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Abstract
Energy efficient embedded systems consist of a hetero-

geneous collection of very specific building blocks, con-
nected together by a complex network of many dedicated
busses and interconnect options. The trend to merge multi-
ple functions into one device makes the design and integra-
tion of these “systems-on-chip” (SOC’s) even more prob-
lematic. Yet, specifications and applications are never fixed
and require the embedded units to be programmable.

The topic of this paper is to give the designer architec-
tures and design techniques to find the right balance be-
tween energy efficiency and flexibility. The key is to in-
clude programmability (or reconfiguration) at the right level
of abstraction and tuned to the application domain. The
challenge is to provide an exploration and programming
environment for this heterogeneous architecture platform.

1 Introduction
Embedded systems (e.g. a cell phone, a GPS receiver, a

portable DVD player, a HDD camcorder) use an architecture
that is a heterogeneous collection of very specific building
blocks, connected together by a complex network of many
dedicated busses and interconnect options. General-purpose
programmable processors are not used for energy efficiency
reasons. Typically, multiple small embedded processor
cores with accelerators, IP cores, etc. are used. The trend to
merge multiple functions into one device (e.g. a cell phone
with video capabilities) makes the design and integration of
these “systems-on-chip” (SOC’s) even more challenging.

Yet, specifications and applications are never fixed and
require the embedded units to be programmable. A good
balance between energy efficiency and programmability can
be obtained by using programmable domain-specific proces-
sors. A well known example are the programmable digital
signal processors (DSPs).  DSPs are developed for wireless
communication  systems (mostly driven by cellular stan-
dards). In a first generation this meant that DSPs were
adapted to execute many types of filters (e.g. FIR, IRR),
later communication algorithms such as Viterbi decoding

and more recently Turbo decoding are added.
A first trend we notice is that more applications and

multiple applications run in parallel or on demand on the
device, e.g. video decoding, data processing, multiple stan-
dards, etc.  A second trend we notice is that these new ap-
plications tend to run either on a separate domain specific
programmable processor or on a hardware accelerator (the
distinction between the two being rather blurry) next to the
embedded DSP or micro-controller instead of being tightly
coupled into the instruction set of the host processor.

A third trend we notice is that general-purpose pro-
gramming environments are getting more heterogeneous
and domain-specific. The general-purpose solutions are for
energy efficiency reasons augmented with domain specific
units, accelerators, IP cores, etc. This is clearly visible in
FPGA’s, as the new generations now include specialized
blocks such as embedded core’s, block RAM’s and large
numbers of multipliers. One successful example is the
Virtex-Pro family of Xilinx [17]. These devices contain up
to four Power PC cores, multiple columns of SRAM,
multiple columns of multipliers, Gbits IO transceivers, etc.

The architecture design of this heterogeneous SOC is a
search in a three dimensional design space, which we call
the reconfiguration hierarchy [12]. First in the Y direction:
at what level of abstraction should the programming be
introduced? Secondly in the X direction: which component
of the architecture should be programmable? Thirdly in the
Z direction: what is the timing relation between processing
and the configuration/programming? Programming can be
introduced at multiple levels of abstraction. When it is
introduced at the instruction set level, it is called a “pro-
grammable processor”. When it is introduced at the CLB
level of an FPGA, it is called a reconfigurable device.
Regarding components, a processor has four basic compo-
nents: data paths, control, memory and interconnect. One
has a choice of making some or all of them programmable.
Then the third question is to compare the processing activ-
ity to the binding time. It makes a system configurable,
reconfigurable, or dynamic reconfigurable.

The challenge is to develop a design environment to
navigate in this three dimensional design space.
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Several SOC platforms have been presented in literature.
Most of them focus on general -purpose regular architec-
tures, e.g. [2]. Very few focus on the low power issue and
the need to tune the architecture towards the application.
One example is the low power Maya platform [18]. Unique
to our design approach is that we combine the design and
programming of the architecture with an environment to
explore the best options.

The paper is organized as follows. Section 2 and 3 look
at the architecture design, while section 3 and 4 discuss the
design exploration, co-design and co-simulation challenges.

Fig. 1. Example RINGS architecture.

2 Energy efficient heterogeneous SOCs.
The system designer needs an architecture platform that

gives him the lowest energy consumption, but at the same
time provides enough flexibility to allow re-programming
or re-configuration. The key to energy efficiency is to tune
the architecture to the application domain. This means
freezing flexibility in the X (components) and Y (level of
abstraction) direction of the reconfiguration hierarchy. A
hierarchy of so-called “Y charts” allows us to do this in a
top-down fashion [5].

A complex SOC will consist of multiple domain spe-
cific processing engines. Each processor is programmable
to a more or less degree. It can be highly programmable if
the processor is a micro-controller or a DSP engine or a
blank box of CLB units. The efficiency goes up as domain
specific instructions are added. An example of this is the
addition of a MAC instruction to a DSP processor. Loosely
coupled co-processors will be more energy efficient but less
flexible  as they fit a narrower application domain. An
example is the Turbo coder acceleration unit. The ultimate
energy efficient block is the optimized hard IP unit. Yet, it
does not provide any flexibility. In SOC a range and collec-
tion of these blocks are used.

Similarly arguments can be made for the interconnect
component of a SOC. Currently, we see only two extreme

options: either dedicated one-to-one connections and special-
ized busses, which have the lowest power consumption (to
a first order) or general-purpose global busses or intercon-
nect, as provided by FPGA’s [17] or networks on chip [2].
The latter two are both general-purpose solutions at differ-
ent levels of abstraction to give the designer a maximum
flexibility and programmability.

The RINGS architecture  [16] is an architecture platform
that gives the designer the option to explore the energy
flexibility trade-offs.  An example is shown in Fig. 1. A
RINGS architecture contains a heterogeneous set of build-
ing blocks: programmable cores, both DSP’s and micro-
controllers, programmable and/or reconfigurable hardware
accelerator units, specialized IP building blocks, front-end
blocks, and so on. When designing a solution based on
RINGS, it is important that the domain expert has freedom
to select the appropriate level of flexibility, ranging from
fully programmable approaches, such as embedded micro
controllers or FPGA blocks to highly optimized IP blocks.
For different domains, the flexibility will be supported in
different ways as domains have different characteristics. This
domain specific flexibility can be expressed as a domain
specific abstraction pyramid as shown for Networking,
Video, and Signal Processing on Fig. 1. In case of Video,
the engine will consist of elements expressed in the Video
pyramid, for example dedicated co-processors.

The SOC is connected together at the top level by a su-
pervising software program, which typically runs on an
embedded micro-controller.  At the bottom level, the recon-
figurable interconnect glues it together. The programming
paradigm used in RINGS is a reconfigurable network-on-
chip. Also in this network, flexibility can be traded for
energy efficiency at different levels of abstraction. Designers
can instantiate an arbitrary network of 1D and 2 D router
modules leading to an architecture illustrated in Fig. 2.

Fig. 2. Example of Network-on-chip [1].

This network illustrates the three binding time concepts.
At the level of configuration, the static network architecture
with routers is instantiated. Reconfiguration is done by
means of reprogramming the routing tables and program-
ming by giving each packet a target address.
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A traditional reconfiguration is obtained by reprogram-
ming the routing tables in each node.  An alternative ap-
proach is to use an easy to reconfigure physical channel.
One example of this is a CDMA based reconfigurable inter-
connect [6][16]. Fig. 3. shows a conceptual picture of a
source-synchronous CDMA implementation. Each sender
and receiver gets a unique spreading code. By changing the
Walsh code, a different configuration is obtained.  Tradi-
tional busses, which are a TDMA channel, require hardware
switches for reconfiguration.  CDMA interconnect has the
advantage that reconfiguration can occur “on-the-fly.”

Fig. 3. Reconfigurable interconnect (a) TDMA (b)

SS-CDMA bus interface [6].

3 Ultra low power components.
The focus of this section is on the architecture design

options to design ultra low power processor components, in
many cases without losing performance.

DSP processors have real-time constraints or need to
maximize their throughput for a given task while at the
same time minimize the power or energy consumption.
Therefore, the design of DSP processors is very challeng-
ing, as it has to take into account contradictory goals: an
increased throughput request at a reduced energy budget. On
top there are new issues due to very deep submicron tech-
nologies such as interconnect delays and leakage. For in-
stance, hearing aids used analog filters 15 years ago, were
designed as digital ASIC-like circuits 5 years ago. Today
they are designed with powerful DSP processors below 1
Volt and 1 mW of power consumption [8]. Hearing aids
companies require DSP processors just because they require
flexibility, i.e. to program the applications in-house.

The design of ultra-low power DSP cores has to be per-
formed at all design levels, i.e. system, architecture, circuit
and technology levels. We will focus in this section to
DSP architectures, but VHDL implementations as well as

cell libraries are important too. Latch-based implementa-
tions including gated clocks described in VHDL or Verilog,
low-power standard cell libraries and leakage reduction cir-
cuit techniques are necessary to reduce power consumption
at these low levels.  

Various DSP architectures can be and have been pro-
posed to reduce significantly the power consumption while
keeping the largest throughput. Beyond the single MAC
DSP core of 5-10 years ago, it is well known that parallel
architectures with several MAC working in parallel allow
the designers to reduce the supply voltage and the power
consumption at the same throughput. It is why many
VLIW or multitask DSP architectures have been proposed
and used even for hearing aids. The key parameter to
benchmark these architectures is the number of simple
operations executed per clock cycle, up to 50 or more.
However, there are some drawbacks.  The very large instruc-
tion words up to 256 bits increase significantly the energy
per memory access. Some instructions in the set are still
missing for new better algorithms. Finally the growing
core complexity and transistor count becomes a problem
because leakage is roughly proportional to the transistor
count.

Fig. 4.  Hardware reconfiguration example [3] .

To be significantly more energy efficient, there are basi-
cally two ways, however impacting either flexibility or the
ease of programming: (1) to design specific very small DSP
engines for each task, in such a way that each DSP task is
executed in the most energy efficient way on the smallest
piece of hardware [9]. For N DSP tasks within a given
application, the resulting architecture will be N co-
processors or hardware accelerators around a controller or a
simple DSP core as illustrated on Fig. 1. (2) to design
reconfigurable architectures such as the DART cluster [3],
in which configuration bits allow the user to modify the
hardware in such a way that it can much better fit to the
executed algorithms. Fig. 4 shows an example.

Option (1) is definitively the best one regarding power
consumption. Each DSP task uses the minimal number of
transistors and transitions to perform its work. The control
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code unavoidable in every application is also efficiently
executed on the controller or on the simple DSP, and some
unexpected DSP tasks can be executed on the simple DSP
if no accelerator is available. However, the main issue is
the software mapping of a given application onto so many
heterogeneous processors and co-processors (see Section 4).
Transistor count could be high and some co-processors fully
useless for some applications. Regarding leakage, unused
engines have to be cut off from the supply voltages, result-
ing in complex procedures to start/stop them.

Reconfigurable DSP architectures are much more power
efficient than FPGAs. E.g. the MAGIC DSP consumes
1mW/MHz in 1.8V, 0.18µm CMOS. The same MAGIC in
an Altera Stratix FPGA consumes about 10mW/MHz of
dynamic power, but has a huge static power of 900 mW.
So at 10 MHz, it consumes 1000 mW. The key point is to
reconfigure only a limited number of units within the DSP
core, such as some execution units and addressing units
[11]. The latter are interesting, as the operands fetch is
generally a severe bottleneck in parallel machines for which
8-16 operands are required each clock cycle. So, sophisti-
cated addressing modes can be dynamically reconfigured
depending on the DSP task to be executed. However, the
power consumption is necessarily increased due to the rela-
tively large number of reconfiguration bits that have to be
loaded in the configuration registers. Similarly, the recon-
figurable units are necessarily more complex that non-
reconfigurable units in terms of transistor count and there-
fore consume more. Software issues are also difficult, as
users can define new instructions or new addressing modes
that are difficult to support by the development tools.

4 Design & architecture exploration.
The way a system behaves depends on the architecture,

the way the applications are written, and how these applica-
tions are mapped onto the architecture as compactly ex-
pressed by the Y-chart [5]. Examples of architectures for
low-power have already been given in other sections. On
such architecture, mapping is typically done in case of
reconfigurable fabrics by the behavioral synthesis tool and
the place and route tools. In case of DSPs and CPUs, the
mapping is typically performed by C-compilers dedicated to
a particular type of DSP or CPU. An important question
remains: how to specify the applications that they can take
advantage of the architecture in an effective manner.

A low-power architecture will typically employ different
levels of parallelism like bit-level parallelism, instruction
parallelism or task-level parallelism to take advantage of
voltage scaling as already explained in the previous section.
To successfully map a DSP application at a high level, the
applications need to express task-level parallelism. This
parallelism is typically not present, as the applications are
written in sequential languages like C or Matlab. Therefore,

mapping them is often a manual process that is very tedi-
ous and time consuming, leading to a sub optimal system.

A designer would like to have tool support that converts
automatically the sequential specification into a parallel
format. Moreover, the tool should allow him to ‘play’ with
the amount of parallelism extracted from the specification.
In general, such tools are lacking in embedded system de-
sign. Some companies, like Pico and Art (ARM/Adelante)
try to provide limited commercial solutions but this field is
still very much subject to research. The Compaan tool suite
[13] aims at providing designers the option to play with
parallelism for applications that are so-called “Nested Loop
Programs,”  a very natural fit for DSP applications. A DSP
application is specified in a subset of Matlab and is auto-
matically converted by Compaan into a network of parallel
processes. These processes can be specified in “C’ and
mapped, using a conventional C compiler, onto a DSP or
CPU. On the other hand, they can also be specified in
VHDL and mapped using the appropriate tools onto some
reconfigurable fabric or realized as a dedicated IP core [19].
Hence, “programming” the RINGS architecture is reduced to
putting some processes onto the CPUs and DSPs while
others are mapped onto FPGAs or use dedicated IP cores.

There are many ways we can find parallelism in the ap-
plication and in the way we partition the processes of the
CPUs, DSPs and reconfigurable resources. Being able to
explore these options early on in the design phase is crucial
to get efficient embedded low-power systems. To allow
designers to do this exploration, Compaan is equipped with
a suite of techniques [14] like Unfolding, Skewing and
Merging, to allow designers to play with the level of paral-
lelism exposed in the derived network of processes. Skew-
ing and Unfolding increase the amount of parallelism, while
Merging reduces parallelism. By performing these tech-
niques, many different networks can be created that can be
mapped in different ways onto the architecture. When ap-
plied in a systematic way, the design space can be explored
and the best performing network of processes can be picked.

The difference in utilization of the architecture for a par-
ticular network can be huge. By rewriting a DSP applica-
tion (like Beam-forming) using the presented techniques, we
are able to achieve performances on a QR algorithm (7
Antenna’s, 21 updates) ranging from 12MFlops to
472MFlops. We realized QR using commercial floating-
point IP cores from QinetiQ, that are pipelined 55 (Rotate)
and 42 (Vectorize) stages. We achieved this performance
increase without doing anything to the architecture or map-
ping tools, but only by playing with the way the QR ap-
plication is written, effectively improving the way the
pipelines of the IP cores are utilized. Using a system like
Compaan, an experienced designer should be able to obtain
very different performing networks in days, having the
opportunity to explore different systems and picking the
one that uses the least amount of power.



5 Domain-Specific Co design Environments
As discussed in the previous section, parallelism and

distributed processing are key to energy efficient architec-
tures. Because the ensemble of architecture elements (proc-
essors, busses, memories) cooperate towards a common
application, the designer faces a considerable co-simulation
and co-design problem. A key requirement is to have a good
design model. Such a model allows building of simulation
tools, compilers and code generators. We will look at a
highly successful design model for programmable systems:
the instruction-set architecture (ISA). Next we will consider
the approach taken by the RINGS architecture.
In a classic Von-Neumann architecture, the instruction-set-
architecture (ISA) model maintains a single, consistent and
abstracted view to the operation of the system. Such a view
ties four independent architecture concepts together: control,
interconnect, storage, and data operations [15]. This way the
ISA becomes a template for the underlying target architec-
ture, for which compiler algorithms (scheduling etc) can be
developed. Often however, the ISA is unable to offer the
right target template – in terms of parallelism, storage
capabilities or other.

In the RINGS architecture, we do not use an ISA as an
intermediate design model, but approach each of the four
components that make up an ISA independently. We enu-
merate them below and look at the requirements they im-
pose on co-simulation and co-design.
• Data Operations: Energy efficient operation requires
us to specialize each operator as much as possible. A
RINGS system contains multiple processing cores. These
can include hardwired or programmable (DSP or RISC)
processors. We thus need to be able to combine instruction-
set simulation with hardware simulation.
•  Storage: Energy efficient operation requires us to
distribute storage. In addition to the high-level design trans-
formations discussed in the previous section, we target to
minimize storage bandwidth and use multiple distributed
memories. Each processor in RINGS will work inside of a
private memory space. Many operations in multimedia can
be implemented with dedicated storage architectures that
take only a fraction of the energy cost of a full-blown ISA.
Examples are matrix transposition or scan-conversion.
Such dedicated storage can be captured as a hardwired proc-
essor.
• Interconnect: The energy efficient interconnect archi-
tecture discussed in section 2 requires explicit expression of
interconnect operations – in contrast to an ISA where this
is implicitly encoded in the instruction format. A network-
on-chip can be modeled as a dedicated hardware architecture
[1]. On top of the network-on-chip a suitable network pro-
tocol must be implemented, for example message-passing
with the MPI standard [7]. However, also this protocol is
subject to specialization and/or hard-coding. For example, a

hardwired DCT coding unit attached to a DSP core through
RINGS will have a fixed communication pattern. This
pattern can be hard-coded in a collapsed and optimized pro-
tocol stack.
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•  Control: Energy efficient operation requires us to
split the data-flow and control-flow in a RINGS architecture
and handle them independently. Fig. 5 clarifies this point.
It shows the effect of moving an AES encryption operation
gradually from high-level software (Java) implementation
to dedicated hardware implementation, while at the same
time maintaining the interface to the high level Java model.
It can be seen that the interface overhead goes from 0.8%
for a C-accelerated AES to 8000% for a hardware-accelerated
AES! This overhead obviously is caused by all the inter-
faces moving data from Java to C to hardware and back.
With the MPI message passing scheme, we have the free-
dom to route control flow and a data flow independently as
messages. This way, we can eliminate or minimize this
interface overhead.

When we put the elements together, we conclude that
the RINGS co-design environment should accommodate
multiple instruction-set simulators with user-specified
hardware models. All of these must be embedded in a model
of an on-chip network. The timing accuracy of the simula-
tion should be precise enough to simulate interactions such
as network-on-chip communication conflicts. On the other
hand, the simulation must also be fast enough to support
reasonable design exploration capabilities.

We have built the ARMZILLA environment to evalu-
ate one class of RINGS architectures, namely those that can
be built with one or more ARM cores, a network-on-chip,
and dedicated hardware processors. Fig. 6 illustrates the
ARMZILLA setup. There are three components: a hardware
simulation kernel (GEZEL), one or more instruction-set
simulators (ISS), and a configuration unit. The GEZEL
kernel [4] captures hardware models with the FSMD (Fi-
nite-State-Machine with Datapath) model-of-computation. It
uses a specialized language and a scripted approach to pro-
mote interactive design exploration. The cycle-true models
of GEZEL can also be automatically converted to synthe-
sizable VHDL. For the ARM ISS we use the cycle-true



SimIT-ARM environment [10]. The ARM ISS uses mem-
ory-mapped channels to connect to the GEZEL hardware
models. Finally, the configuration unit specifies a symbolic
name for each ARM ISS, and associates each ISS with an
executable. This way the memory-mapped communication
channels can be set up, and the hardware GEZEL models
can address each ARM memory space uniquely.

ARMZILLA

ARM ISS GEZEL
Kernel

Configuration
Unit

C
C

C

EXE
EXE

EXE

ARM ISS
ARM ISS

Memory-mapped
Channels

Hardware
Processors

Network
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Compiler
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Fig. 6. The ARMZILLA Design Environment for

ARM-based RING Processors.

An example of what can be done with the ARMZILLA
environment is shown in Table 1. This table shows cycle
counts that were obtained after partitioning a JPEG encod-
ing algorithm. The reference implementation runs on a
single-ARM ISS model. In the second implementation, we
separate the chrominance and luminance channels over two
ARM processors. This seems a logical partition that splits
the data operations roughly in two parts. But, it also creates
a communication bottleneck in the on-chip network and the
resulting implementation becomes slower then the O3-level
optimized single-processor implementation. The third im-
plementation shows a better partitioning. In this case, the
data streams are routed out of the ARM and into dedicated
hardware processors for JPEG encoder subtasks. These
processors can communicate directly amongst themselves.

Table 1.  Multiprocessor JPEG Encoding

Performance

Partition Cycle count
64x64 block

One single ARM 1.223 M
Dual ARM using split chrominance/ lumi-
nance channels

1.336 M

Single ARM with color conversion, trans-
form coding, Huffman coding as stand-
alone hardware processors

313K

All these simulations are cycle-accurate yet they can
run efficiently. For the H.264 decoding on a dual ARM
with network-on-chip for example, ARMZILLA offers a
simulation speed of 176K cycles per second. The simula-
tion speed varies with the complexity of the hardware model
used. A single, stand-alone SimIT-ARM simulator runs at
1 MHz cycle-true on a 3GHz Pentium.

6 Conclusions.
In this paper, we presented architecture design and design

exploration for low power systems-on-chip. Low power is
obtained by tuning all components of the architecture (data-
paths, control, memory and interconnect) to the application.
This can occur at different levels of abstraction. The design
of this type of SOC requires support by design models and
methods. The design environments Compaan and Gezel
/Armzilla are illustrations of supporting tools for this de-
sign space exploration.
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