

Teaching Trade-offs in System-level Design Methodologies

K. Sakiyama, P. Schaumont, D. Hwang, and I. Verbauwhede
Electrical Engineering Department, University of California, Los Angeles

7440B Boelter Hall, Box 951594, Los Angeles, CA 90095-1594
{kazuo, schaum, dhwang, ingrid}@ee.ucla.edu

ABSTRACT

This paper summarizes two graduate-level class projects in
EE201A/EE298 (VLSI Architectures and Design Methods) at
the University of California, Los Angeles (UCLA). The pur-
pose of the class is to explore the impact of system-level op-
timization for various target platforms using EDA.

1. INTRODUCTION
Nowadays, CAD and software development tools are indis-
pensable to develop a complex system on chip in a short time.
These tools must be supported with a system-level design
methodology in addition to individual hardware/software
design. While it is well known that design decisions at sys-
tem level have most impact on the final performance, there
are very few standard textbooks, educational materials or
standard methodologies available.

The goal of system-level design is to translate a specifica-
tion in high-level language (English, Matlab, C/C++) to im-
plementation level, based on requirements such as the
throughput, area, power, and the development time. It is im-
portant to give students an opportunity to consider a system-
design flow in an educational setting and compare the im-
plementation result of different platforms. This concept is
illustrated in Fig. 1.

The class of Spring 2000 [1] was divided in 11 teams of 2
or 3 students. They started from an identical LPC Speech
Coder and implemented this on five different signal process-
ing platforms: three programmable DSP processors (TI C55x,
C54x, and C6x) and two signal processing design environ-
ments (Ocapi [2] and A|RT Designer [3]). All five designs
were compared based on energy, area, clock frequency/MIPS
and design time.

The 13 teams of the class of Spring 2002 [4] conducted a
similar experiment to design a high-speed JPEG encoder. In
this class, 5 different approaches were taken to implement a
JPEG encoder. Students used 3 different design languages
(SystemC, HandleC, and SpecC [5,6]), and targeted 4 differ-
ent platforms: 2 DSP processors (TI C54x, Analog Devices

Blackfin), and 2 dedicated FPGA implementations.
Starting from a high-level specification, students thus

could compare a wide variety of design approaches.

2. DESIGN METHODOLOGY
This section describes the design methodology for imple-
menting LPC speech coder and JPEG encoder on the various
platforms. In both projects, students started from a high ab-
straction level, optimized it in system-level perspective, and
refined the spec to implementation. Students were separated
into several teams and tried to find the best design given
their platform. A crucial constraint for all these designs is the
design time, which was limited to the time of one quarter (10
weeks).

2.1. The LPC Speech Coder project
The Linear Prediction Coefficients (LPC) speech coder was
first designed in floating-point format in MATLAB [7,8].
Then, fixed-point refinement was used to efficiently map the
algorithm onto fixed-point platforms.

For the platforms of TI DSPs (TI C54x, C55x, and C6x),
the internal wordlengths are fixed to 16 bits for most arith-
metic operations. There are several criteria which affect the
fixed-point wordlength decision, including recognizable
synthesized speech, pitch frequency matching, avoidance of
signal overflow/saturation at each point in the algorithm, and
avoidance of saturation of the synthesized speech. To obtain
a fixed-point C++ code suitable for the fixed-point DSPs,
students rewrote the entire algorithm using 16-bit C arithme-
tic.

Both Ocapi and A|RT Designer rely on a fixed-point C++
library. The refinement target for Ocapi is a cycle-true de-
scription, while A|RT Designer uses a compilation step to
map behavior onto a VLIW architecture template.

All the implementation models were evaluated by simula-
tion in this project.

2.2. The JPEG Encoder project
We started from a reference JPEG encoder implementation
in C. At the first step, data-flow analysis is done of the C
code to identify the individual processing stages in the JPEG
encoder. In addition we also analyze the background mem-
ory requirements of the JPEG encoder in order to optimize
the memory architecture of the target platform.

In a second step, each team translates the reference imple-
mentation in C into a system level modeling environment,
which is one of SystemC, HandleC, or SpecC.

The third step deals with fixed point refinement. Depend-

Platform 1 Platform 2 Platform 3

High-level
specification

Methodologies
- Scheduling
- Partitioning
- Fixed-point refinement
- Allocation & Assignment

Target
- Area
- Speed
- Throughput

Fig.1. Concept of System Design flow

DA Tools
- A|RT Designer
- ATOMIUM
- Ocapi
- CODE COMPOSER
- Visual DSP++
- ISE Software

ing on target platform, an appropriate fixed-point refinement
has to be done, similar as with the LPC coder.

The last step is the implementation phase, where each
team implements their design on one of 3 reference PCBs: A
Spectrum Digital board with C5410 [9], an Analog Devices
Blackfin evaluation board [10], and an Insight Electronics
board with a Xilinx Virtex-II [11].

3. RESULTS
3.1. The LPC Speech Coder project
Table I shows the results for the LPC coder. The Ocapi solu-
tion is slightly over half the size of the A|RT Designer solu-
tion. However, these figures are somewhat deceptive as both
designs were mapped onto a different technology (0.25-µm
vs 0.35-µm).

Energy figures for each design are given in Table I in units
of energy per frame. These values are based on the simula-
tion and assumed to run the processor at the lowest clock
frequency that still guarantees to meet the real-time con-
straints. The circuit design with Ocapi resulted in the lowest
energy per frame.

The technology varies with the platform (0.15-µm for the
DSPs, 0.25-µm for Ocapi and 0.35-µm for A|RT Designer).
The energy for each design refers to the energy of the core
and the memory and not for the I/O. The DSP processors
have a much larger memory than needed for the application,
which results in a large energy consumption. On the other
hand, they are built in a more advanced technology.

The details of this project are reported in [12].

3.2. The JPEG Encoder project
The number of memory accesses was optimized by each
team using ATOMIUM [13]. More than half of the teams
were able to reduce the access count by 50% or more.

The design time for system-level modeling was two
weeks. We observed a big variation in the result obtained
with SpecC, HandleC and SystemC [14]. We attribute this
variation in results mostly to the lack of a well-documented
design approach for some of the design languages at the
time of the project.

All of the teams using a DSP platform could implement
their design successfully onto the evaluation PCB. However,
no team targeting the FPGA board could obtain an imple-
mentation within the 10 weeks time limit. The low program-
ming abstraction level was found to be the prime culprit here.
Based on the data reported by the teams, the JPEG encode
performance is calculated and compared in Table II.

4. SUMMARY AND CONCLUSIONS
Throughout the projects, students observed that system-level
optimization had great impact on the final implementation.
The obtained results varied strongly with both the target plat-
forms as well as the tools used. DSPs offer high flexibility,
easy learning curves and fast design times. More heteroge-
neous or application-specific architectures offer better per-
formance at the cost of extra design time. Students reported

that the material covered in these courses is new and com-
plementary to the material offered in a traditional EE cur-
riculum.

Table I. The LPC Speech coder performance
Platform Area—

Memory
Cycles /

Frame [K]
Energy /

Frame [µJ]
Power

Supply [V]

TMS320V
C5410A 8.7 KB 240 144 1.6 core

TI C5510 10.2 KB 120 53 1.5 core

TMS320
C6201 16.0 KB 30 66 1.5 core

Ocapi 1.4 mm2 11 2.1 2.5

A|RT
Designer

3.2 mm2
2.3KB ROM
1 KB RAM

3 4.3 3.3

Table II. The JPEG encode performance

Platform
(source code)

Average of
Required Cycles
[cycles/64blocks]

Code
Length
[lines]

JPEG encode
Performance

[blocks/s]

Blackfin
(C code) 1,524K 879 12,602

@300MHz
TMS320VC5410

(C code) 1,499K 707 4,270
@100MHz

A|RT Designer
(SystemC) 677K 1,015 -

DK1
(HandleC) 700K 1,312 1,357@15MHz

(Simulation Value)

ACKNOWLEDGEMENTS

The authors thank all of the graduate students who enrolled
in EE298/EE213A of Spring 2000 and EE201A of Spring
2002 at UCLA. We would like to acknowledge Hitachi, Ltd.,
Semiconductor & IC Division, 2002 DAC Graduate Scholar-
ship, the Fannie and John Hertz Foundation, and UC-Micro
Grant #02-079. We also acknowledge the logistical contribu-
tions from Analog Devices, Adelante Technologies, Celoxica,
and Texas Instruments.

REFERENCES

[1] http://www.ee.ucla.edu/~ingrid/ee213a/
[2] http://www.imec.be/design/design/ocapi_intro.shtml
[3] http://www.adelantetech.com/en/html/algemeen/AboutAde-

lante/Partners/Academic/EducationalProgram.asp
[4] http://www.ee.ucla.edu/~schaum/ee201a/
[5] http://www.systemc.org/
[6] http://www.ics.uci.edu/~specc/
[7] L. Rabiner, R. Schafer, "Digital Processing of Speech Sig-

nals", Prentice Hall, Englewood Cliffs, New Jersey, 1978.
[8] M.M. Sondhi, "New Methods of Pitch Extraction", IEEE

Trans. Audio and Electroacoustics, Vol. AU-16, No.2,
pp.262-266, June 1968.

[9] http://www.ti.com/
[10] http://www.analog.com/
[11] http://www.insight-electronics.com/
[12] A. Gatherer, E. Auslander, "The Application of

Programmable DSPs in Mobile Communications", John
Wiley & Sons, Ltd., New York, Chapter 15.

[13] http://www.imec.be/design/multimedia/atomium/
[14] K. Sakiyama, P. Schaumont, I. Verbauwhede, "Finding the

Best System Design Flow for a High-Speed JPEG Encoder",
ASP-DAC 2003, Kitakyushu, Japan, January 2003

