

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CF 04,

 April 14-16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004 $5.00.

The Happy Marriage of Architecture and Application
in Next-Generation Reconfigurable Systems

Ingrid Verbauwhede

University of California Los Angeles,
& K.U.Leuven

ingrid@ee.ucla.edu

Patrick Schaumont

Electrical Engineering Department
University of California at Los Angeles

schaum@ee.ucla.edu

ABSTRACT

New applications and standards are first conceived only
for functional correctness and without concerns for the tar-
get architecture. The next challenge is to map them onto an
architecture. Embedding such applications in a portable,
low-energy context is the art of molding it onto an energy-
efficient target architecture combined with an energy effi-
cient execution. With a reconfigurable architecture, this task
becomes a two-way process where the architecture adapts to
the application and vice-versa. This leads to the idea of a
marriage between architecture and application.

These next generation reconfigurable systems consist of
a heterogeneous collection of domain-specific processing
units. Communication between processors occurs over a
reconfigurable interconnect scheme. Global control is pro-
vided by one or more embedded micro-controllers, which
operate at a low frequency since they don’t run compute
intensive functions. Because of the domain specific fea-
tures, this architecture is low power, yet at the same time
reconfigurable.

In this paper, we will describe the RINGS (Reconfig-
urable interconnect for next generation systems) architec-
ture and the associated design environment, GEZEL. We
will describe how applications are mapped onto RINGS
architectures and how they can be modeled and simulated in
the GEZEL environment.

Categories and Subject Descriptors

C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS]: Real-time and Embedded Systems.

General Terms

Design, Verification.

Keywords

Embedded, real-time systems,

1. INTRODUCTION

Post-PC embedded systems use an architecture platform
very different from the traditional homogeneous general
purpose computing platforms. For instance, they might
include RF and baseband components for wireless commu-
nication, DSP engines for real-time signal processing appli-
cations, network engines for network protocol processing
and co-processors or accelerator units for video and image
processing. The main advantage of this type of heteroge-
neous platform is its energy efficiency. Indeed there is a
fundamental flexibility versus energy-efficiency trade-off,
referred to as the intrinsic computational efficiency by T.
Claassen [5]. For example, in the battery-operated, wireless
PDA in Figure 1, every component is tuned towards its
application domain [3]. However, reconfiguration (and thus
reuse) of this type of platform is very difficult, if not impos-
sible.

We propose the RINGS architecture, that inherits the
same computational efficiency design principles and takes
the properties of the application into account before fixing
the architecture. In contrast with those traditional architec-
tures however, RINGS applies a systematic design method,
rather then ad-hoc.

Figure 1: Typical example of an energy-optimized
embedded system: PalmPilot i705

Display
AD7873
Digitizer

Motorola
DragonBall

8M SDRAM

4M FLASH

FPGA

Philips
USB

Maxim
Transceivers

Agere POM
Baseband

Motorola
Transceiver

RF Micro
Poweramp

Maxim
Control

Driver

MemoryCard
Slot

As illustrated in Figure 2, RINGS systems take up the
middle ground between general-purpose approaches and
fully-dedicated, fixed systems. General-purpose approaches
provide cost-effectiveness but lack energy-efficiency. Fully
dedicated approaches are best for energy-efficiency, but
also very expensive to design. Moreover, dedicated archi-
tectures lack programmability, as they completely unify
application and platform. RINGS seeks a balance between
power and cost, by selectively reducing general-purpose
programmability. The reduced programmability is achieved
by targeting the architecture specialization to the applica-
tion. This includes the introduction of specialized yet flexi-
ble processing elements, interconnect- and storage
structures.

In Section 2, we will describe an application-centric
framework to model RINGS systems. This framework
allows us to define the architecture design task for RINGS
more precisely. Following that in Section 3, we will take a
closer look at the design methods for RINGS design, includ-
ing modeling, exploration and refinement. We will then in
Section 4 present the GEZEL codesign environment, which
supports the design of RINGS architectures. We will dis-
cuss the architecture of a typical multiprocessor co-simula-
tor created using GEZEL. In Section 5 we take a closer look
at the architectural options available for RINGS compo-
nents. We will illustrate the idea of specialized and reduced
programmability by means of an example design.
Section 6 provides details on the RINGS interconnect archi-
tecture, a cornerstone that enables the use of multiple, heter-
ogeneous processors. Finally, in Section 7, we will also take
a look at the various forms of coupling application and
architecture by enumerating various coprocessor software
interface mechanisms.

In this paper, we will use the single term programming
and software as a generic term for all activity that is asso-
ciated with reconfiguration, instruction-set programming,
and micro-programming. Software design for RINGS com-
prises writing C for embedded RISC cores, writing dedi-

cated microprograms for domain-specific processors, and
developing communication protocols.

2. THE RINGS VISION

RINGS provides an IP-based design strategy to combine
flexibility and specialization, thus allowing reuse and recon-
figuration without loosing the efficiency. The RINGS archi-
tecture is a platform that contains multiple heterogeneous
domain-specific processors (e.g. a DSP, a video-coproces-
sor, a network engine, etc.) that are connected together with
a reconfigurable interconnect.

A conceptual application-model and architecture-model
for RINGS is shown in Figure 3. A system design is a co-
design of application domains. In the example, a wireless
videophone application is represented as a combination of
three different domains: networking, video and signal pro-
cessing. This system view is different from a traditional
HW/SW co-design view, which uses a co-design of imple-
mentations. Each application domain is represented by a
hierarchy of abstraction levels, represented by a pyramid.
As an example: at the top level of the video pyramid will be
the standard (JPEG, JPEG2000, JVT). It describes the end
to end transactions between the communicating parties. One
level down are the video algorithms, which are building
blocks to the protocol. Video processing might rely on spe-
cialized building blocks and operations, such as motion
compensation, filtering, smoothing, and so on. The next
level down are the actual building blocks. For video appli-
cations, especially memory traffic and buffer design are
critical issues.

As a system is expressed as a collection of application
domains, ultimately all these domains will cooperate
towards achieving a single goal. Thus, the collection of pyr-
amids needs to be integrated, both from the architecture
viewpoint as well as the software viewpoint. The integration

Figure 2: RINGS specializes both architecture and
programming model to the application, and

balances power and cost.

Power Cost

RINGS

General
Purpose

Fixed

Platform

Software

ASIC

Figure 3: (a) The RINGS application model maps
onto (b) the RINGS architecture.

Networking Video

Standard
Algorithm

Architecture
µµµµArchitecture

Circuit

(a)

MEMORY

Reconfigurable Interconnect

CPU

RF

Baseband
Processing

Video
Engine

(b)

Domain-
Specific

Hardware

Software
Networking

Medium access
Baseband Proc
µµµµArchitecture

Circuit

Signal Proc

DSP

Algorithm
Architecture

µµµµArchitecture
Assembly

software is running on the system controller, and maintains
loose interaction with the domain-specific accelerators. The
RINGS interconnect architecture maintains a flexible set of
communication links between the different (co-)processors
in the system. In between this software layer and the archi-
tecture interconnect layer, there is a very interesting optimi-
zation boundary that cuts all of the domain pyramids in half.
The top half is mapped onto software, while the bottom half
is mapped onto the domain-specific processors. This hard-
ware-software boundary can be thought of as a configura-
tion- or programming interface. When it occurs high-up in
the domain pyramid, it means that software will maintain
only very loose interaction with that domain, sending only
very coarse instructions to the domain-specific processors.
When it occurs at low abstraction level, on the other hand, it
means that there is a close interaction between the software
and the domain-specific processors. In the RINGS architec-
ture, we contend that ideal abstraction level for this hard-
ware-software boundary

varies with the application
domain

. Energy-efficiency-considerations suggest to move
more activity onto a dedicated processor and thus raise the
boundary. Flexibility - and cost-considerations on the other
hand will call for more software and thus push the boundary
down. Optimizing a RINGS system means striking a bal-
ance between these two opposing pressures. As is indicated
on Figure 3, this transition from a flexible to a fixed imple-
mentation (or from software to hardware) is decided
independently for each pyramid. Also, it must be observed
that general-purpose systems, in contrast to the flexibility of
RINGS, make an up front hard-coded decision about the
boundary between software and architecture.

3. RINGS DESIGN METHODS

3.1 Design entry point

Embedded systems are complex applications. They con-
sist of multiple components that need to be mapped on a
heterogeneous architecture. The original application is sel-
dom well defined and might be a mixture of high level specs
in a natural language, block diagrams of sub components,
and a C or Matlab description of other sub components,
such as a JPEG or another video standard. The original
specs might also include architectural features, such as the
request to reuse an existing IP block or an existing assembly
code library.

The task of the designer is to map the initial high level
specs into a detailed spec. This task consists of two major
components. One is a gradual vertical refinement of the ini-
tial spec. The second is to perform a horizontal design space
exploration between design options and to optimize the

energy flexibility trade-off. This is illustrated by the
reversed umbrella of Figure 4.

3.2 Application specification

The initial abstract specification is a mixture of natural
language (English) specifications, block diagrams and pos-
sibly executables for sub components. For instance for the
wireless video phone mentioned earlier, there might a C ref-
erence code available for the coding standard. This might be
combined with a written spec on the networking and wire-
less communication and a library of IP blocks available
from previous designs.

For individual pyramids, well-suited, domain-specific
languages and specification environments are available.
One example is the domain of signal processing. For this
domain, both high level domain-specific languages such as
Silage [18] or specification environments such as Ptolemy
have been developed. Data flow descriptions are another
example used for real-time (multi-dimensional) signal pro-
cessing examples [11][13]. For instance the DFG and
MDFG [20] have been developed.

For the control-flow dominated applications, synchro-
nous specifications [2] have been developed to deal with the
intricacies of events in a formal way. Another classic mod-
eling abstraction for control-dominated applications are
Statecharts [7], currently part of the UML standard that tar-
gets to model complex software systems.

The specification of the complete system will therefore
never be in one language . This language, (if it would
exist) will either be too general purpose, since it has to
cover a wide range of application domains. Or if it is effi-
cient for one application class, it will fail in capturing the
details of another domain.

In practice, C or C++ descriptions are widely used as
specifications. The reason is that original specs are devel-
oped on general purpose (sequential) machines, onto which
C or C++ run very conveniently. As a consequence, a lot of
research is devoted to extract the parallelism out of a

Figure 4: The reverse umbrella: vertical refinement
and horizontal design space exploration.

Abstract Specification
Executable Specification
Transformations
Memory optimizations
Data Type refinement

Vertical
Refinement

ASIC,
IP

Horizontal
Exploration

Special
Purpose

Retargetable
Coprocessor

DSP RISCVLIWDSP with
Coproc.

sequential description, while the original specification
might have shown the parallelism in a natural way.

This is an engineering fact of life, which we try not to
address in an automatic way. In our design environment, we
allow the designer to explore with different, parallel pro-
cessing units, but it is the designer, who at the high abstrac-
tion level, will partition the design over the different
domains. For many embedded applications, this is a quite
natural task. The overall control-flow that connects the dif-
ferent applications together sits in the main embedded con-
troller.

3.3 The gradual refinement

While the image of multiple domains that capture an
application is intuitive and easily understood, the format in
which an application is delivered will seldom take the shape
of such a pyramid. Elements of both the application and the
architecture can be delivered in a variety of ways that must
be combined in RINGS.

System design - Abstract specification

: An application
can be provided as high level abstract specifications (e.g. an
algorithm, a mathematical formula, a Z-domain specifica-
tion), or as reference implementation (e.g. a C or Matlab
program). Whatever the format, it is unlikely to have the
properties required for mapping onto the final RINGS archi-
tecture. Similarly, architecture elements in RINGS come in
different formats: as intellectual-property modules with
detailed architecture specs (e.g. an ARM core), or as high-
level black boxes (e.g. a yet-to-be-designed motion estima-
tion module).

System to embedded system design - Executable spec-
ification

: The initial abstract specifications are turned into
an executable specification. For instance for video applica-
tions, this means that a C or C++ executable is available,
(hopefully) including test benches.

Transformations

: This original executable is not opti-
mized for embedded implementation. A typical transforma-
tion is the explicit introduction of parallelism. This is
parallelism at the task level not the individual instruction or
operation level. Another example of transformation is the
introduction of explicit code that describes the communica-
tion between tasks or processes.

Memory Optimizations:

 One of the main optimizations
possible is one of memory management. The original code
is written for functional correctness, without taking the
memory constraints, both in size and access, of the embed-
ded device into account. To reduce the memory size and the
number of memory accesses, both code transformations and
memory architecture optimizations can be performed [4].
Some of these code transformations are architecture inde-
pendent, others architecture dependent. In some architec-
tures, the memory is fixed and given, for others, the
memory architectures and associated address generation can
still be molded towards the application domain.

Data type refinement:

 Transformations for memory
optimization cross loop boundaries, affect function calls and
in general have a more global impact. Once these are stable,
more local optimizations are performed to better match the
application code onto the embedded architecture. One such
example is the floating-point to fixed point conversion.
Indeed, most low power embedded processors do not have a
floating point execution unit. Moreover, the fixed point
units are often very limited in size and options. Some of
these data refinements are executed independently of the
target architecture. Some of them are very processor spe-
cific and are executed only when the target architecture is
known. For instance, if one selects a 16-bit fixed point DSP
processor, then the data type refinement will consist of map-
ping the arithmetic operations into 16 bit fixed point opera-
tions with the specific accumulator options provided by the
processor architecture. For instance the DSP processor
might have 2 or 4 accumulators of 32 bits with 8 bits over-
flow and specific overflow and saturation logic. Other pro-
cessors, provide a SIMD type of data paths with associated
instruction sets. For instance, 64 bit processors come with 8
parallel 8 bits wide SIMD instructions. These are typical
examples of target dependent optimizations.

3.4 The horizontal options

For each of the domains an architecture platform needs to
be chosen. Between the two extremes of a fixed ASIC and a
general purpose programmable CPU, there is almost a con-
tinuum of options available to implement a domain. The
two extremes, ASIC and CPU correspond to the two
extremes shown in Figure 2.

ASIC s are still used because the know-how is available
in the form of library IP modules: e.g. a video DCT or IDCT
module, a crypto DES unit, a Viterbi or Turbo acceleration
unit for wireless communications. To increase the reuse
possibilities, the designers of IP blocks add features, param-
eters and other options to the IP blocks to turn them into
special-purpose acceleration units. E.g. the DES unit can be
programmed to execute encryption or decryption. It can also
be programmed to execute DES or triple DES. Similarly,
the Viterbi unit can be programmed for the number of states
or samples, and so on.

As one moves more to the right on the horizontal axis of
Figure 4, the processor architecture becomes more program-
mable. A processor has fundamentally four basic compo-
nents: the data path or execution units, the control part, the
memory part and the interconnect. Each of these compo-
nents can be fixed or can be made programmable. At the
same time, the granularity of programming needs to be
defined. If a data path is still reprogrammed at the bit level
or CLB level, it is called reconfiguration (typically on a
FPGA or an FPGA block). If it is reprogrammed at the
instruction level, it is called instruction set reconfiguration.

Reconfigurability is a concept with many different faces.
We have defined the reconfiguration hierarchy [17] shown
in Figure 5 as a representation of the design space of recon-
figurable systems. The three axes of the reconfiguration
space express three orthogonal reconfigurability character-
istics: the configuration binding time, the reconfiguration
abstraction level, and the nature of the reconfiguration.
Reconfigurable systems can occupy lines, planes or vol-
umes in this space. A general purpose programmable pro-
cessor that has all components of the processor fixed and
that can only be reprogrammed, occupies a line in this
space: reconfiguration of this device proceeds at a fixed rate
(the instruction stream) and at a fixed abstraction level
(micro-architecture), and reconfiguration is done though
ALU operations, register file addresses and multiplexer
control inputs. Such a general purpose processor can now be
unfolded to a more flexible reconfigurable system that occu-
pies a plane or even a volume.

Typical architectural modifications will result in a recon-
figuration plane: A first type of re-configuration is added
when the data paths can be changed. This is e.g. the case in
certain VLIW type of architectures, such as the ART
design environment [12]. Other design environments allow
the addition of specialized data paths and associated instruc-
tion sets. This is e.g. the case in the design environment of
Lisatek or Tensilica [16].

3.5 An example refinement: AES Co-
processing

We will give an example of the impact of the vertical
refinement/horizontal exploration process. A dedicated
AES128 coprocessor can execute the advanced encryption
standard (AES) algorithm in 11 clock cycles. Figure 6a
illustrates how it is attached as a memory-mapped coproces-
sor to a 32-bit embedded Sparc microprocessor. The raw
performance of this dedicated coprocessor is however only
useful in the context of a larger application.

We implemented an embedded Java virtual machine
(KVM) onto the Sparc processor, similar to the one that can
be found on mobile phone applications. Then we integrated
the AES128 coprocessor so that it could provide security
services to the Java KVM. As illustrated in Figure 6b, this is
a two-step process. The first is to create a

native interface

onto the Java Virtual machine that runs on top of the Sparc
processor. Such a native interface is written in C. The sec-
ond step consists of further adapting the code so that it
directly interfaces to the memory-mapped coprocessors.

As illustrated in Figure 6b, the performance improve-
ment is quite dramatic. If we run the AES encryption algo-
rithm in Java software (and thus bypassing the coprocessor
altogether), then we need 300K cycles for one encryption
iteration. By building the native interface to C-code, and
using an optimized version of the AES algorithm in the C
language, the total amount of clock cycles drops to 44K.
The best performance is obtained when we make use of the
coprocessor, in which case the total amount of cycles drops
to below 1Kcycles. Because the total amount of cycles for
AES encryption has shrunk by a factor of 300, we obtain
significant power savings. Even taking the additional over-
head of a hardware coprocessor into account, we demon-
strated a 25-fold improvement in power consumption
assuming an FPGA technology.

Figure 5: The reconfiguration hierarchy.

Computation
Abstraction

Level

Reconfigurable
Feature

Binding
Rate

Computation
Abstraction

Level

Reconfigurable
Feature

Binding
Rate

CLB RAM
details

Switches,
Muxes

Implementation

Execution unit
type

Register
file

Cross-bar
Busses

Micro-
architecture

Custom
instructions

Register
set

Size address/
data bus

Instruction set
Architecture

Number & type
of processes

Memory
hierarchy

Interconnect
network

Systems

ComputationStorageCommunication

CLB RAM
details

Switches,
Muxes

Implementation

Execution unit
type

Register
file

Cross-bar
Busses

Micro-
architecture

Custom
instructions

Register
set

Size address/
data bus

Instruction set
Architecture

Number & type
of processes

Memory
hierarchy

Interconnect
network

Systems

ComputationStorageCommunication

aes_decoder

din dout ins
83232

memory-mapped interface

LEON2 SPARC
32-bit RISC

HW

aes_top

ld

reset

key

text_in
text_out

done

128

128
128

Figure 6: (a) A memory-mapped AES128
Coprocessor shows (b) a 300-times performance
increase over a pure software implementation in

Java
cycles

C
cycles

Rijndael
301,034

Interface
367 Interface

892Rijndael
44,063

Rijndael
11

Co-processor
cycles

301, 034 44,430 903Total Cycles

acceleration

(a)

(b)

Figure 6b also makes clear that the cost of additional pro-
cessing levels (i.e. Java/C/Hardware) is high. Indeed, for the
coprocessor, the execution overhead of interfacing dedi-
cated hardware to software is 80 times! This problem is a
generic one and not limited to AES encryption. Modern
technology makes dedicated hardware and gates virtually
free, however making effective use of them can be a major
hurdle. The interconnect strategy of RINGS provides a spe-
cific approach to this interface overhead problem, by pro-
moting a maximum amount of flexibility in on-chip
information-flow.

4. RINGS DESIGN TOOLS

As was pointed out before, RINGS approaches system
design as a codesign of domains. It should come as no sur-
prise that the RINGS design environment is, in essence, a
codesign environment. We need an efficient hardware mod-
eling and verification environment to create domain-spe-
cific processors and their on-chip interconnection network.
But, we also need co-simulation with software running on
the central controller. In this section, we will present an
environment that allows us to achieve both of these goals at
the same time.

We will first present our codesign model. Next, we
present the design tool architecture.

4.1 The GEZEL codesign model

Our codesign model is based on combining cycle-accu-
rate FSMD (finite-state machine + data path) models for
hardware with instruction-set simulation for software. We
will illustrate the codesign model in the most simple form,
as a single ISS combined with a memory-mapped interface
to the hardware.

Consider again the architecture in Figure 6a. The AES
encryption coprocessor is controlled out of C code running
on the Sparc core. The encryption coprocessor includes an
AES IP core (aes_top) with 128-bit input/output busses.
This core is instantiated inside of a decoder module
aes_decoder that multiplexes the 128-bit I/O data busses of
aes_top on the 32-bit data connections to aes_decoder.

A number of memory addresses on the Sparc have been
reserved for communication with the AES coprocessor. In
this case, we have reserved two 32-bit data channels (din,
dout), and an 8-bit instruction bus ins. By accessing an
absolute memory address in C, we will be able to exchange
data with the AES hardware. Figure 7a shows a sample C
program that provides a new key value as 12 subsequent
memory writes.

Figure 7: (a) C driver program for
(b) GEZEL description of aes_decoder

(a)

(b)

typedef volatile char* vcp;
typedef volatile int* vip;
vcp ins = (vcp) 0x80000000;
vip din = (vip) 0x80000008;
vip dout = (vip) 0x80000004;

enum {ins_idle, ins_load, ins_key};

void load_key(int w0, w1, w2, w3) {
*din = w0; *ins = ins_load; *ins = ins_idle;
*din = w1; *ins = ins_load; *ins = ins_idle;
*din = w2; *ins = ins_load; *ins = ins_idle;
*din = w3; *ins = ins_key; *ins = ins_idle;
}

dp aes_decoder(in ins : ns(8);
in din : ns(32);
out dout : ns(32)) {

reg key : ns(128);
reg wrkreg0, wrkreg1, wrkreg2 : ns(32);
reg ir : ns(8);
reg dinreg : ns(32);

use aes_top(rst, ld, sigdone, key, txtin, txtout);

sfg decode { insreg = ins;
dinreg = din; }

sfg putword { wrkreg0 = dinreg;
wrkreg1 = wrkreg0;
wrkreg2 = wrkreg1; }

// The ‘#’ operator bit-concatenates
sfg setkey { key = wrkreg2 # wrkreg1 #

wrkreg0 # dinreg; }

}

fsm faes_decoder(aes_decoder) {
initial s0;
state s1, s2;
@s0 (decode) -> s1;
@s1 if (ir == 1) then (decode, putword) -> s2;
else if (ir == 2) then (decode, setkey) -> s2;
else (decode) -> s1;

@s2 if (ir == 0) then (decode) -> s1;
else (decode) -> s2;

}

ipblock b_ins(out data : ns(8)) {
iptype "armsource"; ipparm "address=0x80000000";

}

ipblock b_datain(out data : ns(32)) {
iptype "armsource"; ipparm "address=0x80000008";

}

ipblock b_dataout(in data : ns(32)) {
iptype "armsink"; ipparm "address=0x80000004";

}

system S {
aes_decoder(ins, din, dout);
b_ins(ins);
b_datain(din);
b_dataout(dout);

}

Module

Module control

HW/SW Interface

The AES hardware is expressed in a dedicated language
called GEZEL that uses FSMD semantics. Figure 7b illus-
trates (part of) the GEZEL description of the top-level
aes_decoder. The code shows how a 128-bit key is assem-
bled out of four subsequent 32-bit data input values. The
module aes_decoder contains registers, in addition to signal
flow graphs (

sfg

) that contain operations on these regis-
ters. Each sfg represents one clock cycle of processing. A
module can hierarchically include another one by means of
the use statement. A finite state machine (

fsm

) expresses
control as a state transition graph that indicates which sfg
will execute each clock cycle. One transition takes one
clock cycle. Conditional state transitions can be expressed
using boolean conditions on data path registers. In the
example, the fsm decodes one of three instructions received
through ins from the C software. Two of them (

ir==1

 and

ir==2

) assemble the key using 32-bit chunks of din. A
third one is an idle instruction that is used to synchronize
the operation of aes_decoder to the C software on the ISS.
As shown in Figure 7a, a single-sided handshake is created
by providing an idle instruction after each active instruction.

The aes_decoder module is interfaced to a driver C pro-
gram by describing the characteristics of each memory-
mapped interface. In GEZEL, an ipblock is used for such a
memory-mapped interface. An ipblock can have a custom
implementation, both for the purpose of simulation as well
as for mapping. Finally, the memory-mapped interfaces are
connected to the aes_decoder in a system block, which is
the top-level GEZEL module.

4.2 GEZEL Architecture

The architecture of the co-simulator for this single-pro-
cessor system is illustrated in Figure 8a. GEZEL is orga-
nized as a C++ library with a built-in parser. The library is
linked against the ISS to create a co-simulation environ-
ment. A GEZEL description is parsed and converted into
simulation objects. These objects are sets of expressions,
extracted out of sfg descriptions. The expressions define the
values of signals or registers. The control description of
each module determines for each clock cycle which expres-
sion is valid.

The co-simulation interface consists of two elements: a
synchronization interface and a data exchange interface.
The synchronization interface keeps the GEZEL description
running in coordination with the ISS. The data exchange
interface allows to exchange data from the C software to the
GEZEL program. To implement a memory-mapped inter-
face, we intercept memory read/write in the ISS and for-
ward those with a matching address to the GEZEL
simulation, where they are available as port values on an
ipblock.

As shown in Figure 8b, we have created GEZEL co-sim-
ulators with several different cores, including ARM,
LEON2-Sparc, and SH3-DSP. We also build a co-simula-
tion interface to SystemC to provide seamless co-existence
of GEZEL code with SystemC. An important element of the
GEZEL environment is the ability to generate synthesizable
VHDL code, which closes the path to implementation for
RINGS hardware processors.

4.3 ARMZILLA: A multiprocessor simulator

We have built the ARMZILLA environment to evaluate
one class of RINGS architectures, namely those that can be
built with one or more ARM cores, a network-on-chip, and
dedicated hardware processors. Figure 9 illustrates the
ARMZILLA setup. There are three components: a hardware
simulation kernel (GEZEL), one or more instruction-set
simulators (ISS), and a configuration unit. The GEZEL ker-
nel captures hardware models with the FSMD (Finite-State-
Machine with Data path) model-of-computation. For the
ARM ISS we use the cycle-true SimIT-ARM environment
[14]. The ARM ISS uses memory-mapped channels to con-
nect to the GEZEL hardware models. Finally, the configura-
tion unit specifies a symbolic name for each ARM ISS, and

ARM LEON2
Sparc

SH3
DSP SystemC

multi-processor

GEZEL Kernel

C++
Interface

GEZEL
Language Parser

VHDL

Codegen

Expression

sig/reg

Control &
Decode

select

Expression

Expression

Parser

Create RT-Level
Objects

cosim stub

ISS

GEZEL Kernel

synchronization
cycle()

data exchange
read(), write()

(a)

(b)

Figure 8: (a) GEZEL is implemented as a C++ library
that links to an instruction-set simulator. (b) Several

cosimulation interfaces are available, including VHDL

associates each ISS with an executable. This way the mem-
ory-mapped communication channels can be set up, and the
hardware GEZEL models can address each ARM memory
space uniquely.

5. RINGS ARCHITECTURE ELEMENTS

The RINGS architecture accommodates a heterogeneous
collection of architecture elements. These comprise a num-
ber of the following components: General-purpose RISC
and VLIW processors, DSP and other special-purpose pro-
cessors, and ASIC. Choosing one or the other is a matter of
how well the application is understood and can be molded,
in a cost-effective manner, into a specialized architecture.

Indeed, if there are no constraints on performance and
power consumption, then a high level simulation model of a
system is as good an implementation as the embedded ver-
sion of it. This implies that a general-purpose processor is
the most likely architecture in the absence of performance
and power constraints. When performance/power is taken
into account, architectures are required which offer a more
efficient utilization of the intrinsic computing efficiency of
silicon, as discussed in the introduction section. From the
system level viewpoint, this means that the program-
ming/configuration mechanism has to be specialized
towards the application.

General-purpose FPGA are playing part in this picture
insofar they offer a general-purpose, spatial programming
platform. They are at the same level of general-purpose pro-
grammability as a general-purpose processor. General pur-
pose LUT-based FPGA are a factor of 10 less energy-
efficient then dedicated architectures [15]. New generations
of FPGA introduce dedicated hard-macros, such as proces-
sors, RAM-blocks, multipliers, I/O ports and so on to
improve better power-figures.

As we discussed before, the RINGS architecture is a part-
ner in a marriage between application and architecture. Also
the application affects the selection of architecture ele-

ments. We will illustrate this by comparing the implementa-
tion of an embedded web server on different target
platforms.

5.1 Example: Embedded Web server

Figure 10 shows the hierarchy of protocol stacks used by
an embedded web server. Ethernet packets are received by a
medium access layer and stripped down and processed sub-
sequently by Internet Protocol (IP), Transmission Control
Protocol (TCP) and Hypertext Transfer Protocol (HTTP)
stacks. There is a stream of control connecting all these pro-
tocol stacks as packets are being decomposed and pro-
cessed.

We started from a reference implementation in C for such
a web server, optimized for execution on an 8-bit controller.
Then, we considered what architecture options would be
available to improve the protocol stack performance. Up
front we ruled out an all-hardware implementation because
of the excessive design cost (both in time and in resources).
Instead, we considered how existing programmable solu-
tions can be applied optimally to select the correct target
architecture.

Two different architectural styles were considered, each
with two variations.

One approach was to apply a DSP processor. While a
protocol stack has no compute operations that would benefit
from the signal processing operators inside a DSP, we must
recognize that such a processor is proficient at working with
indexed data. We used a TI C54 and a BlackFin processor,
both of which have a Harvard-style architecture, and have
dedicated index address generation hardware. Moreover,
both of these processors have a C compiler, which simpli-
fies the porting of the reference implementation to the new
platform.

A second approach was to consider a combination of a
classic RISC processor with a coprocessor that can do in-
band processing on the packet stream fed into the RISC. We
considered two RISC processors, both of them 32 bit. The
first is the LEON-2 Sparc processor, the second is the
Strong-ARM processor.

ARMZILLA

ARM ISS GEZEL
Kernel

Configuration
Unit

C
C

C

EXE
EXE

EXE

ARM ISS
ARM ISS

Memory-mapped
Channels

Hardware
Processors

Network
On Chip

FDL

Config

Cross
Compiler

FDL

Figure 9: ARMZILLA is a combination of GEZEL
and one or more ARM instruction-set simulators.

MAC

IP

TCP

HTTP

WEBPAGES
MEMORY

CONNECTION
STATE

PAYLOAD
MEMORY

<!DOCType html PUBLIC “”>
<html>
...
</html>

Ethernet/IP/TCP/HTTP
Packet

Figure 10: Embedded Webserver Application uses a

One obvious optimization that helps in all platforms is to
convert the 8-bit code to the native word length of the plat-
form, 16 bit for the DSPs and 32 bit for the RISCs. This
transformation is not trivial due to various alignment and
endianess issues, but still can be expressed in C code.

From an initial profiling of the C code, it was obvious
that a major amount of cycles was devoted to TCP/IP check-
sum verification and insertion. In the case of the DSP pro-
cessor, the evaluation of this function can be expressed as a
multiply-accumulate operation for which native support is
available. In addition, the address generation hardware for
DSP runs in parallel with the accumulation process. In the
case of BlackFin, a dual-MAC unit is available, so that we
can perform two accumulates in parallel.

In the case of the RISC-with-coprocessor platforms, the
checksum functions are the preferred candidate for off load-
ing to the coprocessor. This is illustrated in Figure 11. A
checksum generator generates TCP and IP checksums. For
the input channel, they are used for checksum verification.
For the output channel, they are used by a checksum inserter
to place them in the correct position in a packet. An extra
packet memory is required because TCP checksums are
non-causal - they are evaluated on bytes that succeed the
TCP checksum bytes.

Many other optimizations are possible. We enumerate a
few of them to illustrate how the capabilities of a program-
mable platform are used to improve the performance of an
application.

¥ DSP processors provide circular addressing capabilities
for working with FIFO structures, such as needed with
digital filters. For checksum operations, those circular
addressing modes can be used for efficient network
buffer managements.

¥ Both DSP and RISC processors have pipelines that are
sensitive to branches in the code. Loop merging, func-
tion inlining and in some cases rewriting conditional
statements help to minimize the number of branches
during processing.

¥ The checksum operation is a 16-bit 1-complement sum.
This requires overflow checking and possible sum
adjustment after each iteration. However, the DSP have
internal dual 40-bit accumulators, and this overflow
checking can be hoisted out of the accumulation loop
by increasing the accumulator precision. With hand-
coding of double precision operations in assembly, it is
possible to process 8 bytes for each checksum iteration
loop, a dramatic improvement over the 1-byte per itera-
tion in the reference code.

¥ Modern compilers are proficient in optimizing code
towards the architecture. This is an optimization that
can improve but however not completely replace appli-
cation-specific optimization techniques as discussed
above.

The result of these optimizations, shown in Figure 12,
illustrate the impact of the interaction between application
and target architecture for various target platforms. The
speedup factor in the figure compares the unoptimized
application mapping versus an architecture-optimized map-
ping on the same platform. This demonstrates that it is vital
to know the detailed characteristics of a programmable
component in order to use it optimally. At the same time
without a detailed insight into the applications, we are clue-
less on how to use the architecture.

6. RINGS INTERCONNECT

Flexible interconnect is a central theme in RINGS. As
was already illustrated in Figure 3, integration is needed at
different abstraction levels. In this section, we will describe
these interconnection schemes starting at the lowest abstrac-
tion level and ramping up in abstraction level up to the soft-
ware running on the central controller.

6.1 Physical layer reconfigurable
interconnect.

Interconnect is used to transport data over a transmission
medium between the different components of a system,

Figure 11: TCP/IP Checksum Generation/Verification

TCP/IP Stack

Checksum
Generator

Checksum
Generator

Checksum
Inserter

Packet
Memory

Data

Data

Chksm

Chksm
Data

Data

Data

Output
Processing

Input
Processing

Network
Interface

Embedded
Core

Checksum Processor

Figure 12: Relative Effect of Optimizing the
Webserver for each the target platforms.

0

1

2

3

4

5

6

7

8

9

ARM+
Coproc

Sparc+
Coproc

Blackfin TI C54

Speedup

called senders and receivers. Current interconnect schemes
are all based on space or time division. Similarly, reconfigu-
ration is confined to a space and a time axis [6]. New inter-
connect schemes are proposed that introduce frequency and
code division or a combination of all above [19].

6.1.1 SDMA - Space division multiple access

If every sender, receiver pair has its own physical trans-
mission medium, e.g. its own metal wire, there will be no
access conflicts. But the amount of wires will grow expo-
nential with the required number of sender, receiver pairs.
Hence, to keep the space, i.e. number of wires, under con-
trol, space and time division multiple access schemes are
introduced. This has been the reason to add ever more layers
of metal.

6.1.2 TDMA - Time division multiple access

Given a set of metal layers and a set of senders and
receivers, the current approach to solve the interconnect
demand is to introduce time division. It is illustrated con-
ceptually in Figure 13(a). This has been done in multiple
approaches and multiple levels of hierarchy. Busses are the
most well-known example of time multiplexing. Multiple
protocols to arbitrate the bus have been designed.

Examples of bus architectures are the Amba bus [1].
Since resources are limited there is always a latency,
throughput, bandwidth flexibility trade-off.

Providing general multiplexer based reconfigurable inter-
connect architectures can be very expensive in terms of area
and power. It is described in [10], that for a Xilinx
XC4003A FPGA, 65% of the power is attributed to inter-
connect, 21% to clock power, 9% to I/O power and only 5%
to the actual calculations (CLB) power. Although this is an
older FPGA device, new devices still focus on providing
high speed switching matrices.

6.2 CDMA-based Interconnect

To save area and power the physical real-estate needs to
be used more efficiently. Yet at the same time, reconfigura-
tion is required. One option to combine both is the CDMA-
based reconfigurable inter-connect. Figure 13b shows a
conceptual picture of a source synchronous CDMA imple-
mentation. Each sender and receiver gets a unique spreading
code. By changing the Walsh code, a different configuration
is obtained. Traditional buses, which are a TDMA channel,
require hardware switches for reconfiguration such as illus-
trated in Figure 13a. CDMA interconnect has the advantage
that reconfiguration can occur on-the-fly.

For example for multi-memory bus systems, source-syn-
chronous CDMA has been proven to improve the communi-
cation bottle neck between the CPU and the multiple
DRAMs in a processor system [8][9]. The memory wall is
a major problem in increasing the bandwidth and latency of
DRAM based memory systems, without having to increase
the number of I/O pins. By choosing orthogonal codes, two
memory requests can be handled by one channel at the same
time. As a result, it reduces the latency dramatically. A
reconfigurable DRAM uses half the number of high-speed
buses of the conventional D-RDRAM and hence reduces the
channel power dissipation up to 50%.

The reconfiguration feature brings the DRAM close to
the CPU in a dynamic fashion. Similarly, a reconfigurable
interconnect on chip can bring co-processors close to the
main processor or the memory units in a reconfigurable
way. The example of Section 3.5 illustrates this principle.
Depending on the application, a different co-processors
needs to be close to the CPU, without losing the throughput.
In case of cryptographic applications, a small set of special-
ized co-processors is provided on chip, including e.g. a tri-
ple DES, an AES and a hash function. The reason these
units are distinct is that the arithmetic and operation is very
different. Hence the units can not be merged efficiently.
Then a different CDMA code setting, can in a dynamic
fashion rearrange the processors depending the application.

6.3 Network-on-chip

The physical layer reconfigurable interconnect busses
can be used as components in the network-on-chip intercon-
nect architecture. The reconfiguration settings have to travel
down from the application to the CDMA controllers. One
systematic way of implementing this, is by using a network-
on-chip paradigm. The flexibility is contained within the
network topology. Designers can instantiate an arbitrary
network of 1D and 2D router modules. Furthermore, they
can reconfigure internal buffer size of each router, and in
this way, trade area for speed. These two features allow cre-

Figure 13: Reconfigurable Interconnect using (a) TDMA
and (b) source-synchronous CDMA bus interface

Module 2Module 1 (a)

(b)

ation of a network topology that is matched to the traffic
patterns of a special purpose SoC.

As illustrated in Figure 15, a 2D router contains three
concurrent controllers: an input controller, a router output
controller and a processor output controller. The input con-
troller handles simultaneous input requests from neighbor-
ing routers and the processors. Priority is given to router
inputs because the processor interfaces are driven by soft-
ware, which is typically slower. A round-robin scheme is
employed to arbitrate requests of equal priority. The router
output controller and two virtual channels handle communi-
cation to neighboring routers. The two virtual channels can
avoid deadlocks in a two dimensional torus network topol-
ogy. Finally, the processor output controller interfaces with
the processor core to receive packets from the network.
Because the communication between network and processor
is handled in a blocking-send and receive manner, an addi-
tional output buffer is added between the routing channel
and the processor output to relieve possible congestion
caused by the blocking. A 1-D router has a similar structure
but with a reduced interface and reduced number of virtual
channels. A routing table is used to determine the subse-
quent routing path of each packet.

6.4 Software interfaces

The network-on-chip in RINGS accommodates a number
of processors and dedicated hardware processors as network

clients. Using the router modules, these processors
exchange information packets. Each packet carries an
address stamp that allows to route the packet to the interface
of the component with the corresponding address.

We now discuss how a hardware or software processor is
interfaced to this on-chip network. The interface between
router and processor uses request/acknowledge signaling to
synchronize communication between a router and a compo-
nent. For the hardware processors, these request/acknowl-
edge signals are hardwired. For embedded software on the
cores, we use memory-mapped interfaces that map the
request- and acknowledge signals into well-defined bits of
shared memory locations. In C, we can control the value of
the handshake signal by bit-manipulation on the shared
memory addresses. The advantage of such a memory-
mapped scheme is that it is independent of the processor
architecture, so that it can be applied on a broad range of
cores. On the other hand the memory bandwidth of a pro-
cessor is a scarce resource, and therefore we must minimize
the number of memory accesses required in executing the
synchronization cycle. We paid special attention to this in
the development of the communication protocol stacks. At
the level of request/acknowledge signaling, we transfer data
on both phases of the handshake.

On top of this architecture, we define a three-layer net-
work protocol. While such a protocol must accommodate
both hardware and software blocks, we have optimized the
protocol stack towards 32-bit embedded processors. The
three layers in our protocol are the packet layer, the message
layer, and the Message Passing Interface (MPI) layer.
Figure 16 shows the data format used by each abstraction
level.

The packet layer is at the lowest abstraction level and
takes care of the transport of individual packets in the net-
work-on-chip. The lower-order bits of a network-on-chip
packet are used for control signalling, and include a header
bit, a tail bit and a target network address. This field is

Figure 14: A network-on-chip has a configurable
topology made up out of 1D and 2D routers.

2D
Router

2D
Router

2D
Router

2D
Router

1D
Router

P

P P

P P

Figure 15: Architecture of a 2D-router.

input
switch

input
controller

routing
table

virtual channel 1

virtual channel 2

output controller

virtual channel 1

virtual channel 2

output controller

output buffer

client controller

client
input

north-south
input

east-west
input

client
output

north-south
output

east-west
output

Figure 16: Network Protocol Hierarchy

head
tail

target
repeat count

data field

28 4

Header Message

data
15 words

MPI Payload Message

0xF1

MPI Length

tag

req ack data

SW

HW

MPI Tag

Packet
Layer

Message
Layer

MPI
Layer Payload Message

Header Packet

Payload Packets

Packet Format

Network Interface

data
15 words

0xF1

data
4 words

0x41

called the packet tag. A header bit signals the first packet of
a longer stream, while a tail bit indicates the final packet.
Beyond the 4-bit tag, a data word of 32 bits is available. The
lowest nibble of this word has the additional special mean-
ing of repeat count. When the repeat count field has a non-
zero value N, then the router hardware will generate the
packet tags automatically for the next N words. During this
repeat mode, the embedded software can use all 32-bits of
the memory bus for data transfer.

The next two layers are focused on embedded software.
The message layer transports arbitrary length messages in
chunks of 16 packets, using the repeat counter mechanism
described earlier. The first packet is formatted as a header
packet with a nonzero repeat counter field.

The MPI layer defines an embedded interface compliant
with the MPI standard. The basic MPI semantics are block-
ing send/ blocking receive communications of arbitrary
length messages. Each message also has a symbolic tag that
can qualify a logical channel or a particular message data
type. In our implementation, we map each MPI message
into a header message and a payload message. The header
message specifies the length of the payload as well as the
MPI-standard tag field. The payload message can contain a
variable number of words.

We validated this architecture using the ARMZILLA
design environment. ARMZILLA supports cycle-true co-
simulation of one or more ARM instruction-set simulators
(ISS) embedded in a user-specified hardware model. The
hardware model captures the network-on-chip as well as
any additional hardware processor.

The performance metrics of each abstraction layer in our
protocol, as measured with ARMZILLA, are illustrated in
Table 1. The figures show the cycle cost of each abstraction
layer for a ping-pong message - a message that is send from
A to B and back. The table points out that higher abstraction
layers for design induce considerable overhead. Clearly the
comfort and flexibility of MPI-modeling comes at a price.

Table 1: Protocol Overhead for ping-pong messaging
in cycles per word (cpw).

7. RECONFIGURABILITY AND
EMBEDDED SOFTWARE

As illustrated in Figure 3, the integration of domain-spe-
cific processors proceeds at two level. Specialized intercon-
nect architectures as discussed in Section 6 integrate the
architecture. Software interfaces, which we will discuss
next, integrate the application.

Figure 17 demonstrates that there are three options of
coupling the embedded software and the domain-specific
co-processors. These levels correspond to the level of inte-
gration between the CPU and these acceleration hardware
units. We distinguish register-mapped, memory-mapped
and network-mapped reconfigurable blocks.

7.1 Register-Mapped Reconfigurable Blocks

Register-mapped reconfigurable blocks give the tightest
integration with embedded software. They can be created by
modifying the micro-architecture of an embedded core, for
example by integrating a custom reconfigurable data-path
next to the ALU. In this case, the presence of such a block is
directly visible in the instruction-set of the embedded core.

This type of reconfigurable blocks is popular because
their design can be tightly integrated into the existing tool-
and architecture infrastructure for this core. However, we
should also realize that this solution requires a tight cou-
pling of control-flow and data-flow. The parallelism that
can be obtained with these solutions is primarily data-paral-
lellism. We cannot easily modify the data-flow and control-
flow of an algorithm outside the model provided by the
CPU. Another issue is that control- and data-flow depen-
dencies need to be resolved instruction-by-instruction. For
example, pipeline conflicts in the CPU will also affect the
processing performance of the reconfigurable block.

7.2 Memory-Mapped Reconfigurable Blocks

By providing reconfigurable blocks with a memory inter-
face, they can be integrated into the memory-map of a pro-
cessor. This method results in looser coupling between
software and the reconfigurable block. A set of shared
memory locations between the software and the config-
urable block is defined. These shared memory locations can
convey control- as well as data-flow oriented information,
depending on the requirements of the design. As a result,
coupling between data-flow and control-flow is less tight. A
typical example of loose control-data coupling is the use of
so-called continuous instructions in streaming-media pro-

Abstraction Level

Payload =
8 words

Payload =
64 words

MPI-Layer (SW)
Message Layer (SW)
Packet Layer (HW)

135 cpw
72 cpw
8 cpw

62 cpw
42 cpw
8 cpw

Figure 17: Coarse-grain Reconfigurable Blocks
are Register-Mapped (C1), Memory-Mapped

(C2) or Network-Mapped (C3)

CPU

C1ALU C2

Local
Memory

Router

Network-
On-Chip

C3

cessors. A continuous instruction is one that is assumed to
be applicable to a stream of data elements. For this purpose,
the processor can be programmed into a predefined mode of
operation using a continuous instruction. The same type of
instruction can also be created for a reconfigurable block:
one memory location of the interface is used to configure
the operation of that block, and after that another location
accepts a stream of data values to be processed.

A drawback of this type of integration is that a reconfig-
urable block must share the memory address space with
other memories and peripherals. Also, both the control and
data-flow are eventually routed through the CPU and the
embedded software. Direct-memory access techniques can
help to break this bottleneck but do not eliminate the funda-
mental problem of a shared memory address space. The
CPU remains a bottleneck in the overall system.

7.3 Network-Mapped Reconfigurable Blocks

Reconfigurable blocks can also be attached as indepen-
dent entities in a Network-on-Chip. In this case, integration
of embedded software and reconfigurable blocks can be
done using communication primitives.

Network-mapping allows to treat the integration of data-
and control-flow independently. In a network-on-chip, net-
work packets can contain control- as well as data-flow
information. Therefore, data-flow and control-flow might
literally have a different route in the system. For example, it
is possible to create a system where a CPU sends configura-
tion and control packets to reconfigurable blocks that at the
same time have high-throughput data-streams between
them. In this case The embedded software on the CPU
maintains overall system synchronization, rather than being
a data pipe. This programming model is the most compli-
cated, because it deviates the most from a classic sequential
programming model.

7.4 Impact on Embedded Software Design

Each of the three schemes discussed has specific require-
ments towards system- and embedded software design. In
Table 1, we give an overview of the issues that are relevant

to select a particular strategy, as well as the impact of each
strategy on design support.
¥ Architecture Strategy relates to the reconfigurable

block. Self-contained architectures such as peer proces-
sors are harder to design because their integration inter-
face is more complicated.

¥ Reconfiguration Mechanism indicates how instruc-
tions are provided to the reconfigurable block.

¥ Data-flow/Control-Flow Coupling indicates how close
the design of data-flow is linked to the design of con-
trol- flow. Uncoupled offers higher performance,
potential better energy improvement, but is also the
hardest to program.

¥ Energy Efficiency Improvement is a relative apprecia-
tion how energy-efficient a coarse grain reconfigurable
system will perform when compared to a software-
only, single-CPU system with the same functionality.

¥ Simulation Technology indicates the required simula-
tion technology to design software for this reconfig-
urable system effectively. Each of the three approaches
requires instruction-set simulation, but the complexity
of the co-simulation setup shows large variations.

¥ Integration Technology indicates the requirements
towards embedded software development. A tightly
coupled, register-mapped system requires a compiler
that can create custom instructions. Memory-mapped
systems can be supported using software libraries. Net-
work-mapped systems need communication primitives,
and can require the introduction of specialized operat-
ing system software.

In our experience, each of these three models for coarse-
grain reconfigurability has virtues and deficiencies, and
none of them can be pointed at as a universal solution.

8. CONCLUSIONS

In this paper, we pointed out the matching making pro-
cess of architecture and application in the context of recon-
figurable systems. We believe the ability to efficiently
connect the world of programs and the world of architec-
tures will become a central topic in reconfigurable design.
This is because of two reasons: on the one hand, because

Table 2: Coarse Grain Reconfiguration Mechanisms

Mapping Architecture
Strategy

Reconfiguration
Mechanism

Data-flow/
Control-flow

Coupling

Energy
Efficiency

Improvement

Simulation
Technology

Integration
Technology

Register-
Mapped

Custom Datapath Custom
Instructions

Tight Low Custom ISS Custom
Compiler

Memory-
Mapped

Coprocessor Memory-mapped
Instructions

Loose Medium ISS/Coprocessor
Cosimulation

Software Library
(function call)

Network-
Mapped

Peer Processor Configuration
Packets

Uncoupled High ISS/Coproc/NoC
Cosiumulation

Communication
primitive

future system design is becoming prohibitively expensive
and it makes second guesses out of the question, and on the
other hand, because general-purpose programmable systems
alone cannot reach the energy efficiencies required for a
pervasively connected world.

In the paper, we outlined the tools that help us answer
this question. It requires to subdivide a system in its com-
posing domains, and approach each of these domains indi-
vidually for optimal energy-efficiency. Next, the domain
implementations are integrated back into a system, at the
architecture level using a flexible interconnect scheme, and
at the algorithm level using a layer of integration software.
We proposed the RINGS architecture as the architecture
template for such systems and the GEZEL design environ-
ment to support the design of RINGS applications.

9. ACKNOWLEDGEMENTS

The authors would like to thank the support of NSF grant
CCR-0310527, SRC grant 2003-HJ-1116, and Atmel, Pana-
sonic and Xilinx through UC-Micro 02-079.

10. REFERENCES

[1] ARM, Amba Specification, available from www.arm.com

[2] Benveniste, et al,

The synchronous languages 12 years later

,
Proceedings of the IEEE, Vol 91(1), Jan 2003

[3] Carey,

Palms latest wireless wonder

, EETimes, Under-the-
hood, April 2002.

[4] Catthoor, et al.,

Custom Memory Management Methodology -
- Exploration of Memory Organisation for Embedded
Multimedia System Design

, Kluwer Academic Publishers,
Boston, 1998.

[5] Claasen,

High speed: not the only way to exploit the intrinsic
computational power of silicon

, Proc. Solid-State Circuits
Conference 1999 (ISSCC 1999), pp. 22-25.

[6] A. Dehon, J. Wawrzynek, Reconfigurable computing: what,
why, and implications for design automation, Proc. DAC
1999, pg. 610-615.

[7] Harel,

Statecharts: A visual formalism for complex systems

,
Science of Computer Programming, 8(3):231--274, June
1987.

[8] J. Kim, Z. Xu, M.F. Chang, Reconfigurable Memory Bus
Systems using Multi-Gbs/pin CDMA I/O Transceivers,
Proc. ISCAS, pg. II-33- to II-36, 2003.

[9] J. Kim, Z. Xu, M.F. Chang, A 2Gb/s/pin Source
Synchronous CDMA Bus Interface with simultaneous multi-
chip access and Reconfigurable I/O capability, Proc. IEEE
CICC, Sept. 2003.

[10] E. Kusse, J. Rabaey, Low-energy embedded FPGA
structures, Proc. 1998 International Symposium on Low
Power Electronics and Design, ISLPED 1998, pg. 155 -160

[11] E.A. Lee, D. Messerschmitt, "Synchronous data flow,"
Proceedings of the IEEE, Vol. 75, no.9, Sept. 1987.

[12] P. Mosch ,G. van Oerle, S. Menzl, N. Rougnon-Glasson, K.
Van Nieuwenhove, M. Wezelenburg, A 660- W 50-Mops
1-V DSP for a hearing aid chip set, IEEE Journal of Solid-
State Circuits, vol. 35, pp. 1705 - 1712, November 2000.

[13] P. Murthy, E.A. Lee, "Multi-dimensional Synchronous Data
flow graphs" IEEE Transactions on Signal Processing, Vol.
50, No. 7, July 2002.

[14] W. Qin et al.,

Flexible and Formal Modeling of
Microprocessors with Application to Retargetable
Simulation

, Proc. DATE 03, March 2003, Munchen.

[15] J. Rabaey, Platforms for the next generation wireless
systems - What role does Reconfigurable Hardware plays?
Proc. FPL 2000, LNCS 1896, pp. 277-285, 2000.

[16] C. Rowen,

Reducing SoC Simulation and Development Time

,
IEEE Computer, 35(12), pp. 29-34.

[17] P. Schaumont, I. Verbauwhede, K. Keutzer, M. Sarrafzadeh,
A Quick Safari through the Reconfiguration Jungle,
Proceedings Design Automation Conference, DAC-2001, Las
Vegas, June 2001, pg. 172-177.

[18] I. Verbauwhede, C. Scheers, J. Rabaey Analysis of Multi-
dimensional DSP Specifications IEEE Transactions on
Signal Processing, Vol. 44, No. 12, December 1996, pp.
3169-3174.

[19] I. Verbauwhede, M.F. Chang, Reconfigurable Interconnect
for next generation systems,

Proc. ACM/Sigda 2002
International workshop on System Level Interconnect
Prediction (SLIP02), Del Mar, CA.

[20] W. Verhaegh, et al. A Two-Stage approach to
Multidimensional Periodic scheduling, IEEE Transactions
on CAD, Vol. 20, No. 10, October 2001.

