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Domain-Specific
Codesign for 
Embedded Security

S ecurity is the Internet’s ugly duckling—
few Internet users think about it unless
they’ve experienced a virus or a hacker.
Whereas we tend to notice the lack of tele-
phone service immediately, we usually dis-

cover the lack of security when it is too late.
Living in a networked world worsens this situa-

tion, as the Slammer worm demonstrated in
January 2003. In less than 24 hours, the worm
infected 250,000 servers, bringing Internet traffic
to a near-complete stop.1 The fact that most new
networked applications are implemented in embed-
ded and portable contexts further aggravates this
problem. Wireless local area network access points,
personal digital assistants (PDAs), and sensor nodes
may become the backdoors of tomorrow’s Internet,
compromising secure operation.

SYSTEM DESIGN
Effective security support is a system design prob-

lem that needs an integrated approach. Securing a
system requires more than simply adding encryp-
tion processors and virus-scanning software.
Rather, you must implement those security elements
in an organized way. 

A system’s security is only as strong as its weak-
est link. For example, a smart card’s strongest cipher
algorithm is worthless if a hacker can disassemble
the card and retrieve sensitive data by observing its
power consumption.2 We think of security as a
design domain with multiple layers of design
abstraction, and a complete system as a codesign of
domains (security, networking, and graphics, for

example) rather than a codesign of implementations
(such as hardware and software).

The classic view emphasizes using hardware for
performance and software for flexibility. In embed-
ded applications such as mobile phones, PDAs, and
sensor network nodes, however, energy efficiency
is of tantamount importance. 

We approach these challenges by designing
domain-specific processors and integrating them
into a flexible platform architecture based on a
reconfigurable interconnect. Domain-specific archi-
tectures consume energy much more efficiently than
general-purpose architectures. The processors have
restricted and specialized instruction sets that cover
a class of security support algorithms, such as
Advanced Encryption Standard (AES) encryption
and decryption3 with cipher block chaining mes-
sage authentication code (CBC MAC), output feed-
back (OFB), and counter (CTR) modes. Figure 1
shows an example of the energy efficiency of AES
encryption on five different platforms.

SECURITY PYRAMID
The pyramid in Figure 2 represents the security

design domain using the 3G mobile phone com-
munications system as an example. This system
contains various types of security, such as user
authentication, confidentiality, and location privacy.
The 3G Partnership Project details these security
requirements and outlines the responsibilities of all
parties—subscriber identity module card, handheld,
base station, and location registers—involved in the
communications link.4

Effective security begins with system design and involves many layers of
abstraction. A complete system is a codesign of domains requiring domain-
specific processors and a flexible platform architecture to support them.
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The pyramid’s top level considers an end-to-end
model of the main parties in the communications
link. This level expresses a protocol as a coarse-
grained control flow that sequences cryptographic
algorithms. This protocol specifies how the setup
phase will proceed and what encryption schemes
will be used. It relies on establishing mutual trust,
which the system implements by exchanging cer-
tificates and generating and verifying keys. Different
applications require different levels of trust. 

The algorithm level specifies the protocol level’s
building blocks. This second level contains ciphers
and one-way hash functions. For key agreement,
the algorithm level uses random-number genera-
tors and modular arithmetic functions. Symmetric
ciphers can be either stream- or block-based, pro-
cessing n-bit blocks of data for each invocation. In
addition, defining a mode of operation can enhance
the cipher with feedback and an initialization pro-
cedure.5 3G wireless proposes using Rijndael en-
cryption (www.esat.kuleuven.ac.be/~rijmen/rijndael)
on the mobile phone SIM card for key agreement
and requires Kasumi encryption inside the hand-
held mobile phone for real-time encryption.4

As Figure 3 shows, key agreement and ciphering
belong to different planes of operation. Whereas
key agreement protocols are rarely real time, com-
munications ciphers have real-time constraints.
Therefore, the processing requirements for SIM
card cryptography are much lower than for hand-
held cryptography. 

In a shared private-key scheme, the SIM card
stores one copy of the secret key. A public-key
scheme does not require such mutual secrets.
However, a private-key scheme is considerably
more energy efficient than a public-key scheme. For
example, a Diffie-Hellman-based elliptic curve pub-
lic-key agreement is three orders of magnitude more
computation and energy intensive than a Rijndael-
based Kerberos key-agreement protocol.6 Protocol-
level modeling offers the context required for
making such algorithmic tradeoffs.7

The architecture level considers the mapping of
the algorithms and security protocol. This mapping
is a layer of software with appropriate hardware
specialization. The security application pyramid
expresses the protocol and algorithm levels as a
Java application on top of Java Cryptographic
Extensions.8 JCE offers cryptographic services and
as such represents a specialized software library.
The JCE cryptographic service provider implements
part of the JCE standard API and can have both
software and hardware implementations (www.
bouncycastle.org). We use standard Java code dur-

ing key agreement and setup phases, when perfor-
mance and power consumption is noncritical.
When the connection is established and the link
acquires a real-time and longer-lasting character,
we use an encryption processor, configured as a
JCE hardware provider.

The microarchitecture level expresses a more
detailed, hardware-oriented view. We extend tra-
ditional microarchitectures with energy-efficient
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Figure 1. Energy efficiency of the Advanced Encryption Standard on five
platforms. The energy efficiency, which spans seven orders of magnitude, is
expressed as the number of gigabits the system can encrypt per joule (www.ee.
ucla.edu/~schaum/rijndael). 
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Figure 2. The security application domain pyramid. Each abstraction layer repre-
sents specific modeling, design, and implementation issues that must be covered
for secure system operation.
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cryptoprocessors to support cryptography func-
tions. The accelerator processor’s flexibility is an
important consideration. Contemporary standards
require support for multiple cryptoalgorithms;
however, energy efficiency and flexibility are
inversely related. We therefore use domain-specific
coprocessors with a restricted and highly special-
ized instruction set.

Finally, the circuit level addresses implementa-
tion and architectural integration of the crypto-
processors. At this level, the cryptocircuit needs to

resist power and timing attacks. These techniques
do not have to affect the full cell phone design, but
they are useful where a high amount of trust is
required, such as in the SIM cards. 

NEXT-GENERATION EMBEDDED SYSTEMS 
In addition to the cryptographic domain, next-

generation embedded systems will have to deal with
other design domains, such as networking, wire-
less baseband, signal processing, and multimedia.
Domain specialists can devise specialized proces-
sors for many design domains. We have developed
instruction-set architectures and microarchitectures
for the security domain. We have also developed a
system architecture to support these processors. 

Reconfigurable interconnect 
Embedded systems consisting of multiple design

domains often contain multiple specialized proces-
sors. Figure 4a depicts the networking and security
domains of an embedded networked device such
as a 3G handheld phone.

We can use a pyramid view to express each domain
at different levels of abstraction. System design uses
software and specialized domain-specific hardware
to combine and implement these pyramids. 

The system architecture shown in Figure 4b
includes a general-purpose processor and dedicated
hardware for baseband processing and cryptogra-
phy. A reconfigurable interconnect combines the
two blocks.

Our Reconfigurable Interconnect for Next-
Generation Systems (Rings) architecture consis-
tently distributes data processing over several
specialized units to facilitate heterogeneous pro-
cessing.9 Communication relies on flexible point-
to-point links. Instead of a global clock, the
architecture uses loosely coupled synchronous
islands. The system does not include a tightly cou-
pled central controller. The CPU keeps the system
properly configured and organized, but maintains
only loosely controlled coupling with the individ-
ual domain processors.

We can formulate the hardware/software co-
design problem as finding a mapping from the pyra-
mids in Figure 4a to elements in Figure 4b.
Domain-specific hardware guides this mapping. An
encryption processor covers the security pyramid’s
lower abstraction levels. Using the encryption
processor according to a specific security protocol
requires further software integration. This is also
true for a networking pyramid: Dedicated hard-
ware enables front-end and baseband processing.
At a higher abstraction level, communication pro-
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Figure 3. Key agreement and ciphering in mobile phones. The two protocols oper-
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tocols running in software use these components.
Thus, in a complete application, software integrates
all domain pyramids at the top level.

The reconfigurable interconnect network estab-
lishes arbitrary point-to-point links, supporting
both system architecture flexibility and distributed
system operation. To the domain-specific proces-
sors, this reconfigurable interconnect looks like a
service layer in the same way that an operating sys-
tem provides services for software tasks. Distrib-
uted systems operate using multiple, concurrent
control and data streams between system compo-
nents. This way, the interconnect configuration can
reflect various computational models.10

Dataflow and process networks require point-to-
point links. Other computational models, such as
publish-subscribe, require broadcasting connec-
tions. We implement the network using on-chip
code division multiple access technology.11 The
CDMA links are scalable in both bandwidth and
connectivity. Although the links implement the
equivalent of an on-chip routing packet network,
link modulation reduces the routing overhead asso-
ciated with a packet-switched on-chip network. 

Cryptoprocessor microarchitecture
The Rings architecture integrates domain-specific

processors. Each processor has one or more com-
mand and data ports that connect the internal
microarchitectures to Rings. Figure 5 shows the typ-
ical microarchitecture of such a cryptoprocessor. 

Cryptoprocessors use modularity and a control
hierarchy in their implementation. Because the
cryptoprocessor operates in a loosely coupled envi-
ronment using a limited set of powerful instruc-
tions, the system must move more intelligence into
local controllers. Inside the cryptoprocessor, a hier-
archy of controllers separates I/O communication
from cryptographic operations and helps cope with
cryptographic algorithm control complexity, which
arises from the iterative nature of cryptoalgorithms,
the complex number systems some cryptoalgo-
rithms use,12 and the need to support multiple algo-
rithm variants in a single implementation. The
architecture template in Figure 5 applies to both
private-key and public-key processors.

Efficiently operating the cryptoprocessor requires
interleaving I/O processing with the encryption
algorithm operation. This produces a block-
pipelined system: While the input processor reads
in block N, the cryptocore works on block N – 1,
and the output processor works on block N – 2.
Two issues affect the application of block-pipelin-
ing to cryptoprocessors: 

• Unlike a signal-processing algorithm, in which
the system often can ignore such transients,
each data block in the cryptoprocessor has
equal importance (secrecy). Thus, the pro-
cessing pipeline must be carefully controlled.

• Dynamic stalls can occur in the pipeline if one
of the pipeline stages contains a handshaking
I/O operation. 

Both issues affect the cryptoprocessor’s pro-
gramming model. The classic hardware function
call model no longer holds. Rather, a programming
sequence must take the form of a small macropro-
gram.

Cryptoprocessor instruction set 
architecture and programming

One requirement for achieving system-level dis-
tributed operation is minimizing the bandwidth
that global control and status streams require.
Thus, instructions flowing from a system controller
to a domain-specific processor should be semanti-
cally rich. 

A cryptographic processor’s basic operation is
always the same: It reads in a block of data, per-
forms a crypto-operation, and returns the
processed result. Therefore, we can think of the
crypto-operation as an operation mode, or contin-
uous instruction, for the processor. Unlike single
instructions, which specify a unique event such as
“the next data packet presented at the input is an
encryption key,” a continuous instruction specifies
a behavior over a sustained period—for example,
“start ECB-mode AES encryption.” 

Continuous instruction efficiently creates dis-
tributed systems that are driven by their data
streams rather than a central controller’s control
pulse. We can model support for the pipeline
startup and termination effects as continuous
instructions: one instruction to start the block
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pipeline and the other to terminate it.
Table 1 lists a subset of the instruction set of an

actual encryption-decryption chip. The table identi-
fies three types of instructions: single, configuration,
and continuous. By default, the processor sits idle,
waiting for an instruction. Depending on the instruc-
tion type, the processor accepts one or more data
packets at the processor data input port and gener-
ates packets on the data output port. Instructions
such as Reset and GenSubKey take no operands and
affect only the cryptoprocessor’s internal state. An
instruction such as LoadKey requires the next data
packet to be an encryption key. The encryption
processor strictly enforces the length and format of
these data packets and thus prevents partial key load,
which some cipher attacks use.

Configuration instructions select an algorithm
(such as encrypt or decrypt) or enable a mode of

operation (electronic code book or CBC MAC, for
example). The continuous instruction Start initi-
ates the cryptopipeline. Two input data packets are
required before the first encryption result will be
available. The continuous instruction Finish flushes
the cryptopipeline, allowing final output data pack-
ets to leave the cryptopipeline without feeding in
new input data. 

With this instruction set, we can write small
macroprograms, such as the following command
sequence used to encrypt a data stream in ECB
mode:
Reset;
LoadKey; // send key
GenSubKeys;
ECB;
Encrypt;
Start; // send data packets
Finish;
The CPU sends this command sequence to the

cryptoprocessor (Figure 4b). The LoadKey and
Start commands also need the CPU to send data
packets. A key feature of this programming model
is that it does not specify where the data packets
originate. Thus, while the data packet with the key
might come from the CPU, the actual data stream
to encrypt might come from the wireless baseband
processor. This leads to programming sequences,
illustrated in Figure 6. 

CODESIGNING APPLICATION DOMAINS
Systems with multiple design domains require

codesign of application domains. Dedicated hard-
ware processors implement the application
domains, and software integrates them. 

Figure 7 shows the architecture of our prototype
embedded security application, the ThumbPod,
which we use for remote identification applications
such as intelligent keys or electronic payments
(www.ivgroup.ee.ucla.edu/thumbpod). The device
combines security, biometrics, and networking
domains. ThumbPod’s architecture supports secu-
rity, combining the Java cryptography architecture
(JCA), built on top of an embedded virtual
machine, with an AES cryptoprocessor. The top-
level security protocol layer is written in Java. 

Additional software support consists of a
dynamic application download using the Java
application manager. Sun’s K virtual machine
(KVM) offers an infrastructure for secure code
download and execution and integrates the cryp-
toprocessor through a native interface. We program
the cryptoprocessor with a macrolanguage (see
Table 1). 
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Figure 6. Distributed operation in Rings shown as a message sequence chart. The
CPU initiates streamlined operation between the wireless baseband processor
and the cryptoprocessor by sending data and control packets. 

Table 1. Typical cryptoprocessor instruction set.

Instruction Type Description

Reset Single Initialize the processor
LoadKey Single Store next data packet as current encryption key
GenSubKey Single Create roundkey material out of current key
Encrypt Configuration Next cipher operation is encryption
Decrypt Configuration Next cipher operation is decryption
ECB Configuration Next cipher operation uses electronic code book 

(ECB) mode
CBCMAC Configuration Next cipher operation uses cipher block chaining

message authentication code (CBC MAC) mode
IVReg Configuration Next data packet contains initialization vector (for 

CBC MAC)
Start Continuous Start cipher pipeline
Finish Continuous Flush cipher pipeline



This model presents several codesign challenges:

• Dynamic software needs integrity verification
before it can execute on a secure platform. In
Java applications, JCA performs bytecode ver-
ification. ThumbPod’s software is heteroge-
neous and contains bytecodes as well as
macroprograms for the domain-specific pro-
cessors. Both can have their own provider and,
consequently, their own certificates and
integrity-checking processes.

• The hardware processors use block-pipelining
techniques, increasing parallelism in the sys-
tem but requiring more complex synchroniza-
tion. In particular, the service provider
interfaces in KVM that integrate the crypto-
processor must account for such parallelism.

• A cryptoprocessor uses sensitive key material
that must not leave the processor. If this key
material needs to travel over the reconfigurable
interconnect, it creates a potential security
hole. This security hole is unlike traditional
software security holes because it travels across
many levels of abstraction.

• Writing software for ThumbPod is equivalent
to writing different kinds of configuration con-
tent. The Leon-2 runs C programs, while the
cryptoprocessor and fingerprint sensor run
domain-specific instructions. These features
need to be unified under a single Java pro-
gramming model without compromising dis-
tributed operation and performance.

These codesign challenges share an important
property. Each requires an understanding of the
system operation at multiple levels of abstraction—
particularly of the security pyramid. Neither
abstract mathematical models nor detailed cycle-
true models alone can handle these challenges. For
the former, modeling will fall short; in the latter,
system complexity will become a showstopper.
Consequently, these codesign problems are more
likely to be solved by a team of software, hardware,
and application domain specialists than by an 
individual. 

F uture embedded systems will have design char-
acteristics similar to ThumbPod, with multiple
application domains converging in a single

implementation. Domain-specific hardware proces-
sors will be a key enabler of energy efficiency.
Currently, we are developing a codesign environ-
ment to support development and verification of

these coprocessors at a high level. We are also for-
mulating the interconnect services of the Rings archi-
tecture as a high-level computational model. �
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