
Methodology for Memory Analysis and Optimization in Embedded Systems

Abstract

This paper describes a methodology for memory
analysis and optimization of embedded system design with
the goal of reducing memory usage. It acts as a guide to
optimize the memory module of the embedded systems in an
efficiently way, by which the design-time optimization can be
achieve. Two typical embedded signal-processing
applications are implemented using the proposed method,
gaining 67% and 31% reduction of system memory
requirement, respectively.

1. Introduction
Memory behavior including both the size and the

number of access is playing a more and more important role
in the embedded system design. As new processors
continuously improve the performance of embedded
systems, the processor-memory gap widens and memory
represents a major bottleneck in terms of speed, area and
power for many applications [1].

When designing an embedded system, memory analysis
at the system-level is critical since the decisions at this level
have the largest impact on the final result. In this paper we
propose a method of memory estimation for embedded
applications based on a C/C++ design environment. Using
the proposed methodology, the total required memory size,
as well as the memory usage change along with the
execution time is estimated. Based on the estimation results,
algorithm level optimization can be performed with the
target of reducing the memory requirements for the
embedded system. We use the LEON-2 Sparc processor
embedded platforms for the demonstrated applications, and
all the simulations are performed with the TSIM SPARC
simulator [11].

The paper is organized as follows. Section 2 briefly
reviews some previous work in the system-level memory
estimation. Section 3 describes our methodology for memory
analysis. In sections 4 and section 5, the proposed
methodology is implemented in two embedded signal
processing applications. The estimation results and
optimization strategies are also discussed.

2. Related Work

Memory estimation techniques at the system-level are
used to guide the embedded system designer in choosing the

best solution. In data dominated applications, such as image
or speech signal processing applications, summing up the
sizes of all the arrays is the most straightforward way to get
an upper bound of the memory requirement. However “in-
place” problem [2] introduces a huge overestimate. In [3],
the internal in-place mapping is taken into consideration and
the total storage requirement is the sum of the requirements
for each array. In [4], the data dependency relations in the
code are used to find the number of array elements produced
or consumed by each assignment, from which a memory
trace of upper and lower bounding rectangle as a function of
time is found. In [5], a methodology based on live variable
analysis and integer point counting is described. However,
this method is not feasible for large multi-dimensional loop
nest because of the heavy computation. Unlike the above
techniques, [6], instead of assuming an execution ordering,
starts with an extended data dependency analysis resulting in
a number of non-overlapping basic sets of array elements
and the dependencies between them. The methodology
described in [7] takes into account partially fixed execution
ordering, achieved by an array data flow analysis
preprocessing. The method introduced in this paper takes
both the program size and the data size into consideration
and provides an efficient way to reduce the memory
requirements for embedded systems at the system level using
the information gathered from run-time simulation.

3. Methodology
3.1 Basic idea

Before describing the methodology, we first give the basic
idea of memory usage for any program. When a program is
running, the memory module is divided into two parts:
program segment and data segment, which includes heap and
stack (Fig. 1).

Once the program is loaded into the processor, the size
of the memory for program segment is fixed. The rest of the
memory is used as heap and stack during the program
running time. Heap starts from the bottom of the program
segment. Whenever there is dynamic memory allocation, a
block of memory is reserved for later use. When a memory
free happens, the specific memory block is returned to the
memory pool. On the other hand, the stack pointer position
changes when a function call is made or finished. Generally,
the stack and the heap grow and shrink in opposite direction.

Shenglin Yang
UCLA Dept of EE
Los Angeles, CA 90095
+1-310-267-4940
shengliny@ee.ucla.edu

Ingrid M. Verbauwhede
UCLA Dept of EE
Los Angeles, CA 90095
+1-310-794-5209
ingrid@ee.ucla.edu

A collision of stack and heap implies that a fatal error

state has been reached. At any particular moment, the
memory usage of the system is determined by the sum of the
size of program, heap and stack as shown in Equation 1:

stackHeapprogramTotal MMMM ++= (1)

In another word, for any program, the memory usage
changes as the result of the changing of the bottom of the
heap as well as the position of the stack pointer. In our
proposed method, we take use of this characteristic, getting
the position of the heap bottom and the stack pointer
dynamically during the program running time. Taking
program size into consideration, a dynamic memory usage
trace map is generated. From this trace map, we can get
information about the overall memory requirement as well as
the memory bottleneck of the application.

3.2 Implementation of the method

To get all the reliable and detail information of memory
usage during the program running time, we use the change-
driven method to implement our methodology. All places in
which memory usage changing could happen are traced. For
programs written in C/C++ design environment, there are
several types of trace points:
1. Where dynamic memory allocation functions are called
(malloc(), alloc(), realloc(), etc.), a block of memory is
allocated according to the current memory usage situation.
Assume that the current heap bottom address is Hbottom. When
a memory allocation function is called,

a. If the required memory is small enough to fit into
some hole in the current heap, Hbottom does not
change.

b. Otherwise, the system has to allocate a new block
for it, which means Hbottom will increase and the
heap size will in turn be enlarged.

c. Also the free() function might effect the heap
bottom address. If the memory block closest to the
bottom of the heap is freed, the heap size will
decrease.

d. If the freed memory block is in the middle of the
heap, then Hbottom does not change.

2. Another type of trace point is the entering point of any
function call, where the stack pointer changes according
to the local variable definition size.

In the following sections, two typical embedded signal-
processing applications are implemented using this
methodology and the results of memory analysis are
discussed. In addition, optimizations are performed based on
the memory trace map.

4. Embedded ThumbPod System
4.1 Overview

ThumbPod [8][9] is a secure embedded fingerprint
verification system built on the LEON-2 processor. The
major computational bottleneck is the embedded fingerprints
matching algorithm. For matching two fingerprints, we adopt
the minutiae-based matching algorithm. Therefore, a
minutiae detection procedure needs to be implemented on
the embedded device. Like many other typical embedded
multimedia signal processing algorithm, the minutiae
detection procedure is array dominated. Hence, memory
management for it is very important.

The baseline program we used to extract the minutiae set
is taken from NIST Fingerprint Image Software [10]. In the
following subsections, the memory usage analysis is carried
out using this NIST software as the starting point. In
addition, memory optimizations oriented by the analysis
results are described.

4.2 Baseline Result

Implementing the methodology described in section 3 to the
baseline program taken from NIST Fingerprint Image
Software. Results are the following (Fig. 2). During the
simulation, 4096K total RAM is chosen. Fig. 2(a) presents
the change of the heap bottom address during the running
time. Fig. 2(b) is the change of the position of the stack
pointer. Putting these results into equation (1), the total
memory usage trace map is shown in Fig. 2(c). Fig. 2(d)
describes the maximum memory distribution. According to
Fig. 2(d), we know that the peak memory usage of the
system is 1,572Kbytes, including 325Kbytes program
segment memory and 1,247Kbytes data segment memory.

4.2 Memory optimization

For most embedded systems, memory size beyond 1M is
too expensive. In order to reduce the memory requirement
for this application, we try to shrink the program size as well
as the running time memory usage based on the knowledge
got from the memory trace map step by step.

Fig. 1. Memory Partitioning

Heap

Stack

Program Program segment

Data segment

Heap bottom

Stack pointer

Step 1: architecture optimization

Since the NIST starting point program is floating-point
based, while the LEON-2 processor only supports fixed-
point computation, fixed-pointed refinement is necessary for
speeding up the program. In this paper, we study the
influence in terms of memory of doing fixed-point
refinement. Fig. 3 shows the memory analysis results for
fixed-point optimized program. From the memory trace map
for the program after fixed-point refinement, we notice that
both the program segment size and data segment size
decrease. This is because that, in one hand, fixed-point
refinement remove many floating point calculation related
libraries, and on the other hand, the size of the elements of
some arrays are modified from 8bytes “double” type to
4bytes “int” type, which reduces the storage memory by half.
In total, the memory requirement for fixed-refined program
is 1267Kbytes

Step 2: “in-place” optimization

The memory trace map from the previous step shows
that there is a major jump, which introduces most of the
memory usage in a very short period. Our idea for reducing
the data segment memory is first finding out where the
jump(s) happen(s), then studying the algorithm to figure out
the reason for the big memory use. Finally, we implement
memory management techniques to remove or lower the
jump(s).

Detailed study of the minutiae detection algorithm of the
ThumbPod embedded system shows that the biggest jump
happens when a routine named “pixelize_map” is called. The
diagram of this routine is shown in Fig. 4.

The functionality of this routine is to convert the block-

based maps for direction, low flow flag, and high curve flag
into pixel-based ones. For each pixelized map, 262,144
(256×256×4) bytes of memory are required since for each
pixel, one 32-bits integer is needed to present the value of
the map. This is the bottleneck of the memory usage.

There are two ways to reduce the memory requirement.
One is to implement “in-place” technique in this routine.
The numbers in the direction_map are within the range 0–16,
and for the low_flow_map and high_curve_map, simple 0/1
value is used as flags. In addition, the dimensions for the
three maps are exactly the same. Therefore taking one
corresponding element from each map, the sum of the valid
bits number is 6 (four bits for direction_map, one for
low_flow_map, and one for high_curve_map), which is
smaller than 32. Therefore it is possible to compress these
three different maps into one since we can combine three
elements (one from each maps) in one 32-bit integer. By
doing this, instead of three separate arrays, only one array
called “Ptotal_map” is used to represent the three pixelized
maps (Fig.5).

Program (325K)

Heap (1,142K)

Stack (7K)

(d)

(a)

0x40160000

0x40100000

0x400a0000

0x40040000
2 4 6 8 10 12

(×105)
0x403e6600

0x403e6e00

0x403e6c00

0x403e6a00

0x403e6800

2 4 6 8 10 12
(×105)

(b)

2 4 6 8 10 12
(×105)

(c)

(M Bytes)

M
em

or
y

us
ag

e

0.4

0.8

1.2

1.6

Fig. 2. Memory analysis results for baseline program

Program (201K)

Heap (1,054K)

Stack (12K)

(d)

0x40030000

0x40060000

0x40090000

0x400c0000

0x400f0000

0x40012000

1 2 3 4 5
(×105) (a)

0x403e5000

0x403e5800

0x403e6000

0x403e6800

0x403e6800

1 2 3 4 5
(×105) (b)

M Bytes

0

0.4

0.8

1.2

M
em

or
y

U
sa

ge

1 2 3 4 5
(×105) (c)

Fig. 3. Memory analysis results for fix-refined program

Direction_map Low_flow_map High_curve_map

Pixelize_map

Pdirection_map Plow_flow_map Phigh_curve_map

Fig. 4. Diagram for pixelize_map ()

Fig. 6 is the results of this in-place memory

management. According to the above results, peak memory
requirement becomes 744Kbytes. The data segment memory
decreases by 590Kbytes compared to the previous result,
while the program segment size increases by 47Kbytes. The
reason for program size increasing is that additional
calculation is needed for the compression and decompression
of the pixelized maps. Another observation needed to
mention is that as a side effect of those additional
calculations, the execution time of the whole system
increases by 0.25sec.

Step 3: Skipping bottleneck

From the memory trace map shown in Fig. 6, the
memory requirement bottleneck is still the pixelize_map
routine. Further optimization can be implemented by
eliminating this routine. Instead of generating whole pixlized
maps, we calculate the map value for each pixel only when it
is referred in the program. This technique removes the big
memory usage jump in the memory trace map. The
drawback of it is that the pixel index needs to be calculated
each time it is referred. The result of this method is shown
in Fig. 7.

Comparison of the last two results (Fig. 6 and Fig. 7)

shows that both the program segment size and the data
segment size decrease. The total memory requirement is
483K Bytes. Keeping an eye on the execution time, system
speeds up to 5.05sec. This means that the memory
optimization techniques gain some memory size with no cost
of speed. This is because that the pixelize_map routine is
skipped in the program, some unnecessary computation is
avoided.

5. Embedded Speech Recognition Front-End
5.1 Overview

Speech recognition is an increasingly popular embedded
real-time multimedia application. In the speech recognition
module of the “Poly-sensing Environment” project [13], for
reducing the communication overhead and the energy of the
system, the signal processing front-end feature extraction
procedure needs to be done in the embedded devices, which
are usually small in size and batteries-powered. As a result,
memory analysis of such a system is very valuable for
system design.

The acoustic feature used in our system is called Mel-
Frequency Ceptrum Coefficient (MFCC) [14]. The diagram
of this algorithm is shown in Fig. 8.

The floating-point baseline program is taken from ETSI

[12]. Using the proposed memory estimation methodology,

Fig. 6. Memory analysis results of “in-place” technique

Program (202K)

Heap (530K)

Stack (12K)

M Bytes

0

0.2

1 2 3 4 5
(×105)

M
em

or
y

us
ag

e

0.4

0.6

Fig. 7. Memory analysis optimized results

Program (203K)

Heap (268K)

Stack (12K)

M
em

or
y

us
ag

e

1 2 3 4 5
(×105)

M Bytes

0

0.1

0.2

0.3

0.4

0.5

Framing

Pre-Emphasis

Windowing

FFT

Mel-Scale Ceptrum

Energy

Fe
at

ur
e

ve
ct

or

Fig. 8. MFCC Front-End Processing

Fig. 5. “in-place” technique for memory reduction

32 bits

Pdirection_map

Plow_flow_map

Phigh_curve_map

 Ptotal_map

the memory analysis results are described in the following
subsections.

5.2 Baseline result

Fig. 9 shows the memory trace map for the baseline
implementation. The program segment size of this baseline
implementation is 69Kbytes and the data segment memory
required is 14Kbytes. In total, 83Kbytes memory is needed.

5.3 Memory optimization

Since the front-end processing runs on fixed-point
embedded devices, the first step we need to do is the
architecture optimization, This step of refinement results in
19Kbytes memory save in program segment size and
5Kbytes save for data segment size. Totally, 59Kbytes
memory is required (Fig. 10).

Following a similar methodology for memory

optimization, analysis of the memory trace map shows that
the largest jump in the map is caused by memory allocation
for array “vector”, which is used to store the Mel-scale
triangle filter bank. According to the algorithm, each filter in
the filter bank is used independently when calculating the
ceptrums. Therefore storing the whole filter bank at the same
time is not memory-efficient. Instead, the filter coefficient
could be computed before being used and freed after that.
Another jump in the memory trace map comes from the
array “rsrec”, which is used in the recursive part of FFT
calculation. The values of it in one recurrence are not used
anymore in the following. Therefore, the memory block of

this array could be reused in each recurrence. After
implementing these optimizations techniques to the front-end
processing, the memory trace map is shown in Fig. 11.

Result shows that for this step 57Kbytes memory is

needed. Comparing with previous step, program segment
size slightly increases by 2%, while the data segment
memory decreases by 30%.

6. Conclusion
In this paper a memory analysis method to estimate,

analysis, and optimize the memory usage for embedded
system is presented. It guides designers to get bigger benefit
first by optimize the larger jump in the memory trace map.
Two typical embedded applications, ThumbPod embedded
secure fingerprint verification system and embedded speech
recognition front-end system, are implemented using the
proposed methodology. Fig. 12 shows the overall
optimization results for both of them. Since program
segment memory and data segment memory could be ported
into different memory locations, memory analysis for
program segment and data segment is shown separately here.
Fig. 12(a), (b) show 67% and 31% total memory reduction
for ThumbPod secure embedded fingerprint verification
system and embedded speech recognition front-end module,
respectively.

Acknowledgements

The authors would like to acknowledge the funding of
NSF account no CCR-0098361 and the Langlois foundation.

Fig. 10. Memory analysis result for fix-refined program

20 40 60 80 100 120 140
50

52

54

56

58

Kbytes

Fig. 11. Memory analysis result for optimized program

 20 40 60 80 100 120 140

52

54

56

58
Kbytes

Fig. 9. Memory analysis result for baseline program

20 40 60 80 100 120
68

72

76

80

84
Kbytes

Reference:
[1] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E.
Brockmeyer, C. Kulkarni, A. Vandercappelle, P.G.
Kjeldsberg, “Data and memory optimization techniques for
embedded systems”, ACM Transactions on Design
Automation of Electronic systems, vol.6, no.2, pp.149-206.,
April 2001.

[2] I. Verbauwhede, F. Catthoor, J. Vandewalle, H. De Man,
“Background memory management for the synthesis of
algebraic algorithms on multi-processor DSP chips”, Proc.
VLSI’89, Int. Conf. on VLSI, Munich, Germany, pp.209-218,
Augest 1989.

[3] I.Verbauwhede, C. Scheers, J. Rabaey, “Memory
estimation for high-level synthesis”, proceedings of 31st
ACM/IEEE Design Automation Conference, San Diego, CA,
pp.143-148, June 1994.

[4] P. Grun, F. Balasa, N. Dutt, “Memory size estimation for
multimedia applications”, Proceedings of the 6th
International Workshop on Hardware/Software Codesign,
Seattle WA, pp.145-149, March 1998.

[5] Y. Zhao, S. Malik, “Exact memory size estimation for
array computations without loop unrolling”, Proceedings of
36th ACM/IEEE Design Automation Conference, New
Orleans LA, pp811-816, June 1999.

[6] F. Balasa, F. Catthoor, H. Deman, “Background memory
area estimation for multidimensional signal processing
systems”, IEEE Transactions on Very Large Scale
Integration systems, vol. 3, no. 2, pp.157-172, June 1995.

[7] P. G. Kjeldsberg, F. Catthoor, E. J. Aas, “Storage
requirement estimation for data intensive applications with
partially fixed execution ordering”, Proceedings of 8th
International Workshop on Hardware/Software Codesign,
San Diego, pp56-60, May 3-5, 2000.

[8] D. Hwang, P. Schaumont, Y. Fan, A. Hodjat, B. Lai, K.
Sakiyama, S. Yang, I. Verbauwhede, “Design flow for
HW/SW acceleration transparency in the ThumbPod secure
embedded system”, Proceedings of 40th ACM/IEEE Design
Automation Conference, Anaheim, CA, pp60-65, June 2003.

[9] www.thumbpod.com

[10] User’s Guide to NIST Fingerprint Image Software
(NFIS). NISTIR 6813, National Institute of Standards and
Technology.

[11] www.gaisler.com

[12] “Speech processing, transmission and quality aspects;
distributed speech recognition; front-end feature extraction
algorithm; compression algorithms”, ETSI Standard: ETSI
ES 201 108 v1.1.2.

[13] http://users.design.ucla.edu/~fwinkler/PSE/descr.html

[14] J.R. Deller, J.H.L. Hansen, J.G. Proakis, Discret-Time
Processing of Speech Signal, Prentice Hall, Upper Saddle
River, NJ, 1987.

0

200

400

600

800

1000

1200

baseline fixed-point op-1 op-2

(a)

(b)

Fig. 12. Memory reduction for two typical applications

0

10

20

30

40

50

60

70

baseline fixed-point optimization

 program segment Data segment

(Kbytes)

(Kbytes)

