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Abstract 
 
The security of sensor network s is ever more 
important nowadays. In this paper we propose 
a new protocol BROSK to construct link -
dependent keys by broadcasting key negotiation 
messages. The link-dependent key will be 
negotiated in an ad-hoc scheme. Most of the 
proposed security protocols in sensor networks 
are based on point-to-point handshaking 
procedures to negotiate link -dependent keys, 
but this will influence the scalability of the 
network. The simulation shows that the 
scalability of BROSK is better than  two other 
security protocols of sensor network, SPINS  
and SNAKE, and is reasonably secure. This 
new protocol consumes less energy by reducing 
the number of transmissions used for key 
negotiation among sensor nodes.  
 
1  Introduction 
Distributed sensor networks can be used in a 
wide range of applications, such as 
environment monitoring, rescue missions, and 
smart houses. A lot of interest and effort are 
being focused on this new network topic. The  
sensor networks are constructed by a large 
number of nodes with ultra-low power 
computation and communication units [2].  

Security is an important issue for sensor 
networks. Stajano and Anderson are the first to 
point out the battery exhaustion attack [1] and 
this attack can easily be triggered on the sensor 
nodes with limited energy supply. A more 
detailed discussion on energy exhaustion 
attacks will be conducted in section 5.3. We 

propose a new idea to solve the authentication 
problem by constructing trust levels among the 
nodes. Nodes start off at an equal low trust 
level, and trust between nodes will grow over 
time after authenticated communication among 
nodes. A similar idea of  distribution of trust is 
also proposed by Zhou and Hass [3]. However 
how to construct the security among large scale 
sensor network in an ad-hoc and distributed 
scheme is still an open question.  

Most of the security algorithms are 
based on sharing a secret key between two 
parties. They use this shared-secret key to 
verify each other and even use the key to 
encrypt and decrypt the data. In a distributed 
sensor network, constructing and negotiating 
this secret key is very hard, because of their 
limited resources. A key server solution has 
been proposed [4], but that will limit the 
scalability of the network.  

 
 
 
 
 
 
 
 
 

 
In this paper, we propose a new 

protocol to construct this share d-secret key 
among sensor nodes. The shared-secret key is 
also known as shared-session key or link-
dependent key. The reason is that different 
links will use different shared-secret keys. For 
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Figure 1 : Link-dependent Key 
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example, as shown in Figure 1, node A has a 
link to node B and also has a link to node C. If 
node A wants to talk to node B, it should use 
key KAB. If node A wants to talk to node C, it 
should use key KAC. These two keys are 
independent , therefore even if the adversary 
can compromise one link key, the rest of the 
network is still safe. For rest of the paper, we 
will refer to this as the shared-session key. 

In section 2, we will briefly introduce 
two related security protocols for sensor 
network. We will mainly focus on the protocol 
to establish the shared-session key among 
sensor nodes. We will use it as a basis for 
comparison. In section 3, we will propose a 
new protocol, BROSK, that can negotiate the 
key more efficiently. Simulation results will be 
showed in section 4 and section 5 will evaluate 
this new protocol and compare the performance 
and scalability with other protocols.  
  
2 Related Work 
This section will briefly introduce two shared-
session key negotiation protocols for sensor 
network, SPINS[4] and SNAKE[5]. These two 
protocols have sets of steps to establish the 
security of sensor network, but here we will 
mainly focus on the protocol they use to 
establish the shared-session key among sensor 
nodes. 
 
2.1 Notation 
Following is the convention we used to 
describe the protocol in this paper. 
 

• A | B : data A concatenates with data B 
• {A}KAS : encryption of data A by key 

KAS 
• MACK[A] : MAC ( message 

authentication code) of data A created 
by key K.  

• NA : the nonce generated by node A. 
Nonce is a one-time random bit-string, 
usually used to achieve freshness.  

• IDA : the name of node A. 
 
2.2 SPINS 
SPINS is a security suite for sensor networks. It 
includes two protocols, SNEP and µTESLA. 

The former is for confidentiality, two-party 
data authentication, integrity, and freshness and 
the latter provides authentication for data 
broadcasting. Here we focus on the  key 
negotiation protocol. As shown in Figure 2, 
assume that node A wants to establish a shared- 
session key SKAB with node B through a trusted 
third party S, the central key distribution center 
(KDC). This is a server that can perform 
authentication and key distribution. 

Node A will send a request message to 
node B (Figure 2-a). Node B receives this 
message and sends a message  to the key server 
(Figure 2-b). Key server S will perform the 
authent ication and generate the shared-session 
key and send the key back to node A and node 
B respectively (Figure 2-c and 2-d). The use 
of the central key server limits the scalability of 
the sensor networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 SNAKE 
SNAKE is a protocol that can negotiate the 
session key in an ad-hoc scheme. Nodes do not 
need a key server to perform the key 
management.  

Figure 2 : Key negotiation protocol of SPINS 

NA| IDA 

 IDB|{NA|NB|ID A}KBS       
 

{SKAB|NA|IDB}KAS 

{SKAB|NB}KBS 

(c) 

B 

S 

A 

B 

S 

A 

B 

S 

A 

B 

S 

A 

(b) 

(a) 

(d) 



 3 

First, node A will send a request to 
node B (Figure 3-a). Node B will reply a 
message as a challenge to node A (Figure 3-b). 
When node A receives this message, it will 
prove its authenticity and send the message 
back to node B (Figure 3-c). This is a mutual 
challenge and authentication procedure. After 
this three handshaking and mutual 
authentication procedures, node A and node B 
will use KAB  as their shared-session key.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 BROadcast Session Key 
(BROSK) Negotiation Protocol 
BROSK is a new protocol : each node can 
negotiate a session key with its neighbors by 
broadcasting the key negotiation message . 
BROSK uses a fully ad-hoc scheme to 
negotiate the session key and can perform this 
key negotiating process efficiently. Moreover 
the scalability of BROSK is significant 
especially when applied to large scale sensor 
networks. 
 
3.1 Assumptions 
Here we will describe the basic assumptions 
that we made to construct our protocol.  
 
Assumption 1.   
Nodes are resource constrained. 
Typical large scale sensor network applications 
distribute the small sensor nodes in area and 

power constrained environment s. The resource 
of each node is extremely limited [2]. 
 
Assumption 2.  
Nodes are static or have a low mobility 
Allowing all the nodes to be mobile at the same 
time will make the problem much more 
complicated. Actually in many applications, the 
nodes are fixed in one position for the whole 
life time. For example, building climate control 
information is collected by the nodes in the 
source area, say a cubicle area, and relayed by 
other nodes to the destination, say the central 
control room. Of course it is possible that nodes 
are mobile, this will be related to other network 
layers, protocols and algorithms. The 
exploration to all mobile nodes is a topic of 
further research. 
 
Assumption 3 . 
Nodes share  a master key 
Every node in the same network has a shared 
master key that is never disclosed. This is the 
key on which the node can tell whether another 
node is in the same network or not. Also nodes 
will use this key to authenticate other nodes 
and negotiate the session key. Of course this 
master key should be kept in secret. We also 
assume that the master key will not be 
extracted from the captured node.  
 
3.2 Broadcast the key negotiation 
message 
A sensor node will try to negotiate a shared-
session key by broadcasting the key negotiation 
message. Each node tries to broadcast the 
following message: 
 
Here IDA is the name of node A and different 

KAB  = MACK[NA|NB] 

IDA|NA||MACK(IDA|NA)               

 

Figure 3 : Key negotiation protocol of SNAKE  
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nodes have different ID. Once a node receives 
the introducing message broadcasted by its 
neighbor, it can construct the shared-session 
key by generating the MAC of two nonces. For 
example, in Figure 4 , node B will receive the 
broadcast message from node A. Node A will 
also receive  the broadcast message from node 
B (Figure 5-a). They can use KAB as their 
shared-session key (Figure 5-b). 
 
      
     
 
 
 
 
 
 
3.3 Re-negotiate the key 
When the sensor network has been working for 
a while, nodes might run out of session keys. It 
is insecure to reuse the same key for data 
transmission and will be easily compromised. 
Therefore nodes in sensor network need to re-
negotiate new session keys.  
 
4  Simulation Results 
Our simulation is conducted on a sensor 
network simulator developed by NESL[7] at 
UCLA. The simulator uses a c-based discrete-
event simulation language PARSEC [8].  

We set up our simulation by constructing a 
grid topology with N by N sensors as shown in 
Figure 6. In the simulator, the sensor nodes use 
the wireless media in a CSMA (Carrier Sense 
Multiple Access) scheme and each transmission 
needs one time slot. 

 
 

Here we tried two different situations. First 
is that sensor nodes know nothing about their 
neighbors, so they just try to broadcast the key 
negotiation message in a simple distributed 
random scheme. We ran 20 simulations for 
different number of nodes and get the average. 
Each node can only receive signals transmitted 
by nodes next to it, and these nodes are defined 
as neighbors. How many neighbors does one 
node have is the node density. Collisions  
between transmissions happen because of 
simultaneous transmissions in the same time 
slot and cause the average number of neighbors 
that one node can really recognize to be only 
60% of the actual number of neighbors one  
node has. We will use neighbor recognition 
rate (NRR) to refer to this rate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The second situation is that sensor nodes 
know their neighbors and they have already 
constructed an optimum schedule policy to 
access the wireless media without causing 
collisions. Figure 7  shows the simulation 
results for BROSK. It shows how  many time 
slots are needed to finish the key negotiation 
process for different number of nodes. From 
the simulation result at Figure 7 , we can realize 
that this protocol is very scalable. The time 

Figure 7 : Number of time slots needed by 
BROSK to finish key negotiation 
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Figure 5:(a) message broadcasted by node B      
(b)shared session key of node A and node B 

Figure 6: Grid topology 
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needed for a sensor network with 16 sensor 
nodes is close to the time needed for a sensor  
network with 1,024 sensor nodes. This property 
remains in both random schedule and optimum 
schedule.  

The next set of simulations show how many 
time slots are needed to transmit data from the 
lower-right node to the upper-left node (Figure  
6). This simulation includes key negotiation 
among sensor nodes and transmitting data. 
Figure 8  shows the number of time slots 
needed to transmit data from the lower-right 
node to upper-left node when NRR is 60%, 
which means each node can recognize 60% of 
its neighbors. Here we can see that SPINS and 
SNAKE perform better than BROSK when the 
number of sensor nodes is smaller than 64. But 
BROSK outperforms other two protocols when 
the number of nodes is large. This is because 
BROSK needs a certain number of time slots to 
finish the key negotiation, and this number 
depends on node density.  

Some transmissions fail because of the  time 
slot collisions. But the problem of collision can 
be mitigated when the sensor network has 
constructed a good schedule for allocating time 
slots. T he same simulation with NRR is 90% is 
showed in Figure 9. It shows the results of the 
three protocols. BROSK outperforms the other 
two protocols when the number of nodes is 

larger than 64 nodes and improves for larger 
networks. 
 
5. Evaluation 
 
5.1   Scalability  
From the protocol and the simulation results, 
we can conclude that the BROSK is highly 
scalable, because the time needed to finish the 
key negotiation process depends only on the 
average number of neighbors rather than the 
total number of nodes. This property holds not 
only when we use a simple random distributed 
algorithm but also when nodes have already 
constructed a good schedule policy to allocate 
the time slots for key negotiation.   
 
5.2 Power Saving 
Transmission of data consumes energy. 
Therefore the more the transmissions in the 
network, the more energy will be consumed.  

SPINS needs four data transmissions to 
finish the key negotiation process. In SNAKE, 
three data transmissions are needed. In BROSK , 
each node only needs to broadcast once in 
order to finish the key negotiation process. This 
situation will be significant when the scale of 
the network is large, say thousands of nodes. 
 

Figure 8 : Number of time slots needed 
to transmit data when NRR is 60% 

  Figure 9: Number of time slots needed 
to transmit data when NRR is 90% 
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5.3 Security Analysis 
SPINS and SNAKE do not provide a solution 
for denial of service (DoS) attacks when the 
malicious node keeps sending the request to 
negotiate a session key. Both protocols can 
achieve authentication requirement. But they 
cannot detect or prevent the DoS attacks, 
because one adversary can easily trigger a 
REPLAY attack [9] and exhaust the energy in 
the sensor nodes. 

In SPINS, the malicious node can 
simply send the request message for key 
negotiation continuously, and Node B will keep 
asking the server about session key with the 
malicious node. Therefore node B will 
eventually run out of the energy. However, the 
base-station may have the ability to detect and 
try to prevent this attack.  

In SNAKE, DoS attacks can be 
triggered by the same mechanism and SNAKE 
does not provide the detection of DoS when a 
malicious node tries to send the message to 
request key negotiation. In SNAKE there is no 
base-station to perform attack detection for 
sensor nodes, every node has to detect this 
attack by itself and this function is a heavy 
burden for resource constrained sensor nodes.   

However, in BROSK, there is no DoS 
attack issue when nodes are broadcasting, 
because each node only broadcasts once and 
will not response to false request for key 
negotiation generated by a malicious node.  For 
example, if one malicious node keeps sending 
the key-negotiation message to its neighbors, 
nodes in BROSK only need to update the 
shared-session key to this “malicious node” and 
do not need to transmit signal like SNAKE or 
SPINS do. This will eliminate the chance of 
malicious node to achieve battery exhaustion 
attack by triggering radio transmission of nodes. 
 
6 Conclusion 
In this paper we proposed a new protocol, 
BROSK, to construct the shared session key in 
wireless sensor network. BROSK shows great 
scalability in simulation because the time 
needed to finish key negotiation does not 
depend on the number the sensor nodes. We 
also show that this new protocol can save 
power by reducing the number of transmissions.  

7 Future Work 
Our next step is to develop a complete security 
protocol for sensor network, including 
authentication, data integrity and 
confidentiality. Also we are trying to integrate 
BROSK with other protocols of sensor network 
in different layers, e.g. media access control 
layer and network layer.  

We already implemented BROSK on 8-
bit 8051 processor, which takes under 1 KB 
including MAC generation. Also we plan to 
implement BROSK on AVR processor and test 
the performance on a real platform. 
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