on a common session key.
At the beginning, both have a secret key to communicate
securely with Trent. For key agreement, one of them,
suppose Alice, sends a message to Trent asking for a secret
session key. This message includes Alice’s and Bob’s
identities. Trent generates the random session key K and

encrypts it along with timestamp T and lifetime L and Alice
or Bob’s identity separately. The message for Alice is
encrypted with Alice’s secret-key and Bob’s identity and
vice versa. The results are EA(K,B,T,L) and EB(K,A,T,L).
These messages are sent to Alice. Now Alice can decrypt
her received message to recover K. Then she makes a
message including her identity and timestamp T and
encrypts it with K (EK(A,T)). She sends both EB(K,A,T,L)
and EK(A,T) to Bob. Now Bob can decrypt the received
messages and recover K. He also verifies Alice’s identity
and then forms a message with T+1 and encrypts it with K
and sends it again to Alice. Alice decrypts this message and
verifies the timestamp T. Now Alice and Bob have a secret
common shared key K. This process is shown in figure 5.
 In this protocol there are four data encryptions on the
transmitted data and four decryptions on the received data.
The total number of transmissions and receptions is six
each. Table 2 shows the upper bound energy consumption
of this protocol using the Rijndael AES secret-key
algorithm. The packets of size 1 kbits include the header,
Alice and Bob’s identity, the timestamp, the lifetime, and
the generated random session key K. K can be 128, 192, or
256 bits wide. In order to calculate the upper bound of
energy consumption, the maximum power level is
considered in transmission. Therefore, the transmission
power of 1080 mWatts results in energy consumption of
10.8 mJoules for the transmission of 1-kbit packet at 100
kbits/s. Accordingly, the reception power is 751 mWatts,
which shows the energy consumption of 7.51 mJoules. The
encryption and decryption are performed on the block of
data with 256-bit length that consumes maximum of 0.85
mJoules and 1.01 mJoules for encryption and decryption,
respectively. Table 2 shows that the energy consumption
for Kerberos key-agreement protocol is less than 140
mJoules. This is true for key length of 128, 192, or 256 bits.

5. Conclusion

Our measurements on WINS nodes show an energy cost of
maximum 1 mJoule for the AES symmetric-key
cryptography algorithm. For the Elliptic Curve public-key
cryptography algorithm, the average energy consumption of
one point multiplication varies between 300 to 2340
mJoules. This cost is between two to three orders of
magnitude larger than the AES algorithm. This ratio
influences the energy cost of the key agreement protocol on
an ad-hoc network. Diffie-Hellman key agreement protocol
using Elliptic Curve point-multiplication in a typical ad-hoc
network costs between 1214 to 9400 mJoules. On the other
hand it costs less than 140 mJoules to exchange keys with
an AES-based Kerberos key distribution protocol in non ad-
hoc networks. This shows that on WINS nodes, the energy
cost of a key agreement process in an ad-hoc network using
a public-key encryption technique like ECC is between one
to two orders of magnitude larger than key agreement in
regular networks with symmetric-key encryption algorithms

like AES. Therefore, providing security for ad-hoc wireless
networks with public-key algorithms is not only harder than
non ad-hoc networks based on secret-key techniques, but
also it might cost between 10 to 100 times more energy.

Kerboros

Packet Size 1 kbits
Upper bound of energy for encryption

of one packet
4 × 0.85 = 3.4

mJoules
Upper bound of energy for decryption

of one packet
4 × 1.01 = 4.04

mJoules
Upper bound of energy for encryption

in the whole protocol
4 × 3.4 = 13.6

mJoules
Upper bound of energy for decryption

in the whole protocol
4 × 4.04 = 16.16

mJoules
Total energy cost of transmission for

full size packet
6 × 10.8 = 64.8

mJoules
Total energy cost of reception for full

size packet
6 × 7.51 = 45.06

mJoules
Total Energy (mJoules) 139.62

Table 2: Kerberos based on Rijndael AES

6. Future Work

In order to generalize the conclusion, it is helpful to explore
the energy cost of the key agreement process for different
cases. Other radios, such as Bluetooth or 802.11 can be
used. Bluetooth’s transmission rate is on the order of a
hundred kbits/s and its power consumption is in the range of
mWatts. For 802.11 radio, the transmission rate is in the
range of Mbits/s and its power consumption is in the order
of a hundred mWatts. Therefore, the communication cost is
more for these radios. Other encryption algorithms like
DES, RC4 or RSA can be used in software on processors or
in hardware as ASICs. This results in different costs for
computation. Exploring the energy cost of the above cases
can guide us to find a security model for ad-hoc networks
based on the communication/computation trade-off.

References
[1] http://wins.rockwellscientific.com/
[2] http://csrc.nist.gov/encryption/aes
[3] J. Daemen, V. Rijmen, “AES Proposal: Rijndael.”
[4] IEEE P1363/D1, Standard Specification for Public-Key

Cryptography, November 1999.
[5] Savvides, Park, Sirvastava, “On Modeling Networks of

Wireless Microsensors,” ACM Sigmetrics 02.
[6] D. R. Stinson, “Cryptography Theory and Practice,”

First Edition, CRC Press, 1995.

Figure 5: Kerberos key agreement protocol

(A , B)

EA(K,B,T,L)

EB(K,A,T,L)

EK(A,T) EB(K,A,T,L)

EK(T+1)
Alice

Trent

Bob

