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ABSTRACT 

Creating a biometric verification system in an energy and area 
constrained embedded environment is a challenging problem. 
Our paper describes a secure and efficient embedded fingerprint 
verification system for the “ThumbPod” embedded device, in 
which a complete real-time fingerprint recognition module, 
including both the minutiae extraction and the matching, works 
on a 50MHz LEON-2 processor. As the result of the proposed 
SW/HW accelerations and memory optimizations, we achieve 
65% reduction on the execution time and 67% reduction on the 
memory size against the reference implementation. 

1. INTRODUCTION 

Fingerprints offer great security and convenience since they 
cannot be lost or forgotten. However, one of the most significant 
disadvantages is that a fingerprint cannot be easily recalled. For 
example, if one of the fingers is used directly as a password, 
once it is compromised, it can never be used again, which means 
it is compromised forever. Moreover, due to the limited number 
of fingers for one person, different applications might use the 
same fingerprint. Therefore a fingerprint stolen from one 
application could also be used in some other applications [7]. In 
a traditional biometric recognition system, the biometric 
template is usually stored on a central server during enrollment. 
The input biometric signal captured by the front-end sensor is 
sent to the server and the processing and matching steps are 
performed on the server. In this case the safety of the precious 
biometric information cannot be guaranteed because attacks 
might occur during the transmission or on the server. Some 
embedded systems implement the complex signal preprocessing 
step on a powerful card reader, and only the matching step is 
executed on the embedded device [1]. This design still cannot 
prevent the critical fingerprint leakage since it requires the 
transmission of raw fingerprint image as well as the template. In 
our proposed method, instead of dividing the whole system into 
two parts, we implement both the signal processing and the 
matching engines on an energy and memory-constrained 
embedded device. All biometrics are processed locally and the 
only information that needs to be sent is a “yes/no” result for 
indicating a match. 

2. THUMBPOD SYSTEM 

In a traditional distributed system involving resource-limited 
embedded devices, system partitioning is usually based on 
distributed computation. However, Thumbpod requires a 
partitioning that also takes security into considerations [3][4]. 
Therefore, we need to perform full biometrics processing locally 
in the Thumbpod instead of offloading data to the server. The 
Thumbpod system consists of four basic subsystems: data 
collection, minutiae extraction, matching and secure 

communication. The first three take care of the biometric 
processing and verification and are the focus of this paper. The 
communication part provides a secure transmission of the result, 
to the server.  

2.1 Data Collection 

An authentec AF-2 CMOS imaging sensor is used to capture the 
live-scan fingerprint samples. The sensor has an accuracy up to 
8bits/sample. To save energy and storage size of the embedded 
device, we adopt a 3bits/sample accuracy, which results in 
relatively low quality input image and requires a robust matching 
algorithm.  

2.2 Minutiae Detection  

The starting point for the algorithm, to extract minutiae of the 
fingerprint, is taken from the NIST Fingerprint Image Software 
[8]. The basic steps are shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fundamental step in the minutiae detection process is to 
derive a directional ridge flow map. For each block (8×8 pixels), 
the surrounding window (24×24 pixels) is rotated incrementally 
and a DFT analysis is conducted at each orientation. The number 
of orientations is set to 16. Within an orientation, the pixels 
along each rotated row of the window are summed up, forming 
16 vectors of row sums. The dominant ridge flow direction for 
the block is determined by the orientation with the maximum 
waveform resonance produced by convolving each of the row 
sum vectors with 4 different discrete waveforms. Each pixel is 
assigned a binary value based on the ridge flow direction 
associated with the block to which the pixel belongs. Following 

 

Fig. 1.  NIST minutiae extraction flow. 
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the binarization, the detection step methodically scans the binary 
image of a fingerprint, identifying localized pixel patterns that 
indicate the ending or bifurcation of a ridge. All minutiae 
candidates are pointed out by performing these steps. The final 
step is to remove false minutiae from the candidates and keep the 
true ones.  

2.3 Matching 

The matching step compares the likeness of one fingerprint 
image to the template. It uses the minutiae of the previous step to 
perform this comparison. The algorithm flow is shown in Fig. 2.  

 

 

 

 

 

 

 
 

The first step is to find out the correspondence of these two 
minutiae sets by comparing the local structures.  Then the other 
minutiae are aligned by converting them to a polar coordinate 
system based on the corresponding pair. Based on the 
transformed minutiae sets, similarity evaluation is performed and 
the matching score is calculated out.  

2.4 System Analysis and Testing  

Using the algorithm described above we can perform fingerprint 
verification on ThumbPod. The sensor used for scanning has a 
relatively small area (13×13mm2), so the performance is strongly 
dependent on which part of the finger is captured by the sensor. 
To eliminate this problem we use a two-template system in 
ThumbPod. The system is tested with live-scan fingerprints. The 
image set consists of 10 fingerprints per finger from 10 different 
fingers for total 100 fingerprints images. Each fingerprint is 
compared with every two other fingerprints and the two match 
scores are ported into a decision engine in order to get the final 
matching result. So totally 7,200 decisions are reached for the 
matched case and 81,000 decisions for mismatched case. We 
have achieved 0.5% FRR and 0.01% FAR.   

3. OPTIMIZATION FOR SPEED 

Implementing the fingerprint recognition system on ThumbPod 
requires not only accuracy, but also high speed performance. The 
TSIM SPARC simulator is used for profiling [2]. Simulations 
show that the minutiae extraction takes most (~99%) of the 
execution time. Therefore, we focus on software and hardware 
optimizations for the minutiae extraction module [9].  

3.1 Profiling of the Minutiae Detection 

Fig.3(a) shows the profiling result of the minutiae detection. The 
execution time of BINAR and DETECT are 11% and 12% of the 
total, respectively. They are not considered as a system 
bottleneck; on the contrary, MAPS occupies 74% of the total 
execution time. Therefore, the detailed algorithm is checked to 
speedup the MAPS at the instruction level. Fig. 3(b) shows the 
instruction-level profiling of MAPS. The instructions of multiply 
(Mult) and addition (add) sum up to 56% of the total MAPS due 

to the repetitive DFT calculation in creating the direction map.  
Based on the profiling result, optimization should be considered 
for the calculations in MAPS of the minutiae detection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Software Optimization 

Considering that the ridges in a fingerprint are usually 
continuous, the neighboring blocks tend to have similar 
directions. Taking advantage of this characteristic, the number of 
DFT calculations can be reduced significantly. An example of 
direction map is shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 
The first direction data θ =5 is calculated with the same method 
as the original program. When deciding the direction of the 
following data, the DFTs for θ =4,5,6 are calculated first, 
because the result is most likely to be close. If the total energy 
for θ =5 is greater than both its neighbors ( θ =4,6) and a 
threshold value 

THE , the direction data of θ =5 is considered as 

the result. Otherwise, θ  is incremented or decremented until the 
total energy for θ  has a peak with a value larger than 

THE . The 

execution speed as well as the matching error rate is measured 
when changing 

THE  from 10M to 35M. The error rate is within 

an acceptable range when 
THE  is larger than 20M. In this paper, 

we choose the value of 27M. 

3.3 DFT Accelerator of the Minutiae Detection 

The software optimization reduces the number of DFT and 
results in a significant speedup for the minutiae detection. 

 

Fig. 2. Matching flow.    
    

      Find reference points in two   
minuti   ae sets   

    

Align other minutiae   
    

Compute matching score   
    

 

(a) (b) 

MAPS   
74%   

DETECT   
12%   

BINAR   
11 %   

OTHERS   
3%   

Load   
15%   Add   

15%   

Mult   
41%   

Logical   
9%   

Branch   
8%   

Others   
8%   

Store   
4%   

Fig. 3.  (a) Profiling of the execution time for the 
minutiae; (b) Instruction-level profiling of MAPS 
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Fig. 4.  Example of Direction Map. “-1” is no-direction 
because zero-padding in the image. 



However, there are still a large number of DFT calculations for a 
256×256 pixels image when setting the 

THE  to a proper value. 

Therefore, DFT hardware acceleration is needed in addition to 
the software optimization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The final version of the accelerator only implements MAC 
computations for sine and cosine part separately [Fig.5]. In the 
multiply operation, Canonic Signed Digit (CSD) is used for 
saving hardware resources. The energy calculation part is not 
included because it needs square operation of 16 bits data, which 
requires a general multiplier. As a result of these optimizations, 
the execution time of the minutia detection is reduced to about 4 
seconds.  

4. MEMORY OPTIMIZATION 

As new processors continuously improve the performance of 
embedded systems, the processor-memory gap widens and 
memory presents a major bottleneck in both storage area and 
energy consumption. As mentioned before, in the ThumbPod 
system the major computational bottleneck is the fingerprint 
minutiae detection algorithm. Like many other image processing 
algorithm, it is array-dominated. Therefore, apart from 
optimizations for high-speed calculation, memory management 
is also necessary. In this section, we will introduce a memory 
analysis method, and several optimization techniques are 
implemented based on the analysis result. 

4.1 Memory Analysis Methodology 

When a program is running, the memory module is divided into 
two parts: program segment and data segment, which includes a 
heap and a stack. The heap starts from the bottom of the program 
segment and increases when the latest reserved block is beyond 
its range. Whenever there is dynamic memory allocation, a block 
of memory is reserved for later use. When a memory free 
happens, the specific memory block is returned to the memory 
pool. On the other hand, the stack pointer position changes when 
a function call is executed or returned. Generally, the stack and 
the heap grow and shrink in opposite direction. A collision of 
stack and heap implies a fatal error state. At any particular 
moment, the memory usage of the system is determined by the 
sum of the size of program, heap and stack as shown in Equation 
1: 

stackHeapprogramTotal MMMM ++=  (1) 

By inserting the memory trace agents in the program where 
memory usage changes can happen, we get the position of the 

heap bottom and the stack pointer dynamically during the 
program running time. Taking program size into consideration, a 
dynamic memory usage trace map is generated.  From this trace 
map, we can get information about the overall memory 
requirement as well as the memory bottleneck of the application.  

In the following subsections, the memory usage analysis is 
carried out using this NIST software as the starting point. In 
addition, memory optimizations oriented by the analysis results 
are described.  

4.2 Baseline Result for the Minutiae Detection 

Implementing the methodology described in section 4.1 to the 
baseline program, the memory trace map is shown in Fig. 6(a), in 
which the peak memory usage of the system is 1,572Kbytes, 
including 325Kbytes of program segment memory and 
1,247Kbytes of data segment memory.  

4.3 Memory Optimization 

For most embedded systems, memory size beyond 1Mbytes is 
too expensive. In order to reduce the memory requirement for 
this application, we try to shrink the program size as well as the 
running time memory usage based on the information obtained 
from the memory trace map. 

4.3.1 Architecture Optimization 

The NIST starting point program is floating-point based, while 
the LEON-2 processor only supports fixed-point computation. 
Therefore, we perform a fixed-point refinement optimization by 
replacing all the floating computation with 32bit long integer 
ones. From the memory trace map (Fig. 6(b)) of the fixed-point 
refined program, we notice that both the program segment size 
and the data segment size decrease. This is because, on the one 
hand, fixed-point refinements remove many floating-point 
calculation related libraries; on the other hand, the size of the 
elements of some arrays are modified from 8bytes “double” type 
to 4bytes “int” type, which reduces the storage memory by half. 
In total, the memory requirement for fixed-refined program is 
1267Kbytes. 

4.3.2 “In-place” Optimization 

The memory trace map Fig.6(a) and (b) show that there is a 
major jump, which introduces most of the memory usage in a 
very short period. Our idea for reducing the data segment 
memory is first finding out where the jump happens, then 
studying the algorithm to figure out the reason for the big 
memory use and implementing memory management techniques 
to remove or lower the jump. 

Detailed investigation of the minutiae detection algorithm of 
the ThumbPod embedded system shows that the biggest jump 
happens when a routine named “pixelize_map” is called. The 
functionality of this routine is to convert the block-based maps 
for direction, low flow flag, and high curve flag into pixel-based 
ones. For each pixelized map, 262,144 (256×256×4) bytes of 
memory are required since for each pixel, one 32-bits integer is 
used to present each value.  This results in the bottleneck jump 
in the memory trace map. 

The dimensions for the three maps are exactly the same. 
Moreover, the values in direction_map vary from 0 to 32 and 
low_flow_map and high_curve_map consist of only 0 and 1.  
Therefore taking one corresponding element from each map, 
only 6 bits are required per pixel (four bits for direction_map, 
one for low_flow_map, and one for high_curve_map). It is 

 

Fig. 5.   Block diagram for the memory-
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possible to compress these three different maps into one since 
we can combine three elements (one from each map) in one 32-
bit integer. By doing this, the peak memory requirement 
becomes 744Kbytes (Fig. 6(c)). The data segment memory 
decreases by 590Kbytes compared to the previous result, while 
the program segment size increases by 47Kbytes. The reason for 
program size increasing is that additional calculations are needed 
for the compression and decompression of the pixelized maps.  

4.3.3 On-line Calculation 

As shown in Fig. 6(c), the memory requirement bottleneck is still 
in the pixelize_map routine. Further optimization can be 
implemented by eliminating this routine. Instead of generating 
whole pixelized maps, we calculate the map value for each pixel 
only when it is referred in the program. This technique removes 
the big memory usage jump in the memory trace map. The 
drawback of it is that the pixel index needs to be calculated each 
time it is referred.  The result of this method is shown as Fig. 
6(d). Comparison of the results shows that both the program 
segment size and the data segment size decrease. The total 
memory requirement is 483K Bytes.  

5. CONCLUSION 

In this paper, we design an efficient embedded fingerprint 
recognition system. Both high-speed optimization and memory 
optimization are implemented. Fig. 7 shows the overall 
optimization results. Fig. 7(a) presents the execution time 
reduction of the minutia detection. Fig. 7(b) shows the memory 
reduction. 
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Fig. 6. Memory trace maps for: 
(a) baseline; (b) fixed-point refined; 
(c) “in-place” optimized; (d) final optimized. 
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Fig. 7. (a) Execution time reduction;  
(b) Memory reduction. 
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