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ABSTRACT
This contribution describes the design and performance testing of
an Advanced Encryption Standard (AES) compliant encryption
chip that delivers 2.29 GB/s of encryption throughput at 56 mw
of power consumption. We discuss how the high level reference
specification in C is translated into a parallel architecture.
Design decisions are motivated from a system level viewpoint.
The prototyping setup is discussed.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]

General Terms
Measurement, Performance, Design, Security.

Keywords
Rijndael, Encryption, Domain-Specific, Low-Power.

1. INTRODUCTION
Recently we developed and tested an AES compliant encryption
processor that implements Rijndael [1] at 2.29 Gb/s and 56 mW
of power consumption. This device can be used to instrument a

digital broadband platform like a router or a wireless base
station with security services. The processor is programmable
and supports Rijndael in any combination of key length
(128,192,256 bits) and data size (128,192,256 bits). It is
integrated into the host platform through a 16 bit data bus and
operated through a small instruction set. The implementation
uses 173 KGates of 1.8V 0µ18 CMOS standard cell technology,
and has been verified operational at up to 154 MHz clock
frequency in a prototype setup.
The paper is organized as follows. In section 2, we will review
the system level architecture. This architecture was designed
starting from the NIST reference implementation in C [2]. We
will discuss the transformations that are needed on this
description to create the system architecture.  In addition we
touch upon integration issues for our architecture.
In section 3 we provide motivation for some design decisions
with a system level look at the chip. In addition, we also touch
upon related work and other Rijndael implementations that have
been done by academia and industry.
We used an HDL based design flow for this chip, which will be
discussed in section 4. We will also discuss design statistics with
respect to design efficiency. Finally the prototyping approach and
measurements are shown in section 5, and conclusions and
outlook are given in section 6.

2. SYSTEM SPECIFICATION AND
ARCHITECTURE
The Rijndael encryption algorithm is a block cipher that converts
cleartext data blocks of 128, 192 or 256 bit into ciphertext blocks
of the same length. It uses a key of selectable length (128, 192,
256 bit). The algorithm is organized as a set of iterations called
rounds as illustrated in Figure 1. The number of rounds is
dependent on the data block length. For each round, a subkey is
created out of the original key by means of a key schedule. The
operations performed on the data blocks include byte substitution
by means of a lookup table, transpositions and rotations, modulo-
2 addition of a subkey as well as Galois field operations. They
always affect a complete 128, 192 or 256-bit data block at a time.

2.1 System Architecture
The approach we took was to design a high-speed hardware
accelerator of the Rijndael algorithm. As will be demonstrated,
the energy efficiency of this approach is orders of magnitude
better than using a general-purpose programmable platform.
The system architecture of our implementation is shown in
Figure 2. The central block of the architecture, encrypt,
implements one round of a Rijndael encryption in a fully parallel,
non-pipelined fashion. A Rijndael encryption can be completed
at one clock cycle per round. Thus, following the standard we
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Figure 1: Rijndael Encryption



need from 10 clock cycles for 128 bit blocks up to 14 clock cyles
for 256 bit blocks.
The architecture can support any combination of key-length and
data-block length. As a result the key-scheduling process speed
must be adjusted relative to the encryption process speed when
data-blocks and sub-keys have different lengths. For example,
when 256 bit data blocks and 128 bit subkeys are needed, then 2
key schedule iterations are needed for each data block.  With a
dual implementation of key schedulers, this double rate can be
supported. Double-rate key scheduling is only a worst case
situation, but also non-integral rates can occur. The combination
of 192-bit data blocks with 128-bit keys for instance requires 1.5
key schedule iterations per data block.
The processor has three controllers, two for I/O interfacing and
one for instruction sequencing. They communicate through
request/acknowledge protocols with the host system. This
asynchronous interfacing method allows the chip to be clocked
much faster than the bus it is connected to. It also brings
considerable simplification of the performance testing process.
Separation of I/O controllers from the instruction sequencing
controller makes this block easily portable to a different context,
were a different data-bus or I/O interface protocol would be used.
Figure 3 shows the internals of the central encrypt block and
illustrates the nature of the data processing that is done by this
processor. Data words are 256 bit wide. The data is organized
conceptually in a 4 by 8 matrix of bytes, totaling 32 bytes. If the
processor is working in 128 or 192 bit mode, then the leftmost 2
resp. 4 columns of the matrix are unused. The processing starts
at the bottom keyadd block which performs modulo-2 addition
of a subkey to each data byte. Next, each data byte is fed into an
S-box, implemented as a lookup array in the substitution
block. This happens in parallel for all 32 bytes, so 32 lookup
tables (of 256 8-bit entries) are used. In the shiftrow block,
the matrix rows are circularly shifted with a parameter- and row-
dependent amount of positions. Finally in mixcolumn each
column is transformed linearly using galois-field constant
multiplications. All of these operations are performed within one
clock cycle. Yet by careful design the critical path of this block is

6ns in 0µ18 technology. The overall critical path of the design is
10 ns and resides in the key schedule block. A detailed
discussion of the architecture optimization has been published
[3].

2.2 System Specification
The Rijndael encryption algorithm is available as a C program on
the NIST website [2]. For hardware implementation, the
reference implementation in C presents a number of issues that
need to be resolved before architecture design can start. For a
hardware designer, these are best described as ambiguities. We
enumerate those below to demonstrate what problems would be
encountered by a C-to-hardware compiler, assuming it would
start from the reference implementation.
First, a parallel version of the sequential specification is needed.
This requires dataflow analysis that crosses the boundaries of
function calls. The hardware in Figure 3 for example is the result
of merging several C function calls, and unrolling and merging
the for-loops in each function. It is nontrivial because the loop
bounds in C are variable and parameter-dependent. In addition,
not all C functions are treated the same way. For example, the
evaluation of sub-keys can be done online (in parallel with the
encryption process) or offline. In C, the notion of parallelism is
absent, and the distinction between on-line and off-line is merely
an assumption reflected in the ordering of function calls. In
hardware however, it has major impact on the memory
architecture as all subkeys need to be stored first in offline mode.
A second aspect involves parameterization. The introduction of
runtime parameters like selectable key-length has a direct impact
on the implementation overhead of the hardware. The C
reference code implements parameterization with lookup arrays
and control constructs such as if-then. In hardware, an
efficient implementation requires us to get rid of runtime
variability as much as possible and for example apply constant
propagation whenever a parameter is known constant. Also if the
parameter range is restricted, we can simplify the
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implementation. One particular example is shown in Figure 4
and demonstrates the implementation of the Galois Field
multiplications. In the reference code, the Galois Field
multiplications are implemented using a Log-Alog lookup table
(with two such multiplications per matrix row en per round). The
Log-Alog lookup table is elegant to describe and easy to
understand but expensive as it uses large lookup tables. On
closer inspection it turns out that for encryption only two
different constant multiplications are used, with 2 and with 3.
We thus can replace the lookup-table method with a dedicated
structure.
A third aspect is memory architecture, which is richer and more
elaborate in a hardware implementation then in software. The C
reference implementation uses arrays for both the storing of
intermediate results, the storing of keys and data blocks, as well
as lookup tables. In the hardware implementation, these translate
to wiring, registers, random logic tables and dedicated
computation blocks. The problem that the designer is facing is
that the initial description in C gives no clue about how to treat
each array. This problem is also worsened by the lack of
parallelism in the initial description.
A fourth aspect involves using transformations that cross
memory-computation boundaries. An example is the
implementation of the key scheduling. Subkeys are created in our
architecture online. Because of variable key and datablock
length, a setting can occur where two subkeys per round are
needed, each 128 bit, for one datablock of 256 bit. As a result the
key scheduling hardware is implemented twice, as illustrated in
Figure 2. This way the hardware can evaluate up to two subkeys
per clock cycle. In the C reference implementation, the key
scheduling function initializes one array that contains all subkey
material for one data block. It uses a parameter-dependent
while loop to ensure enough subkeys have been evaluated.
Clearly such a while loop cannot be transformed into a fixed rate
hardware implementation. The kind of transformation that is
needed here crosses the boundaries of memory and computation
space.
Summarizing, we observed the need for the following analysis
techniques of the C code.
• Dataflow analysis that can cross the borders of function

calls, and that gives feedback to the designer as to what
strategies can be used for parallelization of the code, both at

function-level as well as block-level. Such feedback
includes memory-access and operation profiling.

• Source-level loop transformations and analysis of the
storage architecture alternatives [5].

• Source-level constant propagation and folding, also for
variables for which a constant input can be guaranteed.
Reduction of source-level control-flow complexity as a
result of this.

These techniques are known in the high-performance software
compiler community. The existing C-to-hardware technology
however focuses on datapath- and sequential controller synthesis.
High level synthesis support is available for fixed architecture
templates such as VLIW or ASIP with customizable instruction
sets. Since our architecture could not be classified as one of
those, we choose to base our implementation flow on HDL and
do manual architecture design.

2.3 Integration Issues
The interface that attaches the accelerator processor to the host
system is used to transfer blocks of plaintext and keys onto the
processor, and extract ciphertext out of it. It also presents an
instruction set to the host system to control the execution of the
Rijndael algorithm. Two factors were taken into account here.
First, the interface operation was designed to be independent of
the processor clock. Typically the interface clock speed is
decided by the system communication bus present in the host.
The Rijndael processor clock speed on the other hand is as fast
as critical path and power consumption constraints allow.
Therefore, two-way handshakes were used on both the data bus
as well as the instruction bus (Figure 2).
The second issue is that the interface should allow easy porting
over a range of host processors, with potentially different
buswidths. With separate I/O controller FSMs, the amount of
code that needs to be revised in a new context is kept minimal.

3. SYSTEM ISSUES AND RELATED
WORK
We now motivate several design decisions in our architecture
and indicate some related work along the way.

3.1 Use of Pipelining
In hardware implementation, pipelining is used as a throughput
enhancing technique. Considering the system architecture in
Figure 2, one possible transformation is to unroll the iterative
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word8 Alog[255] = { ..};
word8 Log[255]  = { ..};
word8 mul(word8 a, word8 b) {
if (a&&b)
  return Alog[(Log[a]+Log[b])% 255];
}

/* we know that only mul(a,2) and mul(a,3)
   are used. Do both of them in this 
   function without lookup tables */
void mul23(word8 a, word *m2,
                    word *m3) {
  *m2 = (a & 0x80) ? (a<<1) ^ 0x1C 
                   : (a<<1);
  *m3 = *m2 ^ a;
}

Original
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Figure 4: An example of code  specialization



encryption algorithm (encrypt block) and next insert pipeline
stages. This leads to very high throughputs (25 Gbps is claimed
by some vendors of 0µ18 CMOS softcores). Such pipelined
implementations have only limited application for a block cipher.
These ciphers are always used in well defined mode of operation
(Figure 5). The modes include Electronic Code Book, Cipher-
Block Chaining, Cipher Feedback and Output Feedback. Three
of these four modes rely on feedback of the ciphertext to the
input. For these modes, pipelining of the Rijndael block is not
useful to increase throughput. In addition, the mode that can be
pipelined (ECB), is also cryptographically weakest since it
translates identical plaintext blocks to identical ciphertext
blocks. An ECB cipher will for example not hide recurring data
patterns [7]. For this reason, our implementation does not use
pipelining. The 2 Gb/s performance figure of our chip holds for
any encryption mode.

3.2 Online Subkey Computation
The subkeys that are created by the key scheduling process need
to be evaluated only once per key. After that the subkeys can be
reused for all data blocks as long as the key is not changed.
Therefore some implementations choose to evaluate all subkeys
offline before the encryption process starts, and to store the
subkeys in a lookup table. This approach is good for batchmode
encryption applications, like for instance secure document
storage, but not for applications where keys are changed
frequently.
In our implementation, subkeys are calculated online as needed
and can be changed at each data block. This situation occurs for
example in Internet routers with IPSEC support [4]. In an IPSEC
router, the key and subkey material (1280 bits for 128-bit data
blocks) is potentially different for each secured packet route. Due
to the large number of active routes, subkeys cannot be stored in
on-chip memory. They need to be either calculated on-line or else
moved together with a packet payload onto chip. However, half
of the Internet packets are only 64 bytes in length (512 bits) [6].
With offline calculation and off-chip storage of subkeys the
router will use more bus bandwidth for the communication of
subkeys than for the communication of useful data payloads. The
effective solution for this is online computation of subkeys such
as is done in our architecture.

3.3 Decryption and Authentication
While our chip does not contain a Rijndael decryption algorithm,
it can still be used to build a decryption unit. The OFB and CFB
modes shown in Figure 5 create ciphertext from plaintext by
means of a simple XOR operation. Since this operation is its’
own inverse we can use the same Rijndael encryption block for
both encryption and decryption. In communication systems, the
use of the OFB mode is popular for securing data streams
because it prevents the propagation of communication errors into
multiple blocks of data.
Another application where only an encryption algorithm is used
is message authentication. Here a sender creates a message
signature by encrypting the message with a CBC-mode cipher,
and sending the last encryption output as the signature. The
signature is hard to compute without knowing the encryption key.
A receiver who shares this secret key, can then verify the

authenticity of the message by recomputing the signature using
the same CBC encryption on the received data.

3.4 Software Implementations
Several software implementations have been created with
handcrafted assembly for highest performance. The best
implementation we found requires 227 cycles for 10 rounds of
128 bit data blocks and 128 bit keys on a Pentium III, and 124
cycles on IA64 [8]. Since these run on processors clocked in the
GHz range, this performance eventually approaches the
efficiency of a dedicated hardware implementation. With respect
to power consumption however, the software solution on general
purpose processors is three orders of magnitude higher then a
dedicated hardware implementation (Table 1).

3.5 Hardware Implementations
Initial designs from academia [9,10,11] and industry seem to
have focused on the design of Rijndael cores in reconfigurable
hardware. These implementations show that contemporary
reconfigurable platforms with their rich distributed memory
architecture are well suited for Rijndael prototype
implementations. Most of them use pre-computed subkeys. For
pipelined ciphers, very high performances have been obtained.
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For non-pipelined operation in FPGA, the 1.5 Gbps limit is to
our knowledge still unbroken.
While almost no published power consumption figures exist, we
estimate that our processor is at least two orders of magnitude
better then an FPGA solution (Table 1).
Several softcore implementations have been designed as well,
which advertise clock speeds ranging from 200 to 350 MHz in
0µ18 CMOS technology. One published ASIC design [12]
implements a fully enrolled encryption unit in in 613 Kgates of
0u35 CMOS technology. An overview based on pre-tapeout
performance figures can be found in [13].

3.6 AES standard implementation
Since we started design of the chip, NIST has finalized the
standard for AES encryption. While the architecture of Figure 2
supports a superset of the AES parameters, it can also be
simplified when only AES compliant settings are needed. AES
restricts the data block size to 128 bits only. This means that the
encrypt block of Figure 2 can be halved. In addition, one key
scheduling block can be eliminated, since the keys are always
larger then the data blocks. This would roughly reduce the chip
gate count by half (85 Kgate). The critical path that currently
resides in the key scheduler would be reduced as well. We
estimate that the resulting design would reach at least 200 MHz
with the same HDL synthesis methodology.

4. DESIGN AND IMPLEMENTATION
4.1 HDL Design
From the design point of view, translating the architecture of
Figure 2 into HDL is a straightforward process, once the RT
level architecture is designed.
One aspect that was found to be difficult was the design of the
control architectures. This is because there is no elegant HDL
mechanism by which control structures (finite state machines)
can be captured. A coding style based on case statements
quickly becomes confusing and complex, and tends to increase
the amount of coding as shown in Figure 6.
This figure shows the relative weights of design elements used to
implement hierarchy, controller, datapath and lookup tables. The
four categories are non-commented lines of HDL code, number of
HDL files, number of instances in the design hierarchy and
finally the silicon area. It is easily seen that less then 50% of the
lines of HDL occupy more then 90% of the chip area (lookup

tables and datapath). This observation is important when
considering design productivity issues. Closer inspection reveals
that the use of HDL hierarchy is very effective in datapath
design, but not in the design of controllers. Each of the three
controllers in our design has their own HDL design, and each
translate to a single instance in the design hierarchy. Yet, they
require one third of the coding. They also represent a
semantically hard part because of the way FSM are encoded in
HDL. While there are tools that capture FSM design in a graphic
formalism, these require partioning of the design in a graphic and
a non-graphic part.

4.2 Design Flow
The chip was implemented with an HDL based design flow as
shown in Figure 7. The inital RT level description, created out of
the C reference implementation by careful analysis, was
synthesized to gate level with Synopsys DC. The resulting netlist
was then processed with Avanti’s SIlicon Ensemble P&R. The
verification path uses Cadence’s Verilog-XL as HDL simulator
and Synopsys’ Primetime as static timing analysis tool. The chip
was processed by National Semiconductor. Of the 16 test
samples that were received from the foundry, 14 were
operational.

5. TEST AND MEASUREMENTS
The test setup, shown in Figure 8, allows creating complete
schmoo plots and at-speed testing of the chip. The test setup was
made using readily off the shelf equipment, connected as shown
in Figure 9. A vector generator provides testbench stimuli at a
rate of 20 Mword/s. Only 9 bits of testvector input data are
needed; by using simple keys and data patterns some of the input
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bits could be tied to ground. The testvectors are processed by our
AES chip which is clocked by a clock generator at a high rate
(100 MHz nominally). The outputs of the chip are observed by a
logic analyser. In order to save logic analyser memory the
analyser is operating synchronously and clocked out of the vector
generator. This setup works because the interfaces at the chip
boundaries are implemented using two way handshakes. Once
the test vectors are entered in the chip, the encryption process
runs at full speed. The relevance of this testing approach is that it
operates our core at full speed in order to demonstrate 2.29 Gb/s
encryption throughput, without requiring expensive equipment
that can feed test vectors at such rates into the chip. The AES
chip also uses a variable voltage supply. In combination with the
variable clock generator this allows to determine the power
consumption at each critical clock frequency. This is illustrated
in Figure 10. The chip characteristics are summarized in Table 2.

6. CONCLUSIONS AND OUTLOOK
In this contribution, we presented a 173 Kgate Rijndael
encryption core that was verified at 2.29 GB/s encryption speed.

The architecture was designed for best performance over several
different cryptographic modes, and several different host
systems. Our current research efforts will further improve this
design in two areas. First, power consumption will remain a
critical factor, especially when cryptographic applications will
move into embedded context. This leads to the concept of power-
optimized domain specific processors, which we expect to see
much more in the future. Second, while state of the art compilers
cannot yet take arbitrary high level code into implementation,
there is a clear need for design at higher abstraction level. We
are also developing a design environment that can tackle the
design of domain specific processors at higher abstraction level.
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Table 2: Chip Characteristics
Feature Value Unit
CMOS Stcell Technology 0.18 um
Core Voltage (VDD) 1.8 V
IO Ring (VDDIO) 3.3 V
Package 68 PLCC
Min. Clock Period (1.95 V) 6.5 ns

(1.9 V) 7.5 ns
(1.8V) 8 ns

Power Consumption (1.95 V) 82 mW
(1.9 V) 67 mW
(1.8V) 54 mW

Gate Count 173 Kgate
Throughput Data/Key 128 192 256

128 1.6 1.33 1.14
192 2.0 2.0 1.71
256 2.29 2.29 2.29

Interfaces 16 bit data-in with req-ack handshake
16 bit data-out with req-ack handshake
4 bit instruction with req-ack handshake
reset, clock and processor status signals


