
Abstract
We present a technique to improve the efficiency of hard-

ware-software cosimulation, using design information
known at simulator compile-time. The generic term for such
optimization is partial evaluation. Our contribution is that
we apply the optimization transparantly to the user, and at
multiple abstraction levels in the simulation.

We use the technique to create an interactive codesign
environment, and evaluate it on several designs including
an AES encryption coprocessor and a Viterbi decoder, and
for several instruction-set simulators. Compared to Sys-
temC-based cosimulation, we achieve comparable cosimu-
lation performance at only a fraction of the model-build
time.

1  Introduction
Because of reasons of energy-efficiency and perfor-

mance, system-on-chip (SoC) for embedded applications
rely on hardware coprocessors. These coprocessors are used
for a variety of specialized functions, such as baseband sig-
nal processing, sensor data reduction, encryption, and a
myriad of peripheral I/O functions. System verification is a
major issue because all these coprocessors cooperate to
achieve a single goal, for example doing an encrypted
videolink on a mobile phone.

The development of such hardware-enabled platforms is
a trial-and-error process that requires design exploration
and the shifting of functionality from software to hardware
and back. We developed an interactive design environment
that targets such hardware-enabled SoC platforms. It pro-
vides interpreted yet highly efficient simulation of hard-
ware models. We call it interactive because it combines
simultaneous development of the SoC platform and the
application for that platform. In contrast, compiled SoC
hardware models require lengthy recompiles for each modi-
fication to the SoC platform.

Our design environment, illustrated in Figure 1, com-
bines intruction-set simulation (ISS) with application-spe-
cific hardware models writtten in a dedicated language. The
hardware models are RT-level accurate, and thus can be
readily translated into synthesizable code. We made this
design choice because RT-level simulation is still regarded
by many as the ultimate golden model of an SoC.

This SoC cosimulation therefore has conflicting goals:
we need high simulation speed, but also cycle-accurate sim-
ulation accuracy and minimal model-build-time. In the
paper we discuss how our design environment handles this
problem. The key is to use knowledge about the properties
and structure of the design to optimize the simulator. The
general technique that achieves this is called partial evalua-
tion [1]. For example, when the wordlength of a particular
signal is known to be smaller than 32 bits, then the simula-
tion can use a 32-bit integer instead of an arbitrary-preci-
sion datatype. We will show that the ideas of partial
evaluation apply to many different aspects of simulation.

In the paper we first discuss cosimulation approaches
related to our work. Next, we present our codesign data
model and cosimulator architecture. We then consider the
optimization strategy for the cosimulator, and illustrate this
with design examples. The examples are compared against
Verilog modeling as well as SystemC modeling. Finally we
draw conclusions and point to future work.

2  Related work
Cosimulation is traditionally done by connecting multi-

ple simulation engines, for example an ISS and a HDL sim-
ulator [2]. Contemporary ISS achieve over 1 MHz cycle-
accurate simulation performance on a workstation [3], mov-
ing the simulation bottleneck to the integration of HW and
SW simulation. By using a programming language such as
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SystemC, a tight and efficient coupling between hardware
model and ISS can be achieved [4]. The hardware simula-
tion efficiency can be further increased at the expense of
simulation accuracy by using abstracted models [5]. These
approaches use a compiled programming language for
hardware modeling. Our work targets to combine the bene-
fits of a compiled programming language with a design
interactivity. We use an interpreted, dedicated language to
avoid the compilation overhead, and as will be shown this
does not have to imply slow execution speed. In addition,
the use of a dedicated language allows to issue feedback
and error messages that are directly related to the hardware
model. In contrast, with a general-purpose language such as
C or C++, one has first to create a correct C(++) program
before the semantics of the hardware model can be checked.

Modern SoC platforms increasingly consist of ‘soft’
hardware [6] in the form of FPGA and other configurable
technologies. This makes model-build time an important
parameter, and motivates why we want to minimize design
iteration time (the loop of Figure 1) instead of simply going
for the fastest simulation speed possible. For the latter, very
efficient techniques are available [7].

A key insight in our work is that an extra interpretion
step allows to do partial evaluation [8] - the use of design
properties to specialize the simulator. It can be done
transparantly to the designer and can take away some of the
design burden.

3  Codesign model
3.1 The GEZEL language

Our codesign model is based on combining cycle-accu-
rate FSMD (finite-state machine + datapath) models for
hardware with instruction-set simulation for software. We
will illustrate the codesign model in the most simple form,
as a single ISS combined with a memory-mapped interface
to the hardware.

Figure 2 illustrates the main features of the codesign
datamodel by the example of an AES encryption coproces-

sor. The AES encryption coprocessor is controlled out of C
code running on an embedded core. The encryption copro-
cessor includes an AES IP core (aes_top) with 128-bit
input/output busses. This core is instantiated inside of a

Figure 2: Codesign Data Model Example
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typedef volatile char* vcp;
typedef volatile int*  vip;
vcp ins  = (vcp) 0x80000000;
vip din  = (vip) 0x80000008;
vip dout = (vip) 0x80000004;

enum {ins_idle, ins_load, ins_key};

void load_key(int w0, w1, w2, w3) {
*din = w0;   *ins = ins_load;   *ins = ins_idle;
*din = w1;   *ins = ins_load;   *ins = ins_idle;
*din = w2;   *ins = ins_load;   *ins = ins_idle;
*din = w3;   *ins = ins_key;    *ins = ins_idle;

}

dp aes_decoder(in ins : ns(8);
in din : ns(32); 
out dout : ns(32)) {

reg key                       : ns(128);
reg wrkreg0, wrkreg1, wrkreg2 : ns(32);
reg ir                        : ns(8);
reg dinreg                    : ns(32);

use aes_top(rst, ld, sigdone, key, txtin, txtout);

sfg decode   { insreg = ins; 
dinreg = din; }

sfg putword  { wrkreg0 = dinreg; 
wrkreg1 = wrkreg0; 
wrkreg2 = wrkreg1; }

// The ‘#’ operator bit-concatenates
sfg setkey   { key     = wrkreg2 # wrkreg1 # 

wrkreg0 # dinreg; }

}

fsm faes_decoder(aes_decoder) {
initial s0;
state s1, s2;
@s0 (decode)                                 -> s1;
@s1 if (ir == 1)      then (decode, putword) -> s2;

else if (ir == 2) then (decode, setkey)  -> s2;
else (decode)                            -> s1;

@s2 if (ir == 0) then (decode)               -> s1;
else (decode)               -> s2;

}

ipblock b_ins(out data : ns(8)) {
iptype "armsource"; ipparm "address=0x80000000";

}

ipblock b_datain(out data : ns(32)) {
iptype "armsource"; ipparm "address=0x80000008";

}

ipblock b_dataout(in data : ns(32)) {
iptype "armsink"; ipparm "address=0x80000004";

}

system S {
aes_decoder(ins, din, dout);
b_ins(ins);
b_datain(din);
b_dataout(dout);

}

Module

Module control
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decoder module aes_decoder that multiplexes the 128-
bit I/O data busses of aes_top on the 32-bit data connec-
tions to aes_decoder. 

A number of memory addresses on the core have been
reserved for communication with the AES coprocessor. In
this case, we have reserved two 32-bit data channels (din,
dout), and an 8-bit instruction bus ins. By accessing an
absolute memory address in C, we will be able to exchange
data with the AES hardware. Figure 3a shows a sample C
program that provides a new key value as 12 subsequent
memory writes.

The AES hardware is expressed in a dedicated language
called GEZEL that uses FSMD semantics. Figure 3b illus-
trates (part of) the GEZEL description of the top-level
aes_decoder. The code shows how a 128-bit key is
assembled out of four subsequent 32-bit data input values.
The module aes_decoder contains registers, in addition
to signal flowgraphs (sfg) that contain operations on these
registers. Each sfg represents one clock cycle of process-
ing. A module can hierarchically include another one by
means of the use statement. A finite state machine (fsm)
expresses control as a state transition graph that indicates
which sfg will execute each clock cycle. One transition
takes one clock cycle. Conditional state transitions can be
expressed using boolean conditions on datapath registers. In
the example, the fsm decodes one of three instructions
received through ins from the C software. Two of them
(ir==1 and ir==2) assemble the key using 32-bit chunks
of din. A third one is an idle instruction that is used to syn-
chronize the operation of aes_decoder to the C software
on the ISS. As shown in Figure 3a, a single-sided hand-
shake is created by providing an idle instruction after each
active instruction.

The aes_decoder module is interfaced to a driver C
program by describing the characteristics of each memory-

mapped interface. In GEZEL, an ipblock is used for such
a memory-mapped interface. An ipblock can have a cus-
tom implementation, both for the purpose of simulation as
well as for mapping. Finally, the memory-mapped inter-
faces are connected to the aes_decoder in a system
block, which is the top-level GEZEL module.

3.2 Cosimulation architecture
The architecture of the cosimulator for this single-pro-

cessor system is illustrated in Figure 4. GEZEL is orga-
nized as a C++ library with a built-in parser. The library is
linked against the ISS to create a cosimulation environment.
A GEZEL description is parsed and converted into simula-
tion objects. These objects are sets of expressions, extracted
out of sfg descriptions. The expressions define the values
of signals or registers. The control description of each mod-
ule determines for each clock cycle which expression is
valid.

The cosimulation interface consists of two elements: a
synchronization interface and a data exchange interface.
The synchronization interface keeps the GEZEL descrip-
tion running in coordination with the ISS. The data
exchange interface allows to exchange data from the C soft-
ware to the GEZEL program. To implement a memory-
mapped interface, we intercept memory read/write in the
ISS and forward those with a matching address to the
GEZEL simulation, where they are available as port values
on an ipblock.

4  Cosimulator optimization
4.1 The execution ladder

With the codesign model described above, we are now
interested in what factors influence the design iteration
time. Given a particular design including the testbench, we
define the design iteration time as the time it takes to make
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a modification to the input description, rerun the cosimula-
tion testbench and evaluate the results that will guide the
next modification to the source code.

We rely on the concept of an execution ladder to repre-
sent design iteration time systematically. As illustrated in
Figure 5, the execution ladder organizes tasks per design
iteration according to their execution frequency, similar to
the concept of nested loops in the execution of a software
program. The outer loop of the execution ladder concerns
things that are done only once for a design. It includes set-
ting up the ISS/GEZEL cosimulation environment as well
as creation of testbenches and the initial version of the
code. Next, for each design iteration, a GEZEL design
description will be parsed before simulation will start. A
simulation itself consists of many clock cycles, therefore
clock cycles are the natural next level in the execution lad-
der. Finally, the evaluation of each clock cycle will include
many different signal evaluations. So the signal evaluations
form the bottom of the execution ladder.

4.2 Optimization strategy
We will consider each step of the execution ladder sepa-

rately for minimal design iteration time. At the top two lev-
els of the execution ladder, we use a technique called
partial evaluation to create the most efficient cycle simula-
tor. At the lower two levels of the execution ladder we also
apply runtime optimization of the cycle simulation.

A generic definition of partial evaluation is as follows.
Given a program P that uses static (constant) input Is and
dynamic input Id to evaluate an output O. Then a partial
evaluation of program P with input Is will create a special-
ized program Q. Program Q can create the output O using
only dynamic input Id. With careful design, Q will also be
faster than P because it needs to consider less input data.
The idea of partial evaluation is found in many optimiza-
tions in design automation, for example in strength reduc-
tion with software compilation or redundancy removal in
hardware compilation.

Table 1 illustrates the optimizations that were done at
each level of the execution ladder. For each level, the input,

output and evaluation program is shown. For the upper two
levels, the output is a program by itself on a lower level -
this is what makes partial evaluation possible. At lower lev-
els, we rely on runtime-optimization techniques. We briefly
discuss the optimizations.

(a) At the once level, the GEZEL C++ library is com-
piled with full compiler optimization (GCC O3 level) and
linked to an ISS.

(b) For each design iteration, a GEZEL program is
parsed in by the GEZEL library, and transformed into an
RT simulator. The optimizations include static allocation of
intermediate expression results, and strength reduction of
selected operations. Static allocation of intermediate results
enables arguments of operations to be accessed by refer-
ence instead of by value.

(c) For each cycle, we apply a runtime optimization we
define as cycle-skip detection. It consists of skipping simu-
lation of a clock cycle altogether if it can be shown that the
simulator state at the input and output of this step are identi-
cal. The conditions for skipping a cycle are: (1) no register
has changed state in the previous clock cycle, (2) no con-
troller has changed state in the previous clock cycle, (3) no
HW/SW interface ipblock has changed state. Skipping
cycles is very useful to increase HW/SW cosimulation effi-
ciency, since they allow to ‘wake-up’ the hardware simula-
tion out of the ISS only when it is needed.

(d) For each signal evaluation, the RT simulator deter-
mines the expression inputs using the module control state.
The simulator evaluates signals for each module from the
outputs to the inputs, in a demand-driven fashion. We also
ensure that each signal is evaluated only once during each
clock cycle. This is done by tagging signals with the clock
cycle time of their last evaluation. Demand driven tech-
niques were originally proposed for event driven simulation
[9], but are effective for cycle simulation as well.

The next section will present design results obtained with
the optimized GEZEL cosimulator. Before that, we con-
sider the relative contribution of partial evaluation to the
overall result. Figure 6 shows the relative design iteration
time, averaged over a number of testcases. Optimization at

Table 1: Overview of Partial Evaluation in optimization of GEZEL simulation

Input Program Output Partial Evaluation/
Runtime Technique

Once GEZEL C++ Library GNU g++ Compiled GEZEL Lib
linked to ISS

O3 Flag

Once per Design Iteration GEZEL Program Compiled GEZEL Lib RT-Simulator
(C++ Objects)

Static Allocation and
Strength Reduction

Once per Cycle GEZEL Simulator State
Module Inputs

RT-Simulator
Main simulation Loop

GEZEL Simulator State
Module Outputs

Cycle-skip
Detection

Once per Signal Eval Expression Inputs
Module Control State

RT-Simulator
Expression Evaluator

Signal Values
Module Control Next-State

Demand Driven
Evaluation



the ‘once’ (a) and ‘once per design iteration’ (b) level
results in one order of magnitude improvement. This is on
top of the runtime optimizations (c) and (d).

5  Results
To evaluate the efficiency of our simulator, we per-

formed two sets of experiments. The first are stand-alone
hardware simulations, the second are cosimulations. We
compare with two existing simulation environments: Sys-
temC 2.0.1 and Verilog-XL 2.8. SystemC was selected
because it can be easily used for cosimulation purposes.
Verilog-XL was selected because we started from Verilog
reference code. All code developed for the examples is
available on the World Wide Web [10].

Table 2: Non-comment, non-blank Line Count
for design examples

We started from two open-source Verilog designs. The
first is an AES128 encryption processor [11], while the sec-
ond is a (2,1,2) Viterbi decoder [12]. Both were translated
into SystemC 2.0.1 and GEZEL. During translation into
SystemC, care was taken to optimize for execution speed,
using the most efficicient data types and minimizing the
amount of signals. However we did not abstract the execu-
tion model into a bus functional model (a model with a
cycle-accurate interface and functional-level internal
behavior). Rather, the guidelines for synthesizable SystemC
RTL code were followed [13]. As a result, each design per-
forms identically on a cycle-by-cycle basis in each of the
three environments. 

In Table 2, we compare the non-comment, non-blank
linecount for each of the examples. There are several rea-
sons for the lower linecount in GEZEL. It is a purely syn-
chronous modeling approach with an implicit clock. Also,
GEZEL does not require (nor support) module declarations.
And third, there is support for specific hardware constructs
like lookup tables.

5.1 Standalone simulation
We compare the design iteration time for each design.

Table 3 lists the results for a 20K cycle testbench for AES
and a 100K cycle testbench for Viterbi. Since we are inter-
ested in design iteration time, we list the parse/compile time
as well as the simulation time. For SystemC, we use the O3
flag to compile for performance. The evaluation platform is
a SUN Ultra-10 (500 MHz CPU, 2GB RAM) with gcc
3.2.2.

Table 3: Design iteration time
for stand-alone (HW-only) simulation of examples

The model-build-time for SystemC is considerably
slower, because general C++ compilation is far more com-
plex than the use of a dedicated parser.

The testbench of the AES design consists of about 1600
subsequent encryptions. This simulation is known to have a
high event density because a good encryption algorithm
toggles on the average half of the bits it processes. In this
case, the cycle algorithm of GEZEL performs very well.
For the Viterbi simulation, we observe the reverse situation.
In this case, half of the cycles are idle cycles without any
events. The reason why the Verilog version is slower is that
it uses a two-phase clock, which is translated to a single-
edge clock in SystemC and GEZEL.

5.2 Cosimulation
We next evaluated the design iteration time for a cosimu-

lation using a StrongArm instruction set simulator (SimIt-
ARM 1.1b [3]). The evaluation platform is a Pentium PC
(3GHz CPU, 512 MB RAM) with gcc 3.2.2. Our testcase is
a loop in software that performs 100 encryptions using an
AES coprocessor. For each encryption, a new key and
plainttext (2 * 128 bits of data) are transferred between soft-
ware and hardware. We wrote a cycle-accurate model
(RTL) and a bus-functional model (BFM) of the AES
encryption processor in GEZEL and SystemC, and col-
lected build-time and simulation-time in Table 4. In the
BFM, a C function is used to simulate the AES core
aes_top from Figure 2.

The embedded software is in all cases compiled with O3-
level optimization. A cycle-accurate simulation on the ISS
by itself runs at 1 million cycles per second. This imple-
mentation takes 785K cycles to complete. When using a
hardware model for the AES, the total amount of cycles to
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GEZEL 312 265
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Figure 6: Relative Design IterationTtime 
with Partial Evaluation.
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(seconds) Build Simulate Build Simulate

Verilog 0.3 15 0.2 46

RTL SystemC 85 21 56 15

RTL GEZEL 1 13 0.1 22

Platform: SUN Ultra-10 500 MHz, 2GB RAM with gcc 3.2.2



simulate drops to about 70K because of the increased paral-
lelism. 

Table 4: Simulation for SW-only, HW/SW 
cosimulation with a bus-functional model, and 

HW/SW cosimulation with RT-level Models

The model build-time figures in Table 4 are clearly faster
for GEZEL-based cosimulation. As indicated before, an
encryption algorithm is rich in events, therefore a SystemC
BFM model will much run faster than the event-driven Sys-
temC RTL model. For GEZEL, the skip-cycle mechanism
can omit a large number of clock cycles. This, combined
with the cycle-simulation algorithm makes the GEZEL
RTL model faster than that of SystemC. However, the
GEZEL BFM does not outperform the SystemC BFM. This
is because the cycle simulation algorithm will evaluate the
Rijndael function regardless whether the inputs have
changed or not. 

In another series of experiments, we compare a number
of software-only designs with their hardware-accelerated
counterparts in Figure 7. The designs are a fingerprint veri-
fication system with a DFT accelerator (MINDTCT), an
embedded TCP/IP stack and webserver with IP checksum
acceleration (UIP), and the AES coprocessor system
described earlier.

The codesigns are based on either StrongArm with
SimIt-ARM.1.1b as ISS, or on LEON-2 Sparc with TSIM
1.2 as ISS (http://www.gaisler.com). Each point in
Figure 7 compares the accelerated design with the non-
accelerated, software-only design. For designs in the non-
shaded area, hardware accelerated designs cosimulate faster
than their original, software-only counterparts, because the
improvement in cycle count they offer exceeds the slow-
down in simulation speed. Obviously a designer working in
the nonshaded area will be more motivated to explore alter-
natives and try to improve even more. The designs in
Figure 7 were not done by the authors but by actual users of
GEZEL.

6  Conclusions
We have demonstrated an interactive approach to effi-

cient cosimulation. Compared to existing methods, we have
shown that comparable performance can be achieved while
at the same time minimizing the design iteration time. We
also obtain very compact code size. We will extend our
approach to multicore systems and create an automatic path
to implementation for GEZEL descriptions.
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Build 
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Speed
(cycles

per second)

ISS SW-only (AES in SW) 0.14 + 0.78 1M

ISS + BFM SystemC 7.0 + 0.23 318K

ISS + BFM Gezel 1.8 + 0.72 101K

ISS + RTL SystemC 20.5 + 9.0 8.1K

ISS + RTL Gezel 0.11 + 4.0 17.7K

Platform: PC 550 MHz, 256MB RAM with gcc 2.96

Figure 7: Codesign as a tradeoff between 
simulation speed and actual performance
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