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Abstract 

This paper describes a methodology for memory 
analysis and optimization of embedded system design with 
the goal of reducing memory usage. It acts as a guide to 
optimize the memory module of the embedded systems in an 
efficiently way, by which the design-time optimization can be 
achieve. Two typical embedded signal-processing 
applications are implemented using the proposed method, 
gaining 67% and 31% reduction of system memory 
requirement, respectively.  

1. Introduction 
Memory behavior including both the size and the 

number of access is playing a more and more important role 
in the embedded system design. As new processors 
continuously improve the performance of embedded 
systems, the processor-memory gap widens and memory 
represents a major bottleneck in terms of speed, area and 
power for many applications [1].  

When designing an embedded system, memory analysis 
at the system-level is critical since the decisions at this level 
have the largest impact on the final result. In this paper we 
propose a method of memory estimation for embedded 
applications based on a C/C++ design environment. Using 
the proposed methodology, the total required memory size, 
as well as the memory usage change along with the 
execution time is estimated. Based on the estimation results, 
algorithm level optimization can be performed with the 
target of reducing the memory requirements for the 
embedded system. We use the LEON-2 Sparc processor 
embedded platforms for the demonstrated applications, and 
all the simulations are performed with the TSIM SPARC 
simulator [11].   

The paper is organized as follows. Section 2 briefly 
reviews some previous work in the system-level memory 
estimation. Section 3 describes our methodology for memory 
analysis. In sections 4 and section 5, the proposed 
methodology is implemented in two embedded signal 
processing applications. The estimation results and 
optimization strategies are also discussed. 

2. Related Work  

Memory estimation techniques at the system-level are 
used to guide the embedded system designer in choosing the  

 

 
 

best solution. In data dominated applications, such as image 
or speech signal processing applications, summing up the 
sizes of all the arrays is the most straightforward way to get 
an upper bound of the memory requirement. However “in-
place” problem [2] introduces a huge overestimate. In [3], 
the internal in-place mapping is taken into consideration and 
the total storage requirement is the sum of the requirements 
for each array.  In [4], the data dependency relations in the 
code are used to find the number of array elements produced 
or consumed by each assignment, from which a memory 
trace of upper and lower bounding rectangle as a function of 
time is found. In [5], a methodology based on live variable 
analysis and integer point counting is described. However, 
this method is not feasible for large multi-dimensional loop 
nest because of the heavy computation. Unlike the above 
techniques, [6], instead of assuming an execution ordering, 
starts with an extended data dependency analysis resulting in 
a number of non-overlapping basic sets of array elements 
and the dependencies between them. The methodology 
described in [7] takes into account partially fixed execution 
ordering, achieved by an array data flow analysis 
preprocessing.  The method introduced in this paper takes 
both the program size and the data size into consideration 
and provides an efficient way to reduce the memory 
requirements for embedded systems at the system level using 
the information gathered from run-time simulation. 

3. Methodology 
3.1 Basic idea 

Before describing the methodology, we first give the basic 
idea of memory usage for any program. When a program is 
running, the memory module is divided into two parts: 
program segment and data segment, which includes heap and 
stack (Fig. 1). 

Once the program is loaded into the processor, the size 
of the memory for program segment is fixed. The rest of the 
memory is used as heap and stack during the program 
running time. Heap starts from the bottom of the program 
segment. Whenever there is dynamic memory allocation, a 
block of memory is reserved for later use. When a memory 
free happens, the specific memory block is returned to the 
memory pool. On the other hand, the stack pointer position 
changes when a function call is made or finished. Generally, 
the stack and the heap grow and shrink in opposite direction. 
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A collision of stack and heap implies that a fatal error 

state has been reached. At any particular moment, the 
memory usage of the system is determined by the sum of the 
size of program, heap and stack as shown in Equation 1:  

 
stackHeapprogramTotal MMMM ++=  (1) 

In another word, for any program, the memory usage 
changes as the result of the changing of the bottom of the 
heap as well as the position of the stack pointer. In our 
proposed method, we take use of this characteristic, getting 
the position of the heap bottom and the stack pointer 
dynamically during the program running time. Taking 
program size into consideration, a dynamic memory usage 
trace map is generated.  From this trace map, we can get 
information about the overall memory requirement as well as 
the memory bottleneck of the application.  

3.2 Implementation of the method 

To get all the reliable and detail information of memory 
usage during the program running time, we use the change-
driven method to implement our methodology. All places in 
which memory usage changing could happen are traced. For 
programs written in C/C++ design environment, there are 
several types of trace points: 
1. Where dynamic memory allocation functions are called 
(malloc(), alloc(), realloc(), etc.), a block of memory is 
allocated according to the current memory usage situation. 
Assume that the current heap bottom address is Hbottom. When 
a memory allocation function is called, 

a. If the required memory is small enough to fit into 
some hole in the current heap, Hbottom does not 
change.  

b. Otherwise, the system has to allocate a new block 
for it, which means Hbottom will increase and the 
heap size will in turn be enlarged.  

c. Also the free() function might effect the heap 
bottom address. If the memory block closest to the 
bottom of the heap is freed, the heap size will 
decrease.  

d. If the freed memory block is in the middle of the 
heap, then Hbottom does not change. 

2. Another type of trace point is the entering point of any 
function call, where the stack pointer changes according 
to the local variable definition size.  

In the following sections, two typical embedded signal-
processing applications are implemented using this 
methodology and the results of memory analysis are 
discussed. In addition, optimizations are performed based on 
the memory trace map. 

4. Embedded ThumbPod System  
4.1 Overview 

ThumbPod [8][9] is a secure embedded fingerprint 
verification system built on the LEON-2 processor. The 
major computational bottleneck is the embedded fingerprints 
matching algorithm. For matching two fingerprints, we adopt 
the minutiae-based matching algorithm. Therefore, a 
minutiae detection procedure needs to be implemented on 
the embedded device. Like many other typical embedded 
multimedia signal processing algorithm, the minutiae 
detection procedure is array dominated. Hence, memory 
management for it is very important.  

The baseline program we used to extract the minutiae set 
is taken from NIST Fingerprint Image Software [10]. In the 
following subsections, the memory usage analysis is carried 
out using this NIST software as the starting point. In 
addition, memory optimizations oriented by the analysis 
results are described.  

4.2 Baseline Result 

Implementing the methodology described in section 3 to the 
baseline program taken from NIST Fingerprint Image 
Software. Results are the following (Fig. 2). During the 
simulation, 4096K total RAM is chosen. Fig. 2(a) presents 
the change of the heap bottom address during the running 
time. Fig. 2(b) is the change of the position of the stack 
pointer. Putting these results into equation (1), the total 
memory usage trace map is shown in Fig. 2(c).  Fig. 2(d) 
describes the maximum memory distribution. According to 
Fig. 2(d), we know that the peak memory usage of the 
system is 1,572Kbytes, including 325Kbytes program 
segment memory and 1,247Kbytes data segment memory. 

4.2 Memory optimization 

For most embedded systems, memory size beyond 1M is 
too expensive. In order to reduce the memory requirement 
for this application, we try to shrink the program size as well 
as the running time memory usage based on the knowledge 
got from the memory trace map step by step. 
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Step 1: architecture optimization  

Since the NIST starting point program is floating-point 
based, while the LEON-2 processor only supports fixed-
point computation, fixed-pointed refinement is necessary for 
speeding up the program. In this paper, we study the 
influence in terms of memory of doing fixed-point 
refinement. Fig. 3 shows the memory analysis results for 
fixed-point optimized program. From the memory trace map 
for the program after fixed-point refinement, we notice that 
both the program segment size and data segment size 
decrease. This is because that, in one hand, fixed-point 
refinement remove many floating point calculation related 
libraries, and on the other hand, the size of the elements of 
some arrays are modified from 8bytes “double” type to 
4bytes “int” type, which reduces the storage memory by half. 
In total, the memory requirement for fixed-refined program 
is 1267Kbytes 

Step 2: “in-place” optimization 

The memory trace map from the previous step shows 
that there is a major jump, which introduces most of the 
memory usage in a very short period. Our idea for reducing 
the data segment memory is first finding out where the 
jump(s) happen(s), then studying the algorithm to figure out 
the reason for the big memory use. Finally, we implement 
memory management techniques to remove or lower the 
jump(s). 

Detailed study of the minutiae detection algorithm of the 
ThumbPod embedded system shows that the biggest jump 
happens when a routine named “pixelize_map” is called. The 
diagram of this routine is shown in Fig. 4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The functionality of this routine is to convert the block-

based maps for direction, low flow flag, and high curve flag 
into pixel-based ones. For each pixelized map, 262,144 
(256×256×4) bytes of memory are required since for each 
pixel, one 32-bits integer is needed to present the value of 
the map.  This is the bottleneck of the memory usage.  

There are two ways to reduce the memory requirement. 
One is to implement “in-place” technique in this routine.  
The numbers in the direction_map are within the range 0–16, 
and for the low_flow_map and high_curve_map, simple 0/1 
value is used as flags. In addition, the dimensions for the 
three maps are exactly the same. Therefore taking one 
corresponding element from each map, the sum of the valid 
bits number is 6 (four bits for direction_map, one for 
low_flow_map, and one for high_curve_map), which is 
smaller than 32. Therefore it is possible to compress these 
three different maps into one since we can combine three 
elements (one from each maps) in one 32-bit integer. By 
doing this, instead of three separate arrays, only one array 
called “Ptotal_map” is used to represent the three pixelized 
maps (Fig.5). 
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Fig. 2. Memory analysis results for baseline program 
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Fig. 3. Memory analysis results for fix-refined program 
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Fig. 6 is the results of this in-place memory 

management. According to the above results, peak memory 
requirement becomes 744Kbytes. The data segment memory 
decreases by 590Kbytes compared to the previous result, 
while the program segment size increases by 47Kbytes. The 
reason for program size increasing is that additional 
calculation is needed for the compression and decompression 
of the pixelized maps. Another observation needed to 
mention is that as a side effect of those additional 
calculations, the execution time of the whole system 
increases by 0.25sec. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: Skipping bottleneck 

From the memory trace map shown in Fig. 6, the 
memory requirement bottleneck is still the pixelize_map 
routine. Further optimization can be implemented by 
eliminating this routine. Instead of generating whole pixlized 
maps, we calculate the map value for each pixel only when it 
is referred in the program. This technique removes the big 
memory usage jump in the memory trace map. The 
drawback of it is that the pixel index needs to be calculated 
each time it is referred.  The result of this method is shown 
in Fig. 7. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Comparison of the last two results (Fig. 6 and Fig. 7) 

shows that both the program segment size and the data 
segment size decrease. The total memory requirement is 
483K Bytes. Keeping an eye on the execution time, system 
speeds up to 5.05sec. This means that the memory 
optimization techniques gain some memory size with no cost 
of speed. This is because that the pixelize_map routine is 
skipped in the program, some unnecessary computation is 
avoided. 

5. Embedded Speech Recognition Front-End 
5.1 Overview 

Speech recognition is an increasingly popular embedded 
real-time multimedia application. In the speech recognition 
module of the “Poly-sensing Environment” project [13], for 
reducing the communication overhead and the energy of the 
system, the signal processing front-end feature extraction 
procedure needs to be done in the embedded devices, which 
are usually small in size and batteries-powered.  As a result, 
memory analysis of such a system is very valuable for 
system design.  

The acoustic feature used in our system is called Mel-
Frequency Ceptrum Coefficient (MFCC) [14]. The diagram 
of this algorithm is shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The floating-point baseline program is taken from ETSI 

[12]. Using the proposed memory estimation methodology, 

 

Fig. 6. Memory analysis results of “in-place” technique 
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Fig. 7. Memory analysis optimized results 
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Fig. 8. MFCC Front-End Processing 

 

 

Fig. 5. “in-place” technique for memory reduction 
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the memory analysis results are described in the following 
subsections. 

5.2 Baseline result 

Fig. 9 shows the memory trace map for the baseline 
implementation. The program segment size of this baseline 
implementation is 69Kbytes and the data segment memory 
required is 14Kbytes. In total, 83Kbytes memory is needed. 

 

 

 

 

 

 

 

 

5.3 Memory optimization 

Since the front-end processing runs on fixed-point 
embedded devices, the first step we need to do is the 
architecture optimization, This step of refinement results in 
19Kbytes memory save in program segment size and 
5Kbytes save for data segment size. Totally, 59Kbytes 
memory is required (Fig. 10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Following a similar methodology for memory 

optimization, analysis of the memory trace map shows that 
the largest jump in the map is caused by memory allocation 
for array “vector”, which is used to store the Mel-scale 
triangle filter bank. According to the algorithm, each filter in 
the filter bank is used independently when calculating the 
ceptrums. Therefore storing the whole filter bank at the same 
time is not memory-efficient. Instead, the filter coefficient 
could be computed before being used and freed after that. 
Another jump in the memory trace map comes from the 
array “rsrec”, which is used in the recursive part of FFT 
calculation. The values of it in one recurrence are not used 
anymore in the following. Therefore, the memory block of 

this array could be reused in each recurrence. After 
implementing these optimizations techniques to the front-end 
processing, the memory trace map is shown in Fig. 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Result shows that for this step 57Kbytes memory is 

needed. Comparing with previous step, program segment 
size slightly increases by 2%, while the data segment 
memory decreases by 30%. 

6. Conclusion 
In this paper a memory analysis method to estimate, 

analysis, and optimize the memory usage for embedded 
system is presented. It guides designers to get bigger benefit 
first by optimize the larger jump in the memory trace map. 
Two typical embedded applications, ThumbPod embedded 
secure fingerprint verification system and embedded speech 
recognition front-end system, are implemented using the 
proposed methodology. Fig. 12 shows the overall 
optimization results for both of them.  Since program 
segment memory and data segment memory could be ported 
into different memory locations, memory analysis for 
program segment and data segment is shown separately here.  
Fig. 12(a), (b) show 67% and 31% total memory reduction 
for ThumbPod secure embedded fingerprint verification 
system and embedded speech recognition front-end module, 
respectively.  
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Fig. 10. Memory analysis result for fix-refined program 
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Fig. 11. Memory analysis result for optimized program 
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Fig. 9. Memory analysis result for baseline program 
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