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Abstract 
 
Energy consumption of cryptographic algorithms and 
security protocols is a crucial factor in wireless ad-hoc 
networks. This work explores the energy cost of a key 
agreement process between two parties of an ad-hoc 
network using public-key encryption techniques and 
compares the results with regular networks which use 
secret-key based key-exchange protocols. Elliptic Curve 
public-key and Rijndael AES secret-key algorithms are 
chosen to explore the energy cost of Diffie-Hellman and 
Kerberos key agreement protocols on a WINS sensor 
network. The results show that the total energy cost of the 
Diffie-Hellman key agreement process using Elliptic Curve 
point-multiplication in an ad-hoc network is between one to 
two orders of magnitude larger than the key exchange 
process based on the AES secret-key algorithm in a regular 
non ad-hoc network. 
 

1. Introduction 
 
Low-energy security is a crucial requirement for wireless 
networks. The very first step in providing security to a 
wireless network is the key distribution and key agreement 
process. Symmetric or asymmetric techniques can be used 
for key exchange between parties in a wireless network. 
Protocols based on asymmetric-key encryption algorithms 
are the main solution for ad-hoc wireless networks because 
there is no need for a trusted third party in these protocols. 
On the other hand, symmetric-key encryption algorithms 
are applicable to the wireless networks with base stations.  
    The main goal of this paper is to compare the energy cost 
of security for wireless ad-hoc networks versus non ad-hoc 
networks which use base stations as their trusted parties. In 
order to achieve this we explore the energy consumption of 
the key agreement process between two parties using both 
symmetric-key and asymmetric-key encryption algorithms. 
    The platform used for this purpose is the Wireless 
Integrated Network Sensor. WINS is a StrongARM based 
wireless sensor network which was developed at Rockwell 
Scientific [1]. In the first step, symmetric-key and 
asymmetric-key encryption algorithms are implemented on 
the WINS nodes. More specifically the Rijndael AES 
secret-key and Elliptic Curve public-key encryption 

algorithms are chosen. The energy consumption for these 
algorithms is measured for different data and key lengths.  
    In the next step we explore the energy cost of a public-
key and a secret-key based key exchange protocol and 
examine their suitability for low-power wireless networks. 
In the implementation of the whole security protocol the 
cost of communication between nodes must be considered 
as well.  Therefore, the whole energy cost consists of the 
energy consumption of computation and communication. 
The number of packets exchanged between parties and the 
energy cost of radio transmission influences the overall 
communication cost, and the type of encryption algorithm 
affects the energy cost of computation in each protocol.  
    The rest of this paper is organized as follows: In section 
2 we explain the Rijndael AES secret-key and Elliptic 
Curve public-key cryptography algorithms and present their 
energy cost on WINS nodes. Section 3 discusses the energy 
cost of communication for the WINS nodes. In section 4 the 
Diffie-Hellman and Kerberos key distribution protocols are 
presented and the energy cost of implementing these 
protocols on ad-hoc and non ad-hoc networks is explored. 
Sections 5 and 6 present our conclusion and future work.  
 

2. Energy results for AES and ECC 
 
In this section we explore the energy cost for the underlying 
encryption algorithms - Rijndael AES and Elliptic Curve 
Cryptography (ECC). AES is the secret-key encryption 
standard most recently accepted by NIST. Other choices for 
secret-key techniques are DES and RC4. AES was chosen 
due to the fact that it is more secure and more complex 
compared to DES and RC4. Moreover, it is more useful in 
exploring the upper bound of energy for non ad-hoc 
networks. As for public-key algorithms, the choices are 
RSA and ECC. ECC has recently gained prominence 
among public-key algorithms. Furthermore, RSA is more 
complex and will require much more energy than ECC and 
hence, is not suitable for ad-hoc networks.  
 
Rijndael Symmetric-key Algorithm 
    This algorithm was accepted as the Advanced Encryption 
Standard by NIST [2]. It consists of key scheduling, 
encryption, and decryption primitives [3]. Key scheduling 
produces a long array of sub-keys by key expansion and 
round key selection routines. This long array of sub-keys is 



used in each round of encryption or decryption phase to be 
added to data. Depending on the key and data size, 
encryption and decryption algorithms are repeated between 
10 to 14 rounds. In the encryption primitive, byte 
substitution transformation, shift row transformation, mix 
column transformation, and round key addition are 
performed [3]. In decryption, the steps are the same as those 
performed in encryption. However, they are called in 
reverse order and the substitute table, shift indexes, and 
fixed polynomials used in the decryption steps are the 
reverse of those used in encryption.  
    Figure 1 shows the energy consumption of Rijndael AES 
encryption and decryption algorithms for different data and 
key lengths. In the original Rijndael algorithm, the input 
data and key blocks are in the range of 128, 192, or 256 
bits, and the output has the corresponding size. The energy 
consumption for encryption and key scheduling varies from 
0.31 mJoules to 0.85 mJoules depending on the choice of 
data and key size. For decryption and key scheduling the 
variation is from 0.36 mJoules to 1.01 mJoules. The energy 
consumption of decryption is 30% more than encryption. 
The main reason for this difference is the number of shifts 
performed in the shift row routine and the larger GF(28) 
elements used in mix column transformation routine. 

Elliptic Curve Asymmetric-key Algorithm 
    This algorithm is based on the IEEE P1363/D1 public-
key cryptography standard [4]. We use the efficient double-
add-subtract point-multiplication algorithm defined by this 
standard. Elliptic Curve point-multiplication refers to 
calculating k.P when k is an integer and P is a point on the 
Elliptic Curve. The theory of the Elliptic Curve Public-key 
cryptography is based on the mathematical mapping of an 
Elliptic Curve on a Galois field. The Elliptic Curve points 
on GF(2n) and the point in infinity form a group with a 
specific addition operation [4]. With this definition, k.P is 
equivalent to adding P to itself k times by the group 
operation. 
    Figures 2, 3, and 4 show the energy consumption of point 
multiplication for key lengths of 128, 192, and 256 bits, 
respectively. The execution time and the energy for the 

ECC algorithm strictly depend on the bit pattern of the 
initial random key k. Therefore, the upper bound and lower 
bound of energy was measured. In order to calculate the 
lower bound of energy, there should be only doubles in the 
point-multiplication calculation. Similarly, in order to 
calculate the upper bound, there should be a full number of 
doubles and the maximum number of additions and/or 
subtractions. 
    In these figures the X-axis shows the size of the initial 
random key k of point-multiplication. This is identical to 
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Figure 1: The energy cost of Rijndael AES algorithm on 
WINS (key scheduling + encryption or decryption) 
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Figure 2: The energy cost of ECC point-multiplication 
for 128-bit session key
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Figure 3: The energy cost of ECC point-multiplication 
for 192-bit session key
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Figure 4: The energy cost of ECC point-multiplication 
for 256-bit session key



the number of doubles for each experiment. Also, in the 
case of the upper bound, this axis shows twice the number 
of adds and/or subtracts. The Y-axis shows the energy 
consumption in terms of mJoules or Joules. For instance, if 
the size of k is 64 for 128-bit point multiplication (figure 2), 
then the energy consumption will be between 226.2 and 
351.02 mJoules depending on the 0 and 1 pattern in k. In 
this case 64 doubles are performed for the lower limit, and 
64 doubles and 32 adds or subtracts are performed for the 
upper limit.  
    The results show that the energy consumption of one 
Elliptic Curve point-multiplication for the 128-bit key 
varies from 0.082 to 0.702 Joules. For the 192-bit key the 
variation is between 0.32 to 2.24 Joules. In the case of the 
256-bit key the energy cost range is between 0.62 to 5.19 
Joules. Also the average energy cost is 0.30, 1.07, and 2.34 
Joules for the 128, 192, and 256-bit key, respectively. All 
of the above measurements are done on StrongARM based 
WINS node running at 133 MHz.  
 

3. Communication costs 
 
[5] presents the power consumption of the radio 
transmission on WINS nodes. Radio’s power consumption 
varies between 396 to 711 mWatts depending on the 
transmission power level. This corresponds to a 
consumption of 771 to 1080 mWatts for the whole sensor 
node. The power consumption of the receive mode is 376 
mWatts for the radio and 751 mWatts for the whole node. 
All these numbers are at a transmission rate of 100 kbits/s. 
 

4. Key-exchange energy consumption 
 
[6] introduces Diffie-Hellman and basic Kerberos as two 
solutions for the key distribution and key agreement 
problem. Diffie-Hellman key agreement protocol is 
implemented using a public-key encryption algorithm. It is 
applicable to ad-hoc networks due to the fact that it does 
not require a trusted third party in the key agreement 
process. Using this protocol, any two nodes in an ad-hoc 
network can agree on their common session key without 
any trusted node or secure link. On the other hand, basic 
Kerberos is a key-distribution protocol that is based on a 
secret-key encryption technique. It is suitable for non ad-
hoc networks with base stations since it requires a trusted 
party in the key-exchange process. In this experiment on 
WINS nodes, the Diffie-Hellman protocol is implemented 
using the Elliptic Curve public-key cryptography technique 
and the Kerberos protocol is based on the Rijndael AES 
secret-key cryptography algorithm. In the following 
paragraphs these protocols are described and their energy 
consumption is explored. It is assumed that the two nodes 
performing the key-agreement process are called Alice and 
Bob, and if needed, their trusted party is called Trent. 
    In the Diffie-Hellman protocol based on Elliptic Curve 
point-multiplication, there is a common elliptic curve and a  

Diffie-Hellman 128-bits 192-bits 256-bits 
Four times point 

multiplication with 
average energy cost 

 
4 × 300 
mJoules 

 
4 × 1070 
mJoules 

 
4 × 2340 
mJoules 

Packet size 128+256 192+256 256+256 
Energy cost per packet 

transmission at 
maximum power level 

 
4.05 

mJoules 

 
4.725 

mJoules 

 
10.8 

mJoules 
Energy cost per packet 

arrival 
2.80 

mJoules 
3.25 

mJoules 
7.51 

mJoules 
Total (mJoules) 1213.7 4296 9378.3 
Table 1: Diffie-Hellman based on Elliptic-Curve 

 
specific point on it that is publicly known. Alice and Bob 
each generate a random initial key, called a and b. They 
apply point-multiplication on the common elliptic curve 
point P. They exchange their results. Then, they apply 
point-multiplication on the received data (a.P or b.P)  with 
their own random initial key again and generate a.b.P. This 
is their common session key. Both can generate a.b.P but 
no one else can generate it without knowing a and b. It can 
be shown that it is practically infeasible to generate a.b.P 
from a.P, b.P, and P.  
    In this protocol Alice does two elliptic curve point-
multiplications (calculating a.P, and a.b.P), once transmits 
her results to Bob (a.P), and once listens to receive Bob’s 
results (b.P). Bob also follows the same process. Therefore, 
this protocol requires four Elliptic Curve point-
multiplications as the computation part, and two data 
transmissions and two data receptions for the 
communication part.  
    Table 1 shows the energy exploration of Diffie-Hellman 
protocol using Elliptic Curve point-multiplication. A header 
of 256 bits wide is used for each data transmission and the 
data is either 128, 192, or 256 bits wide. As it is shown, the 
average energy consumption of point-multiplication is used 
in each case based on the results of section 2. Transmission 
is at the rate of 100 kbits/s and the energy is calculated 
based on the maximum transmission power level. From 
section 3 it is observed that the transmission costs 
maximum 1080 mWatts and the reception 751 mWatts. As 
shown in Table 1, the whole energy cost of one Diffie-
Hellman key-agreement protocol in an ad-hoc network is 
1213.7 mJoules, 4296 mJoules, and 9378.3 mJoules for key 
lengths of 128, 192, and 256 bits, respectively. 
    In the basic Kerberos protocol based on the AES secret-
key encryption technique Alice and Bob agree on a common 
session key with the help of their trusted third party, Trent. 
Here, we focus on the original basic Kerberos key 
agreement protocol using secret-key encryption technique 
[6]. We do not discuss the Kerberos network authentication 
protocol that is used in client/server applications. 
    Alice and Bob want to agree on a common session key. 
At the beginning, both have a secret key to communicate 
securely with Trent. For key agreement, one of them, 
suppose Alice, sends a message to Trent asking for a secret 
session key. This message includes Alice’s and Bob’s 
identities. Trent generates the random session key K and 



encrypts it along with timestamp T and lifetime L and Alice 
or Bob’s identity separately. The message for Alice is 
encrypted with Alice’s secret-key and Bob’s identity and 
vice versa. The results are EA(K,B,T,L) and EB(K,A,T,L). 
These messages are sent to Alice.  Now Alice can decrypt 
her received message to recover K. Then she makes a 
message including her identity and timestamp T and 
encrypts it with K (EK(A,T)). She sends both EB(K,A,T,L) 
and EK(A,T) to Bob. Now Bob can decrypt the received 
messages and recover K. He also verifies Alice’s identity 
and then forms a message with T+1 and encrypts it with K 
and sends it again to Alice. Alice decrypts this message and 
verifies the timestamp T. Now Alice and Bob have a secret 
common shared key K. This process is shown in figure 5. 
    In this protocol there are four data encryptions on the 
transmitted data and four decryptions on the received data. 
The total number of transmissions and receptions is six 
each. Table 2 shows the upper bound energy consumption 
of this protocol using the Rijndael AES secret-key 
algorithm. The packets of size 1 kbits include the header, 
Alice and Bob’s identity, the timestamp, the lifetime, and 
the generated random session key K. K can be 128, 192, or 
256 bits wide. In order to calculate the upper bound of 
energy consumption, the maximum power level is 
considered in transmission. Therefore, the transmission 
power of 1080 mWatts results in energy consumption of 
10.8 mJoules for the transmission of 1-kbit packet at 100 
kbits/s. Accordingly, the reception power is 751 mWatts, 
which shows the energy consumption of 7.51 mJoules.  The 
encryption and decryption are performed on the block of 
data with 256-bit length that consumes maximum of 0.85 
mJoules and 1.01 mJoules for encryption and decryption, 
respectively. Table 2 shows that the energy consumption 
for Kerberos key-agreement protocol is less than 140 
mJoules. This is true for key length of 128, 192, or 256 bits. 

 

5. Conclusion 
 
Our measurements on WINS nodes show an energy cost of 
maximum 1 mJoule for the AES symmetric-key 
cryptography algorithm. For the Elliptic Curve public-key 
cryptography algorithm, the average energy consumption of 
one point multiplication varies between 300 to 2340 
mJoules. This cost is between two to three orders of 
magnitude larger than the AES algorithm. This ratio 
influences the energy cost of the key agreement protocol on 
an ad-hoc network. Diffie-Hellman key agreement protocol 
using Elliptic Curve point-multiplication in a typical ad-hoc 
network costs between 1214 to 9400 mJoules. On the other 
hand it costs less than 140 mJoules to exchange keys with 
an AES-based Kerberos key distribution protocol in non ad-
hoc networks. This shows that on WINS nodes, the energy 
cost of a key agreement process in an ad-hoc network using 
a public-key encryption technique like ECC is between one 
to two orders of magnitude larger than key agreement in 
regular networks with symmetric-key encryption algorithms 

like AES. Therefore, providing security for ad-hoc wireless 
networks with public-key algorithms is not only harder than 
non ad-hoc networks based on secret-key techniques, but 
also it might cost between 10 to 100 times more energy. 

 
Kerboros 

Packet Size 1 kbits 
Upper bound of energy for encryption 

of  one packet 
4 × 0.85 = 3.4 

mJoules 
Upper bound of energy for decryption 

of one packet 
4 × 1.01 = 4.04 

mJoules 
Upper bound of energy for encryption 

in the whole protocol 
4 × 3.4 = 13.6 

mJoules 
Upper bound of energy for decryption 

in the whole protocol 
4 × 4.04 = 16.16 

mJoules 
Total energy cost of transmission for 

full size packet 
6 × 10.8 = 64.8 

mJoules 
Total energy cost of reception for full 

size packet 
6 × 7.51 = 45.06 

mJoules 
Total Energy (mJoules) 139.62 

Table 2: Kerberos based on Rijndael AES 
 

6. Future Work 
 
In order to generalize the conclusion, it is helpful to explore 
the energy cost of the key agreement process for different 
cases. Other radios, such as Bluetooth or 802.11 can be 
used. Bluetooth’s transmission rate is on the order of a 
hundred kbits/s and its power consumption is in the range of 
mWatts. For 802.11 radio, the transmission rate is in the 
range of Mbits/s and its power consumption is in the order 
of a hundred mWatts. Therefore, the communication cost is 
more for these radios. Other encryption algorithms like 
DES, RC4 or RSA can be used in software on processors or 
in hardware as ASICs. This results in different costs for 
computation. Exploring the energy cost of the above cases 
can guide us to find a security model for ad-hoc networks 
based on the communication/computation trade-off.  
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Figure 5: Kerberos key agreement protocol 
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