
A Compact and Efficient Fingerprint Verification
System for Secure Embedded Devices

Abstract--Creating a biometric verification system in a
resource-constrained embedded environment is a challenging
problem. This paper describes an efficient fingerprint
verification module, which is part of an embedded device called
ThumbPod. The whole fingerprint verification algorithm runs
on a 50MHz fixed-point processor. As the result of our SW/HW
optimizations, we achieve 55.6% and 60.0% execution time
reduction for the minutiae extraction and the matching,
respectively, compared to a traditional implementation reference.
The complete process finishes in less than 5 seconds.

I. INTRODUCTION

ThumbPod [1] is a biometrically secure embedded device, in
which the complex and computation intensive biometric
process module is executed locally on a 50MHz fixed-point
LEON-2 processor. In a traditional distributed system
application involving resource-limited embedded devices,
system partitioning between the server and the embedded
device is usually based on computation distributing. However,
ThumbPod requires a partitioning that also takes security into
consideration. Because of the unique and sensitive biometric
data, we need to perform the full biometric processing locally
on the ThumbPod instead of offloading it to the server.
ThumbPod consists of four basic subsystems: data collection,
minutiae extraction, matching and communication. The first
three parts take care of the biometric processing and
verification, while the communication part transmits the
matching result, a yes/no answer, to the server.

II. RELATED WORK

Traditional fingerprint verification systems use the central
server to store the template fingerprint. However, this can
cause critical biometric information leakage. Some systems
try to decentralize the fingerprint template into a storage
device such as smart card [7], [8]. Although this provides
higher security for the fingerprint matching process and the
biometric storage, the minutiae extraction process running on
the card reader and the transmission of the input fingerprint
information still can lead to disclosure of the precious
biometric data. What is unique to our proposed method is that
both minutiae extraction and matching are executed locally on
the embedded device, gaining maximum security in the system.

 This work is sponsored by the NSF, account no CCR-0098361 and the
Langlois foundation.

III. MINUTIAE EXTRACTION

The starting point for the algorithm used to extract minutiae
of the fingerprint image is taken from NIST Fingerprint Image
Software [3]. Fig. 1 shows the basic steps of it.

The fundamental step in the minutiae extraction process is
deriving a directional ridge flow map. To get this map, the
fingerprint image (256 × 256 pixels) is first divided into a grid
of blocks (8 × 8 pixels). For each block, there is a
surrounding window (24 × 24 pixels) centered by this block
and the surrounding window is rotated incrementally. A DFT
analysis is conducted at each orientation and the number of
orientations is set to 16, creating an increment in angle of
180°/16, i.e. 11.25°. Within an orientation, the pixels along
the rotated row of the window are summed together, forming a
vector of 24 row sums. The 16 orientations produce 16
vectors of row sums (Fig. 2). The resonance coefficients
produced by convolving each of the 16 row sum vectors with
four different discrete waveforms are analyzed and the
dominant ridge flow direction for the block is determined by
the orientation with the maximum waveform resonance
calculated from (1):

Shenglin Yang
UCLA Dept of EE

Los Angeles, CA 90095
+1-310-267-4940

shengliny@ee.ucla.edu

Kazuo Sakiyama
UCLA Dept of EE

Los Angeles, CA 90095
+1-310-267-4940

kazuo@ee.ucla.edu

Ingrid M. Verbauwhede
UCLA Dept of EE

Los Angeles, CA 90095
+1-310-794-5209

ingrid@ee.ucla.edu

Fig. 1. NIST minutiae extraction flow.

Quality maps

Generate maps (MAPS)

Direction maps

Binarized image

Possible minutiae

Final minutiae set

Binariza tion (BINAR)

Detection (DETECT)

Remove false minutiae

Fingerprint

)4,3,2,1(

16
exp ,),(row_sum),(

223

0

=

 −== ∑

=

k

j
WWnkE kn

n

πθθ (1)

Each pixel is assigned a binary value based on the ridge
flow direction associated with the block to which the pixel
belongs. Following the binarization, the detection step
methodically scans the binary image of a fingerprint,
identifying localized pixel patterns that indicate the ending or
bifurcation of a ridge. After all the minutiae candidates are
pointed out, the final step is then to remove false minutiae
from these candidates and keep the true ones .

NIST Fingerprint Image Software is based on floating point
computations. However, the processor used in ThumbPod
only supports fixed-point calculation. Therefore before
porting the software to ThumbPod, fixed-point refinement is
needed. Using the refined algorithm, the minutiae set can be
detected. An example is presented in Fig. 3.

IV. FINGERPRINT MATCHING ALGORITHM

After two minutiae sets, which are for the input fingerprint
image and the template fingerprint image respectively, are
extracted, the matching algorithm can be described.

In the algorithm flow shown in Fig. 4, the first step is to find
out the correspondence of these two minutiae sets. A minutia,
N , can be described by a feature vector: ()tyxN ,,, ϕ= ,

where ()yx, is its coordinate, ϕ is the local ridge direction
and t is the minutia type. However, yx, and ϕ cannot be
directly used for matching since they are dependent on the

rotation and translation of the fingerprint. To solve this
problem, we construct a rotation and translation invariant
feature:

()2121212121 ,,,,,,,,,, tttnnddM ϕϕθθ= (2)

Fig. 5 indicates the details of this local feature, where n is the
number of ridges between neighbors. Assume ()iM I and

()jMT are the local feature vectors of the i-th minutia of the
input fingerprint and the j-th one of the template fingerprint,
respectively. A similarity level of these two minutiae can be
defined as:

()
() () () () ()

<−
−

−=
otherwise

WAjMiMif
A

jMiM
jisl WTI

WTI

,0

,1,

pi ...2,1= qj ...2,1=
(3)

where p and q are the total numbers of minutiae in the input
fingerprint and the template fingerprint, respectively.

() ()
WTI jMiM − is the weighted distance between two local

feature vectors. ()WA is the threshold, which is related to the
weight vector W . In this paper, we set

)31,31,31,3,3,8,8,8,8,1,1(=W and ()WA = 55. By

thoroughly searching ()jisl , , one minutiae pair ()21,bb can be
reached so that () ()()jislbbsl

ji
,max,

,
21 = .

The next step is to align the other minutiae by converting
them into a polar coordinate system based on the
corresponding pair ()21,bb . For minutia N , the polar

coordinate is ()ϕθ,,rM p = , where

() ()22
bb yyxxr −+−=

),(arctan b
b

b

xx
yy

diff ϕθ

−
−

=

),(bdiff ϕϕϕ =

(4)

Fig. 5. Local feature of minutia.

Fig. 2. Window rotation.

 9. – 11.25 ° 8. 0 °

 7. 11.25 ° 6 . 22.5 ° 5 . 33.75 ° 4 . 45 ° 3 . 56.25 °

2. 6 7.5 °

 15. – 78.75 °

14. – 67.5 °

13. - 56.25 °

12. - 45 °

11. – 33.75 °

10. – 22.5 °

 1. 78.75 ° 0. 9 0

Window

(24x24 pixel)

ending

bifurcation

 (a) (b)

Fig. 3. Original image and minutiae in the binarized image.
(a) Original image (256 × 256 pixels).
(b) Binarized image and minutiae points.

Fig. 4. Matching algorithm flow.

 Find reference points in two
minuti ae sets

Align other minutiae

Compute matching score

Function ()diff is the difference between two angles. Based
on the aligned minutiae sets, the matching level of each
minutia in the input fingerprint and each one in the template
fingerprint can be calculated, following

()

 <−

=
otherwise

Bgtotaldifftotaldiff
jiml

,0

_,16/_1
, (5)

where () ()
pW

p
T

p
I jMiMtotaldiff −=_ , Bg is a bounding box.

In this paper ()6,6,8 ππ=Bg and ()8,8,1=pW .
To avoid one minutia being used more than once for

matching, ()jiml , is set to zero if there is any k that makes

() ()jimlkiml ,, > or () ()jimljkml ,, > . Afterwards, the final
matching score can be achieved by:

),max(

),(
100 ,

qp

jiml
Ms ji

∑
×= (6)

V. SYSTEM ANALYSIS

Using the algorithm described above the fingerprint
verification module is implemented on ThumbPod. The
sensor used for fingerprint scanning has a relatively small area
(13 × 13 mm2), so the performance is strongly dependent on
which part of the finger is captured. To eliminate this problem
we introduce a two-template system in ThumbPod. The
Thumb Pod system is tested with live-scan fingerprints. The
image set consists of 10 fingerprints per finger from 10
different fingers, forming a total 100 fingerprint images. Each
fingerprint is compared with every two other fingerprints and
the two match scores are ported into a decision engine in order
to get the final matching result. Totally, 7,200 decisions are
made for the matched case and 81,000 decisions for the
mismatched case. We have achieved 0.5% FRR (False
Rejected Rate) and 0.01% FAR (False Accepted Rate).

VI. HIGH-SPEED OPTIMIZATION

Implementing the fingerprint verification module on a
50MHz LEON-2 embedded processor requires not only the
performance, but also high speed and low power consumption.
In this paper, we investigate both software and hardware
optimization techniques to achieve this goal.

Software optimization aims to reducing the cycle number of
the whole process. To get better performance, the first step is
to find out the hot-points of the system. The TSIM SPARC
simulator is used for profiling [2].

A. Profiling of the Minutiae Extraction

Fig. 6(a) shows the profiling result of the minutiae
extraction. The execution time of the image binarization and
the minutiae detection are 11% and 12% of the total,
respectively. They are not considered a system bottleneck.
However, the direction map deriving step (MAPS) occupies
74% of the total execution time . Therefore, the detailed
algorithm for it is checked to speedup this process. Fig. 6(b)
shows the instruction-level profiling of MAPS.

The numbers of instructions for multiply (Mult) and addition
(Add) sum up to 56% of the total MAPS processing due to the
repetitive DFT calculations for creating the direction map.
Based on the profiling results, software optimization and
hardware acceleration are considered for the DFT calculations
in the direction map-deriving step.

B. Software Optimization for Minutiae Extraction

Studying the pattern of a fingerprint, we find that the
neighboring blocks tend to have similar directions. An
example of a direction map is shown in Fig. 7. This
characteristic can be used to significantly reduce the number
of DFT calculations. For instance, the first direction data,
upper left in Fig. 7, is calculated using the same method as the
original program. When deciding the direction of the right
data, the DFTs for θ = 4, 5, 6 are calculated first because the
result is most likely to be θ = 5. If the total energy for θ = 5 is
greater than both its neighbors (θ = 4, 6) and a threshold value
(ETH), the direction of θ = 5 is considered as the result.
Otherwise, θ is incremented or decremented until the total
energy for θ could have a peak with a greater value than ETH.
In other words, if the three conditions in (7) are met, the
calculation of a direction value is finished. The execution
speed as well as the matching error rate is measured when ETH
is changed from 10M to 35M. The results are shown in Fig. 8,
from which it is found that when ETH is larger than 20, the
error rate is within an acceptable range.

- 1 15 15 14 13 14 15 1 4 14 14 15 15 15 14 14 14 13 13 13 13 13 13 13 13 12 13 13 12 13 12 12 - 1

- 1 15 14 14 14 13 14 14 15 15 15 15 14 14 14 13 13 13 13 12 13 12 12 12 13 13 12 13 12 12 12 - 1

- 1 14 14 13 7 11 14 14 14 14 14 14 14 14 13 1 3 13 13 12 12 12 12 13 13 13 12 12 12 12 12 12 - 1

- 1 14 15 15 7 13 13 14 14 14 14 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 11 12 - 1

- 1 14 13 14 13 13 13 14 14 13 13 13 13 13 13 12 12 12 12 11 12 12 12 12 12 12 12 12 11 12 12 - 1

- 1 14 11 13 13 13 13 12 13 13 13 12 1 3 13 12 12 1 2 12 12 11 12 12 12 11 12 12 12 12 12 12 12 - 1

- 1 9 13 13 12 12 12 12 13 13 13 14 13 12 12 12 12 12 12 12 11 12 12 11 11 11 13 12 12 11 11 - 1

- 1 9 12 12 12 12 12 11 12 12 13 13 13 12 12 11 11 11 11 11 11 12 12 11 11 10 10 11 11 11 11 - 1

- 1 12 12 12 12 12 12 12 12 12 12 13 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 9 10 11 12 - 1

- 1 - 1 - 1

- 1 - 1

- 1 5 5 5 6 5 6 7 7 7 7 8 8 8 8 8 9 9 9 8 10 1 0 11 10 11 11 11 11 11 12 12 - 1

- 1 5 4 5 5 5 6 7 7 7 7 7 7 6 7 8 9 9 9 9 9 11 12 12 11 11 11 11 12 12 12 - 1

- 1 5 5 6 5 5 5 6 6 7 7 7 7 7 7 8 8 9 9 9 9 11 11 11 1 1 11 11 11 12 12 12 - 1

- 1 5 5 6 5 5 5 5 6 6 7 7 7 7 8 8 8 9 9 9 10 11 11 12 11 11 12 12 12 12 13 - 1

- 1 4 5 6 5 5 5 5 5 6 6 6 7 7 8 8 8 9 9 10 10 11 12 12 12 12 12 12 12 13 13 - 1

- 1 4 3 3 4 5 5 5 5 6 6 6 7 7 8 8 9 9 10 10 10 11 12 12 12 12 12 12 12 13 13 - 1

- 1 3 3 3 4 4 4 5 5 5 6 6 6 7 8 9 9 10 10 10 11 11 12 12 12 12 13 13 13 13 13 - 1

- 1 3 3 3 3 4 4 4 5 5 6 6 6 7 7 9 9 10 10 11 11 11 11 11 12 12 13 13 13 13 13 - 1

- 1 3 3 3 3 3 3 4 5 5 5 5 6 7 7 8 10 10 11 11 11 11 11 10 11 12 13 13 13 13 13 - 1

- 1 3 3 3 3 3 3 3 4 5 5 6 5 6 7 8 10 10 11 11 11 11 10 11 12 13 13 13 13 13 13 - 1

- 1 3 3 2 3 3 3 3 4 4 5 5 6 6 7 8 9 11 11 11 11 12 13 12 13 13 13 13 13 13 13 - 1

- 1 2 2 2 2 3 2 3 3 3 4 3 3 5 8 9 10 11 11 11 12 12 13 12 13 13 13 14 13 13 13 - 1

- 1 2 2 2 2 2 2 2 3 3 3 3 3 4 7 8 9 11 11 12 12 12 13 12 13 13 13 14 14 14 13 - 1

- 1 2 2 2 2 2 2 2 2 2 2 3 3 4 7 8 10 11 12 12 12 12 13 12 12 12 14 13 13 14 13 - 1

- 1 3 1 1 1 0 0 1 2 2 2 2 2 3 7 8 10 11 12 12 12 13 13 13 13 13 11 11 12 13 12 - 1

- 1 2 1 1 2 1 1 1 1 2 0 1 1 2 7 8 10 11 12 12 13 13 13 13 13 13 13 12 12 12 13

- 1

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 13 12 13 13 13 13 13 13 13 14 14 13 13 13 14 - 1

- 1 0 0 0 0 1 1 1 1 1 1 0 0 0 11 11 13 13 13 13 13 13 12 12 13 14 14 13 13 13 13 - 1

- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 11 13 13 13 13 13 13 13 12 12 13 13 13 13 13 13 - 1

- 1 15 15 15 15 0 15 15 0 0 0 0 0 0 0 14 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 - 1

- 1 15 15 15 14 14 15 15 14 0 0 0 15 15 1 5 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 - 1

- 1 - 1

Fig. 7. Example of Direction Map. “-1” is no-direction
because zero-padding in the image.

(a) (b)

MAPS
74%

DETECT
12%

BINAR
11 %

OTHERS
3%

Load
15% Add

15%

Mult
41%

Logical
9%

Branch
8%

Others
8%

Store
4%

Fig. 6. (a) Profiling of the execution time for the minutiae
 extraction; (b) Instruction-level profiling of MAPS.

TH

4

1

4

1

4

1

4

1

4

1

E),(

]01,15[)1,(),(

]151,0[)1,(),(

>

=+=+>

=−=−>

∑

∑∑

∑∑

=

==

==

k

kk

kk

kE

whenkEkE

whenkEkE

θ

θθθθ

θθθθ

 (7)

C. DFT Accelerator for Minutiae Detection

The software optimization reduces the number of DFT
calculations and results in a significant speedup of the
minutiae extraction. However, there are still a large number of
DFT calculations, even if ETH is set to a proper value.
Therefore, DFT hardware acceleration is needed in addition to
the software optimization.

The final specification of the accelerator only implements
MAC computations for sine and cosine part separately (Fig.
9). In the multiply operation, Canonic Signed Digit (CSD) is
used for saving hardware resources. The energy calculation
part is not included because it needs a square operation of 16
bits data, which requires a general multiplier. As a result, the
execution time of the minutiae detection is reduced to about 4
seconds as shown in Fig. 10.

D. Software Optimization for Matching

Compared to the minutiae extraction, the matching
algorithm is much faster. However, this does not mean that
there is no need to consider the high-speed optimization of this
part. Thinking about extending the system from a one-to-one

verification system to an identification system based on a big
database, the matching process needs to be used a large
number of times. In that case the speed for one-to-one
fingerprint matching becomes critical in the system.

Analysis of the profiling result of the matching algorithm
shows that a large part of the computation (52.2%) is used for
finding the reference pair for the input image and the template
image. The reason for this is that when trying to find out
which pair is the reference pair, thorough search for each ()ji,
pair is conducted, where pi ...1= , qj ...1= , p and q are the
number of minutiae in input fingerprint and template
fingerprint, respectively. In total, the similarity level ()jisl ,
needs to be calculated qp × times. To obtain all of these

()jisl , , the local feature vector M for each minutia in the
input fingerprint as well as the template fingerprint is required.
However, detailed study of one typical case shows that 89% of
the ()jisl , are zero, which means these pairs have totally
different neighborhoods and by no means can become the
reference pair. In the process of calculating the local feature
vector M, the most time consuming part is finding the angles
()2121 ,,, ϕϕθθ between the minutia and its neighborhood. To

make the matching system more efficient, for those ()ji, pairs

whose ()jisl , are zero, an earlier decision should be made. A
modified algorithm is implemented. The basic idea is that
before calculating the local feature vector, one additional
module called “Pre -Checking” is added, as shown in Fig. 11.

As mentioned before, the weighted distance between each
pair of minutiae is () ()

WTI jMiM − . In the Pre -Checking

module, we define ()0,0,0,0,0,0,0,0,0,1,1== dWW , which
means only the distance information is needed in this
procedure. Only if the weighted distance () ()

dWTI jMiM − is

within a pre-set threshold ()dTH WAM = , the computation of
the complete local feature vector is necessary.

Both the reduction of the computation time after adding the
Pre-Checking module and the result degradation depend on
the value of the threshold MTH. The relationship between MTH
and the performance is presented in Fig. 12. In order to get
high accuracy with small number of instruction cycles,

20=THM is an appropriate choice, which leads to 26.1%
reduction in the computation time.

Fig. 10. Reduction of the execution time for the
minutiae detection.

0

 1

 2

 3

4 4

 5

 6

 7

 8

 9

10 , 10

ORG

S/W OPT.

+HW_Acc.

SW_OPT.

+HW_Acc.

 ETH= 10M

E
xe

cu
tio

n
T

im
e

(m
s)

OTHERS
 MAPS

 DETECT
 BINAR

 ET H= 27M
 (Fixedpoint)

0

 ti
m

e
(s

ec
)

0
1
2
3
4
5
6
7

0 10 20 30 40
E TH (M)

E
xe

cu
tio

n
tim

e
(s

ec
)

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

E
rr

or
 r

at
e

Execution time

Error rate

Fig. 8. Relation between ETH and performance.

Fig. 9. Block diagram for the memory-mapped DFT
accelerator.

DFT Accelerator

AMBA Peripheral Bus

Controller

DFT (k = 1)

DFT (k = 2)

DFT (k = 3)

DFT (k = 4)

32bit Data Bus

Data

Control Signal

Address

Memory Mapped I/F

During the regular process of setting flags to the possible

multiple-used matched pairs, one comparison loop with a size
of ()qpqp +×× is used, where p and q are the number of
minutiae in the input and the template fingerprints,
respectively. For a sample case where 37=p and 39=p ,
the instruction cycle number to finish this process is 1.4M,
which is 38.9% of the whole matching process. As mentioned
before, ()jiml , is calculated from the local feature distance of
the i-th minutia in the input fingerprint and the j-th minutia in
the template fingerprint. For most of the pairs ()ji, , the local
feature vector is so different that it contributes nothing to the
overall matching score. Based on this characteristic, the
process of marking possible multiple -used ()jiml , can be

optimized. Whenever the ()jiml , is zero, all the remainder
comparison steps are skipped and the algorithm jumps to the
next pair. After the above optimizations, the total cycle
number is 1.34M. Hence the execution time for matching is
reduced to 26.80ms (Fig. 13).

VII. CONLUSION

This paper describes an efficient fingerprint verification
system, which includes both minutiae extraction and
matching. The whole process is performed on a 50MHz
fixed-point LEON-2 processor. By implementing the
optimized minutiae extraction and matching algorithms, as
well as the DFT hardware accelerator, we successfully reduce
the execution time for the minutiae extraction from 9.04s to 4s,
and for the matching process from 67.17ms to 26.80ms. This
means that the whole process finishes in less than 5 seconds.

ACKNOWLEDGMENT

The Authors would like to thank all the teammates in the
ThumbPod project [1]. We also thank Gaisler research for
providing the Leon-2 Sparc core and for support in setting up
the simulation environment.

REFERENCE

[1] http://www.ThumbPod.com
[2] http://www.gaisler.com
[3] User’s Guide to NIST Fingerprint Image Software (NFIS). NISTIR 6813,

National Institute of Standards and Technology.
[4] X. Jiang and W.-Y. Yau, “Fingerprint minutiae matching based on the

local and global structures,” Proceedings of International Conference on
Pattern Recognition (ICPR 2000), Sept. 2000, pp. 6038-6041.

[5] A. Jain, L. Hong, and R. Bolle, “On-line fingerprint verification,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 19, No. 4, Apr.
1997, pp. 302-314.

[6] J. W. Crenshaw, Math Toolkit for Real-Time Programming, CMP Books,
Lawrence, Kansas, 2000.

[7] M. Mimura, S. Ishida and Y. Seto. “Fingerprint verification system on
smart card,” International Conference on Consumer Electronics 2002 ,
pp.182-3. Piscataway, NJ, USA.

[8] Y. Gil, D. Moon, S. Pan and Y. Chung, “Fingerprint verification system
involving smart card,” ICISC 2002: 5th International Conference, Seoul,
Korea, Nov. 2002.

Fig. 11. Pre-checking process.

Select one pair
()ji,

Pre-Checking
() ()

dWTI jMiM −

() () THWTI MjMiM
d

<−

Feature Vector
() ()

WTI jMiM −

Similarity Level
()jisl ,

Y

N

Input minutiae Template minutiae

Fig. 12. Relation between Pre-Checking threshold
MTH and performance.

30

35

40

45

50

55

60

65

70

75

0 20 40 60 80 100
Pre-Checking threshold MTH

E
xe

cu
tio

n
tim

e
(m

s)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

E
rr

or
 r

at
e

Execution time

Error rate

0
10
20
30
40
50
60
70
80

Get Score
Align Minutiae
Get Reference

E
xe

cu
tio

n
tim

e
(m

s)

ORG OPT

Fig. 13. Reduction of the execution time for matching

