
 1

Scalable Session Key Construction Protocol for
Wireless Sensor Networks

 Bocheng Lai Sungha Kim Ingrid Verbauwhede

 bclai@ee.ucla.edu yevgeny@ee.ucla.edu Ingrid@ee.ucla.edu

Department of Electrical Engineering
University of California, Los Angeles

Los Angeles, CA-90095

Abstract

The security of sensor network s is ever more
important nowadays. In this paper we propose
a new protocol BROSK to construct link -
dependent keys by broadcasting key negotiation
messages. The link-dependent key will be
negotiated in an ad-hoc scheme. Most of the
proposed security protocols in sensor networks
are based on point-to-point handshaking
procedures to negotiate link -dependent keys,
but this will influence the scalability of the
network. The simulation shows that the
scalability of BROSK is better than two other
security protocols of sensor network, SPINS
and SNAKE, and is reasonably secure. This
new protocol consumes less energy by reducing
the number of transmissions used for key
negotiation among sensor nodes.

1 Introduction
Distributed sensor networks can be used in a
wide range of applications, such as
environment monitoring, rescue missions, and
smart houses. A lot of interest and effort are
being focused on this new network topic. The
sensor networks are constructed by a large
number of nodes with ultra-low power
computation and communication units [2].

Security is an important issue for sensor
networks. Stajano and Anderson are the first to
point out the battery exhaustion attack [1] and
this attack can easily be triggered on the sensor
nodes with limited energy supply. A more
detailed discussion on energy exhaustion
attacks will be conducted in section 5.3. We

propose a new idea to solve the authentication
problem by constructing trust levels among the
nodes. Nodes start off at an equal low trust
level, and trust between nodes will grow over
time after authenticated communication among
nodes. A similar idea of distribution of trust is
also proposed by Zhou and Hass [3]. However
how to construct the security among large scale
sensor network in an ad-hoc and distributed
scheme is still an open question.

Most of the security algorithms are
based on sharing a secret key between two
parties. They use this shared-secret key to
verify each other and even use the key to
encrypt and decrypt the data. In a distributed
sensor network, constructing and negotiating
this secret key is very hard, because of their
limited resources. A key server solution has
been proposed [4], but that will limit the
scalability of the network.

In this paper, we propose a new

protocol to construct this share d-secret key
among sensor nodes. The shared-secret key is
also known as shared-session key or link-
dependent key. The reason is that different
links will use different shared-secret keys. For

A

B

C

KAB

KAC

Figure 1 : Link-dependent Key

 2

example, as shown in Figure 1, node A has a
link to node B and also has a link to node C. If
node A wants to talk to node B, it should use
key KAB. If node A wants to talk to node C, it
should use key KAC. These two keys are
independent , therefore even if the adversary
can compromise one link key, the rest of the
network is still safe. For rest of the paper, we
will refer to this as the shared-session key.

In section 2, we will briefly introduce
two related security protocols for sensor
network. We will mainly focus on the protocol
to establish the shared-session key among
sensor nodes. We will use it as a basis for
comparison. In section 3, we will propose a
new protocol, BROSK, that can negotiate the
key more efficiently. Simulation results will be
showed in section 4 and section 5 will evaluate
this new protocol and compare the performance
and scalability with other protocols.

2 Related Work
This section will briefly introduce two shared-
session key negotiation protocols for sensor
network, SPINS[4] and SNAKE[5]. These two
protocols have sets of steps to establish the
security of sensor network, but here we will
mainly focus on the protocol they use to
establish the shared-session key among sensor
nodes.

2.1 Notation
Following is the convention we used to
describe the protocol in this paper.

• A | B : data A concatenates with data B
• {A}KAS : encryption of data A by key

KAS
• MACK[A] : MAC (message

authentication code) of data A created
by key K.

• NA : the nonce generated by node A.
Nonce is a one-time random bit-string,
usually used to achieve freshness.

• IDA : the name of node A.

2.2 SPINS
SPINS is a security suite for sensor networks. It
includes two protocols, SNEP and µTESLA.

The former is for confidentiality, two-party
data authentication, integrity, and freshness and
the latter provides authentication for data
broadcasting. Here we focus on the key
negotiation protocol. As shown in Figure 2,
assume that node A wants to establish a shared-
session key SKAB with node B through a trusted
third party S, the central key distribution center
(KDC). This is a server that can perform
authentication and key distribution.

Node A will send a request message to
node B (Figure 2-a). Node B receives this
message and sends a message to the key server
(Figure 2-b). Key server S will perform the
authent ication and generate the shared-session
key and send the key back to node A and node
B respectively (Figure 2-c and 2-d). The use
of the central key server limits the scalability of
the sensor networks.

2.3 SNAKE
SNAKE is a protocol that can negotiate the
session key in an ad-hoc scheme. Nodes do not
need a key server to perform the key
management.

Figure 2 : Key negotiation protocol of SPINS

NA| IDA

 IDB|{NA|NB|ID A}KBS

{SKAB|NA|IDB}KAS

{SKAB|NB}KBS

(c)

B

S

A

B

S

A

B

S

A

B

S

A

(b)

(a)

(d)

 3

First, node A will send a request to
node B (Figure 3-a). Node B will reply a
message as a challenge to node A (Figure 3-b).
When node A receives this message, it will
prove its authenticity and send the message
back to node B (Figure 3-c). This is a mutual
challenge and authentication procedure. After
this three handshaking and mutual
authentication procedures, node A and node B
will use KAB as their shared-session key.

3 BROadcast Session Key
(BROSK) Negotiation Protocol
BROSK is a new protocol : each node can
negotiate a session key with its neighbors by
broadcasting the key negotiation message .
BROSK uses a fully ad-hoc scheme to
negotiate the session key and can perform this
key negotiating process efficiently. Moreover
the scalability of BROSK is significant
especially when applied to large scale sensor
networks.

3.1 Assumptions
Here we will describe the basic assumptions
that we made to construct our protocol.

Assumption 1.
Nodes are resource constrained.
Typical large scale sensor network applications
distribute the small sensor nodes in area and

power constrained environment s. The resource
of each node is extremely limited [2].

Assumption 2.
Nodes are static or have a low mobility
Allowing all the nodes to be mobile at the same
time will make the problem much more
complicated. Actually in many applications, the
nodes are fixed in one position for the whole
life time. For example, building climate control
information is collected by the nodes in the
source area, say a cubicle area, and relayed by
other nodes to the destination, say the central
control room. Of course it is possible that nodes
are mobile, this will be related to other network
layers, protocols and algorithms. The
exploration to all mobile nodes is a topic of
further research.

Assumption 3 .
Nodes share a master key
Every node in the same network has a shared
master key that is never disclosed. This is the
key on which the node can tell whether another
node is in the same network or not. Also nodes
will use this key to authenticate other nodes
and negotiate the session key. Of course this
master key should be kept in secret. We also
assume that the master key will not be
extracted from the captured node.

3.2 Broadcast the key negotiation
message
A sensor node will try to negotiate a shared-
session key by broadcasting the key negotiation
message. Each node tries to broadcast the
following message:

Here IDA is the name of node A and different

KAB = MACK[NA|NB]

IDA|NA||MACK(IDA|NA)

Figure 3 : Key negotiation protocol of SNAKE

 T=(IDB|IDA|NA|NB) | MACK[T]

B A

request| NA

(1)

B A

(a)

B A

(1)

A

(b)

B A

 IDA|NB|MACK[ID A|NB]

B A

(c)

H

D

B F

C E

I G

IDA|NA||MACK(IDA|NA)

A

Figure 4 : Node A broadcasts the key
negotiation message

 4

nodes have different ID. Once a node receives
the introducing message broadcasted by its
neighbor, it can construct the shared-session
key by generating the MAC of two nonces. For
example, in Figure 4 , node B will receive the
broadcast message from node A. Node A will
also receive the broadcast message from node
B (Figure 5-a). They can use KAB as their
shared-session key (Figure 5-b).

3.3 Re-negotiate the key
When the sensor network has been working for
a while, nodes might run out of session keys. It
is insecure to reuse the same key for data
transmission and will be easily compromised.
Therefore nodes in sensor network need to re-
negotiate new session keys.

4 Simulation Results
Our simulation is conducted on a sensor
network simulator developed by NESL[7] at
UCLA. The simulator uses a c-based discrete-
event simulation language PARSEC [8].

We set up our simulation by constructing a
grid topology with N by N sensors as shown in
Figure 6. In the simulator, the sensor nodes use
the wireless media in a CSMA (Carrier Sense
Multiple Access) scheme and each transmission
needs one time slot.

Here we tried two different situations. First
is that sensor nodes know nothing about their
neighbors, so they just try to broadcast the key
negotiation message in a simple distributed
random scheme. We ran 20 simulations for
different number of nodes and get the average.
Each node can only receive signals transmitted
by nodes next to it, and these nodes are defined
as neighbors. How many neighbors does one
node have is the node density. Collisions
between transmissions happen because of
simultaneous transmissions in the same time
slot and cause the average number of neighbors
that one node can really recognize to be only
60% of the actual number of neighbors one
node has. We will use neighbor recognition
rate (NRR) to refer to this rate.

The second situation is that sensor nodes
know their neighbors and they have already
constructed an optimum schedule policy to
access the wireless media without causing
collisions. Figure 7 shows the simulation
results for BROSK. It shows how many time
slots are needed to finish the key negotiation
process for different number of nodes. From
the simulation result at Figure 7 , we can realize
that this protocol is very scalable. The time

Figure 7 : Number of time slots needed by
BROSK to finish key negotiation

N

N

IDB|KB||MACK(IDB|NB) (a)

KAB=MACK(NA|NB) (b)

Figure 5:(a) message broadcasted by node B
(b)shared session key of node A and node B

Figure 6: Grid topology

0

5

10

15

20

25

30

16 64 256 1024
number of nodes

random

N
um

be
r o

f t
im

e
sl

ot
s

 optimum

 5

needed for a sensor network with 16 sensor
nodes is close to the time needed for a sensor
network with 1,024 sensor nodes. This property
remains in both random schedule and optimum
schedule.

The next set of simulations show how many
time slots are needed to transmit data from the
lower-right node to the upper-left node (Figure
6). This simulation includes key negotiation
among sensor nodes and transmitting data.
Figure 8 shows the number of time slots
needed to transmit data from the lower-right
node to upper-left node when NRR is 60%,
which means each node can recognize 60% of
its neighbors. Here we can see that SPINS and
SNAKE perform better than BROSK when the
number of sensor nodes is smaller than 64. But
BROSK outperforms other two protocols when
the number of nodes is large. This is because
BROSK needs a certain number of time slots to
finish the key negotiation, and this number
depends on node density.

Some transmissions fail because of the time
slot collisions. But the problem of collision can
be mitigated when the sensor network has
constructed a good schedule for allocating time
slots. T he same simulation with NRR is 90% is
showed in Figure 9. It shows the results of the
three protocols. BROSK outperforms the other
two protocols when the number of nodes is

larger than 64 nodes and improves for larger
networks.

5. Evaluation

5.1 Scalability
From the protocol and the simulation results,
we can conclude that the BROSK is highly
scalable, because the time needed to finish the
key negotiation process depends only on the
average number of neighbors rather than the
total number of nodes. This property holds not
only when we use a simple random distributed
algorithm but also when nodes have already
constructed a good schedule policy to allocate
the time slots for key negotiation.

5.2 Power Saving
Transmission of data consumes energy.
Therefore the more the transmissions in the
network, the more energy will be consumed.

SPINS needs four data transmissions to
finish the key negotiation process. In SNAKE,
three data transmissions are needed. In BROSK ,
each node only needs to broadcast once in
order to finish the key negotiation process. This
situation will be significant when the scale of
the network is large, say thousands of nodes.

Figure 8 : Number of time slots needed
to transmit data when NRR is 60%

 Figure 9: Number of time slots needed
to transmit data when NRR is 90%

0
20

40

60

80

100

120

140

160

180

16 64 256 1024
number of nodes

SPINS

SNAKE

BROSK

N
um

be
r

of
 ti

m
e

sl
ot

s

0
20

40

60

80

100

120

140

160

180

16 64 256 1024
number of nodes

SPINS
SNAKE
BROSK

N
um

be
r

of
 ti

m
e

sl
ot

s

 6

5.3 Security Analysis
SPINS and SNAKE do not provide a solution
for denial of service (DoS) attacks when the
malicious node keeps sending the request to
negotiate a session key. Both protocols can
achieve authentication requirement. But they
cannot detect or prevent the DoS attacks,
because one adversary can easily trigger a
REPLAY attack [9] and exhaust the energy in
the sensor nodes.

In SPINS, the malicious node can
simply send the request message for key
negotiation continuously, and Node B will keep
asking the server about session key with the
malicious node. Therefore node B will
eventually run out of the energy. However, the
base-station may have the ability to detect and
try to prevent this attack.

In SNAKE, DoS attacks can be
triggered by the same mechanism and SNAKE
does not provide the detection of DoS when a
malicious node tries to send the message to
request key negotiation. In SNAKE there is no
base-station to perform attack detection for
sensor nodes, every node has to detect this
attack by itself and this function is a heavy
burden for resource constrained sensor nodes.

However, in BROSK, there is no DoS
attack issue when nodes are broadcasting,
because each node only broadcasts once and
will not response to false request for key
negotiation generated by a malicious node. For
example, if one malicious node keeps sending
the key-negotiation message to its neighbors,
nodes in BROSK only need to update the
shared-session key to this “malicious node” and
do not need to transmit signal like SNAKE or
SPINS do. This will eliminate the chance of
malicious node to achieve battery exhaustion
attack by triggering radio transmission of nodes.

6 Conclusion
In this paper we proposed a new protocol,
BROSK, to construct the shared session key in
wireless sensor network. BROSK shows great
scalability in simulation because the time
needed to finish key negotiation does not
depend on the number the sensor nodes. We
also show that this new protocol can save
power by reducing the number of transmissions.

7 Future Work
Our next step is to develop a complete security
protocol for sensor network, including
authentication, data integrity and
confidentiality. Also we are trying to integrate
BROSK with other protocols of sensor network
in different layers, e.g. media access control
layer and network layer.

We already implemented BROSK on 8-
bit 8051 processor, which takes under 1 KB
including MAC generation. Also we plan to
implement BROSK on AVR processor and test
the performance on a real platform.

8 Acknowledgement
The authors would like to acknowledge the
support of the National Science Foundation
research part CCR-0098361. The authors also
want to thank the helpful comments from Mani
Srivastava and help of NESL group at UCLA.

References
[1] F.Stajano and R.Anderson, “The Resurrect ing

Duckling: Security Issues for A d-hoc Wireless
Networks,”B.Christianson, B.Crispo and M.Roe
(Eds.) Security Protocols, 7th International
Workshop proceedings, LNCS,1999.

[2] D.Estrin L.Girod, G.Pottie, M.Srivastava,
“Instrumenting the World with Wireless Sensor
Networks,” IEEE ICASSP 2001, p.2033-2036,
vol.4, 2001.

[3] L.Zhou and Z.Hass, “Securing ad hoc network,”
1999. IEEE Networks Special Issue on Network
Security, Dec, 1999.

[4] Adrian Perrig ,Robert Szewczyk, Victor
Wen,David Culler,and J.D.Tygar SPINS:
Security Protocols for Sensor Networks,
MobiCom, July 2001.

[5] S.Seys, “Key Establishment and Authentication
Suite to Counter DoS Attacks in Distributed
Sensor Networks,” unpublished manuscript,
COSIC

[6] W.Diffie and M.E.Hellman. New directions in
cryptography. IEEE trans, Inform. Theory, IT -
22:644-654, Nov 1976.

[7] Network & Embedded Systems Laboratory
(NESL), http://nesl.ee.ucla.edu

[8] Parallel Simulation Environment for Complex
Systems (PARSEC),
http://pcl.cs.ucla.edu/project/parsec

[9] Bruce Schneier, “Applied Cryptography,”
Katherine Schowalter publish, 1996.

