
A REALTIME, MEMORY EFFICIENT FINGERPRINT VERIFICATION SYSTEM

Shenglin Yang and Ingrid Verbauwhede

Department of EE, UCLA, Los Angeles, CA 90095

ABSTRACT

Creating a biometric verification system in an energy and area
constrained embedded environment is a challenging problem.
Our paper describes a secure and efficient embedded fingerprint
verification system for the “ThumbPod” embedded device, in
which a complete real-time fingerprint recognition module,
including both the minutiae extraction and the matching, works
on a 50MHz LEON-2 processor. As the result of the proposed
SW/HW accelerations and memory optimizations, we achieve
65% reduction on the execution time and 67% reduction on the
memory size against the reference implementation.

1. INTRODUCTION

Fingerprints offer great security and convenience since they
cannot be lost or forgotten. However, one of the most significant
disadvantages is that a fingerprint cannot be easily recalled. For
example, if one of the fingers is used directly as a password,
once it is compromised, it can never be used again, which means
it is compromised forever. Moreover, due to the limited number
of fingers for one person, different applications might use the
same fingerprint. Therefore a fingerprint stolen from one
application could also be used in some other applications [7]. In
a traditional biometric recognition system, the biometric
template is usually stored on a central server during enrollment.
The input biometric signal captured by the front-end sensor is
sent to the server and the processing and matching steps are
performed on the server. In this case the safety of the precious
biometric information cannot be guaranteed because attacks
might occur during the transmission or on the server. Some
embedded systems implement the complex signal preprocessing
step on a powerful card reader, and only the matching step is
executed on the embedded device [1]. This design still cannot
prevent the critical fingerprint leakage since it requires the
transmission of raw fingerprint image as well as the template. In
our proposed method, instead of dividing the whole system into
two parts, we implement both the signal processing and the
matching engines on an energy and memory-constrained
embedded device. All biometrics are processed locally and the
only information that needs to be sent is a “yes/no” result for
indicating a match.

2. THUMBPOD SYSTEM

In a traditional distributed system involving resource-limited
embedded devices, system partitioning is usually based on
distributed computation. However, Thumbpod requires a
partitioning that also takes security into considerations [3][4].
Therefore, we need to perform full biometrics processing locally
in the Thumbpod instead of offloading data to the server. The
Thumbpod system consists of four basic subsystems: data
collection, minutiae extraction, matching and secure

communication. The first three take care of the biometric
processing and verification and are the focus of this paper. The
communication part provides a secure transmission of the result,
to the server.

2.1 Data Collection

An authentec AF-2 CMOS imaging sensor is used to capture the
live-scan fingerprint samples. The sensor has an accuracy up to
8bits/sample. To save energy and storage size of the embedded
device, we adopt a 3bits/sample accuracy, which results in
relatively low quality input image and requires a robust matching
algorithm.

2.2 Minutiae Detection

The starting point for the algorithm, to extract minutiae of the
fingerprint, is taken from the NIST Fingerprint Image Software
[8]. The basic steps are shown in Fig. 1.

The fundamental step in the minutiae detection process is to
derive a directional ridge flow map. For each block (8×8 pixels),
the surrounding window (24×24 pixels) is rotated incrementally
and a DFT analysis is conducted at each orientation. The number
of orientations is set to 16. Within an orientation, the pixels
along each rotated row of the window are summed up, forming
16 vectors of row sums. The dominant ridge flow direction for
the block is determined by the orientation with the maximum
waveform resonance produced by convolving each of the row
sum vectors with 4 different discrete waveforms. Each pixel is
assigned a binary value based on the ridge flow direction
associated with the block to which the pixel belongs. Following

Fig. 1. NIST minutiae extraction flow.

Quality maps

Generate maps (MAPS)

Direction maps

Binarized image

Possible minutiae

Final minutiae set

Binariza tion (BINAR)

Detection (DETECT)

Remove false minutiae

Fingerprint

the binarization, the detection step methodically scans the binary
image of a fingerprint, identifying localized pixel patterns that
indicate the ending or bifurcation of a ridge. All minutiae
candidates are pointed out by performing these steps. The final
step is to remove false minutiae from the candidates and keep the
true ones.

2.3 Matching

The matching step compares the likeness of one fingerprint
image to the template. It uses the minutiae of the previous step to
perform this comparison. The algorithm flow is shown in Fig. 2.

The first step is to find out the correspondence of these two
minutiae sets by comparing the local structures. Then the other
minutiae are aligned by converting them to a polar coordinate
system based on the corresponding pair. Based on the
transformed minutiae sets, similarity evaluation is performed and
the matching score is calculated out.

2.4 System Analysis and Testing

Using the algorithm described above we can perform fingerprint
verification on ThumbPod. The sensor used for scanning has a
relatively small area (13×13mm2), so the performance is strongly
dependent on which part of the finger is captured by the sensor.
To eliminate this problem we use a two-template system in
ThumbPod. The system is tested with live-scan fingerprints. The
image set consists of 10 fingerprints per finger from 10 different
fingers for total 100 fingerprints images. Each fingerprint is
compared with every two other fingerprints and the two match
scores are ported into a decision engine in order to get the final
matching result. So totally 7,200 decisions are reached for the
matched case and 81,000 decisions for mismatched case. We
have achieved 0.5% FRR and 0.01% FAR.

3. OPTIMIZATION FOR SPEED

Implementing the fingerprint recognition system on ThumbPod
requires not only accuracy, but also high speed performance. The
TSIM SPARC simulator is used for profiling [2]. Simulations
show that the minutiae extraction takes most (~99%) of the
execution time. Therefore, we focus on software and hardware
optimizations for the minutiae extraction module [9].

3.1 Profiling of the Minutiae Detection

Fig.3(a) shows the profiling result of the minutiae detection. The
execution time of BINAR and DETECT are 11% and 12% of the
total, respectively. They are not considered as a system
bottleneck; on the contrary, MAPS occupies 74% of the total
execution time. Therefore, the detailed algorithm is checked to
speedup the MAPS at the instruction level. Fig. 3(b) shows the
instruction-level profiling of MAPS. The instructions of multiply
(Mult) and addition (add) sum up to 56% of the total MAPS due

to the repetitive DFT calculation in creating the direction map.
Based on the profiling result, optimization should be considered
for the calculations in MAPS of the minutiae detection.

3.2 Software Optimization

Considering that the ridges in a fingerprint are usually
continuous, the neighboring blocks tend to have similar
directions. Taking advantage of this characteristic, the number of
DFT calculations can be reduced significantly. An example of
direction map is shown in Fig. 4.

The first direction data θ =5 is calculated with the same method
as the original program. When deciding the direction of the
following data, the DFTs for θ =4,5,6 are calculated first,
because the result is most likely to be close. If the total energy
for θ =5 is greater than both its neighbors (θ =4,6) and a
threshold value

THE , the direction data of θ =5 is considered as

the result. Otherwise, θ is incremented or decremented until the
total energy for θ has a peak with a value larger than

THE . The

execution speed as well as the matching error rate is measured
when changing

THE from 10M to 35M. The error rate is within

an acceptable range when
THE is larger than 20M. In this paper,

we choose the value of 27M.

3.3 DFT Accelerator of the Minutiae Detection

The software optimization reduces the number of DFT and
results in a significant speedup for the minutiae detection.

Fig. 2. Matching flow.

 Find reference points in two
minuti ae sets

Align other minutiae

Compute matching score

(a) (b)

MAPS
74%

DETECT
12%

BINAR
11 %

OTHERS
3%

Load
15% Add

15%

Mult
41%

Logical
9%

Branch
8%

Others
8%

Store
4%

Fig. 3. (a) Profiling of the execution time for the
minutiae; (b) Instruction-level profiling of MAPS

- 1 15 15 14 13 14 15 1 4 14 14 15 15 15 14 14 14 13 13 13 13 13 13 13 13 12 13 13 12 13 12 12 - 1

- 1 15 14 14 14 13 14 14 15 15 15 15 14 14 14 13 13 13 13 12 13 12 12 12 13 13 12 13 12 12 12 - 1

- 1 14 14 13 7 11 14 14 14 14 14 14 14 14 13 1 3 13 13 12 12 12 12 13 13 13 12 12 12 12 12 12 - 1

- 1 14 15 15 7 13 13 14 14 14 14 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 11 12 - 1

- 1 14 13 14 13 13 13 14 14 13 13 13 13 13 13 12 12 12 12 11 12 12 12 12 12 12 12 12 11 12 12 - 1

- 1 14 11 13 13 13 13 12 13 13 13 12 13 13 12 12 1 2 12 12 11 12 12 12 11 12 12 12 12 12 12 12 - 1

- 1 9 13 13 12 12 12 12 13 13 13 14 13 12 12 12 12 12 12 12 11 12 12 11 11 11 13 12 12 11 11 - 1

- 1 9 12 12 12 12 12 11 12 12 13 13 13 12 12 11 11 11 11 11 11 12 12 11 11 10 10 11 11 11 11 - 1

- 1 12 12 12 12 12 12 12 12 12 12 13 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 9 10 11 12 - 1

- 1 - 1 - 1

- 1

- 1 5 5 5 6 5 6 7 7 7 7 8 8 8 8 8 9 9 9 8 10 10 11 10 11 11 11 11 11 12 12 - 1

- 1 5 4 5 5 5 6 7 7 7 7 7 7 6 7 8 9 9 9 9 9 11 12 12 11 11 11 11 12 12 12 - 1

- 1 5 5 6 5 5 5 6 6 7 7 7 7 7 7 8 8 9 9 9 9 11 11 11 1 1 11 11 11 12 12 12 - 1

- 1 5 5 6 5 5 5 5 6 6 7 7 7 7 8 8 8 9 9 9 10 11 11 12 11 11 12 12 12 12 13 - 1

- 1 4 5 6 5 5 5 5 5 6 6 6 7 7 8 8 8 9 9 10 10 11 12 12 12 12 12 12 12 13 13 - 1

- 1 4 3 3 4 5 5 5 5 6 6 6 7 7 8 8 9 9 10 10 10 11 12 12 12 12 12 12 12 13 13 - 1

- 1 3 3 3 4 4 4 5 5 5 6 6 6 7 8 9 9 10 10 10 11 11 12 12 12 12 13 13 13 13 13 - 1

- 1 3 3 3 3 4 4 4 5 5 6 6 6 7 7 9 9 10 10 11 11 11 11 11 12 12 13 13 13 13 13 - 1

- 1 3 3 3 3 3 3 4 5 5 5 5 6 7 7 8 10 10 11 11 11 11 11 10 11 12 13 13 13 13 13 - 1

- 1 3 3 3 3 3 3 3 4 5 5 6 5 6 7 8 10 10 11 11 11 11 10 11 12 13 13 13 13 13 13 - 1

- 1 3 3 2 3 3 3 3 4 4 5 5 6 6 7 8 9 11 11 11 11 12 13 12 13 13 13 13 13 13 13 - 1

- 1 2 2 2 2 3 2 3 3 3 4 3 3 5 8 9 10 11 11 11 12 12 13 12 13 13 13 14 13 13 13 - 1

- 1 2 2 2 2 2 2 2 3 3 3 3 3 4 7 8 9 11 11 12 12 12 13 12 13 13 13 14 14 14 13 - 1

- 1 2 2 2 2 2 2 2 2 2 2 3 3 4 7 8 10 11 12 12 12 12 13 12 12 12 14 13 13 14 13 - 1

- 1 3 1 1 1 0 0 1 2 2 2 2 2 3 7 8 10 11 12 12 12 13 13 13 13 13 11 11 12 13 12 - 1

- 1 2 1 1 2 1 1 1 1 2 0 1 1 2 7 8 10 11 12 12 13 13 13 13 13 13 13 12 12 12 13

- 1

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 13 12 13 13 13 13 13 13 13 14 14 13 13 13 14 - 1

- 1 0 0 0 0 1 1 1 1 1 1 0 0 0 11 11 13 13 13 13 13 13 12 12 13 14 14 13 13 13 13 - 1

- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 11 13 13 13 13 13 13 13 12 12 13 13 13 13 13 13 - 1

- 1 15 15 15 15 0 15 15 0 0 0 0 0 0 0 14 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 - 1

- 1 15 15 15 14 14 15 15 14 0 0 0 15 15 15 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 - 1

- 1

Fig. 4. Example of Direction Map. “-1” is no-direction
because zero-padding in the image.

However, there are still a large number of DFT calculations for a
256×256 pixels image when setting the

THE to a proper value.

Therefore, DFT hardware acceleration is needed in addition to
the software optimization.

The final version of the accelerator only implements MAC
computations for sine and cosine part separately [Fig.5]. In the
multiply operation, Canonic Signed Digit (CSD) is used for
saving hardware resources. The energy calculation part is not
included because it needs square operation of 16 bits data, which
requires a general multiplier. As a result of these optimizations,
the execution time of the minutia detection is reduced to about 4
seconds.

4. MEMORY OPTIMIZATION

As new processors continuously improve the performance of
embedded systems, the processor-memory gap widens and
memory presents a major bottleneck in both storage area and
energy consumption. As mentioned before, in the ThumbPod
system the major computational bottleneck is the fingerprint
minutiae detection algorithm. Like many other image processing
algorithm, it is array-dominated. Therefore, apart from
optimizations for high-speed calculation, memory management
is also necessary. In this section, we will introduce a memory
analysis method, and several optimization techniques are
implemented based on the analysis result.

4.1 Memory Analysis Methodology

When a program is running, the memory module is divided into
two parts: program segment and data segment, which includes a
heap and a stack. The heap starts from the bottom of the program
segment and increases when the latest reserved block is beyond
its range. Whenever there is dynamic memory allocation, a block
of memory is reserved for later use. When a memory free
happens, the specific memory block is returned to the memory
pool. On the other hand, the stack pointer position changes when
a function call is executed or returned. Generally, the stack and
the heap grow and shrink in opposite direction. A collision of
stack and heap implies a fatal error state. At any particular
moment, the memory usage of the system is determined by the
sum of the size of program, heap and stack as shown in Equation
1:

stackHeapprogramTotal MMMM ++= (1)

By inserting the memory trace agents in the program where
memory usage changes can happen, we get the position of the

heap bottom and the stack pointer dynamically during the
program running time. Taking program size into consideration, a
dynamic memory usage trace map is generated. From this trace
map, we can get information about the overall memory
requirement as well as the memory bottleneck of the application.

In the following subsections, the memory usage analysis is
carried out using this NIST software as the starting point. In
addition, memory optimizations oriented by the analysis results
are described.

4.2 Baseline Result for the Minutiae Detection

Implementing the methodology described in section 4.1 to the
baseline program, the memory trace map is shown in Fig. 6(a), in
which the peak memory usage of the system is 1,572Kbytes,
including 325Kbytes of program segment memory and
1,247Kbytes of data segment memory.

4.3 Memory Optimization

For most embedded systems, memory size beyond 1Mbytes is
too expensive. In order to reduce the memory requirement for
this application, we try to shrink the program size as well as the
running time memory usage based on the information obtained
from the memory trace map.

4.3.1 Architecture Optimization

The NIST starting point program is floating-point based, while
the LEON-2 processor only supports fixed-point computation.
Therefore, we perform a fixed-point refinement optimization by
replacing all the floating computation with 32bit long integer
ones. From the memory trace map (Fig. 6(b)) of the fixed-point
refined program, we notice that both the program segment size
and the data segment size decrease. This is because, on the one
hand, fixed-point refinements remove many floating-point
calculation related libraries; on the other hand, the size of the
elements of some arrays are modified from 8bytes “double” type
to 4bytes “int” type, which reduces the storage memory by half.
In total, the memory requirement for fixed-refined program is
1267Kbytes.

4.3.2 “In-place” Optimization

The memory trace map Fig.6(a) and (b) show that there is a
major jump, which introduces most of the memory usage in a
very short period. Our idea for reducing the data segment
memory is first finding out where the jump happens, then
studying the algorithm to figure out the reason for the big
memory use and implementing memory management techniques
to remove or lower the jump.

Detailed investigation of the minutiae detection algorithm of
the ThumbPod embedded system shows that the biggest jump
happens when a routine named “pixelize_map” is called. The
functionality of this routine is to convert the block-based maps
for direction, low flow flag, and high curve flag into pixel-based
ones. For each pixelized map, 262,144 (256×256×4) bytes of
memory are required since for each pixel, one 32-bits integer is
used to present each value. This results in the bottleneck jump
in the memory trace map.

The dimensions for the three maps are exactly the same.
Moreover, the values in direction_map vary from 0 to 32 and
low_flow_map and high_curve_map consist of only 0 and 1.
Therefore taking one corresponding element from each map,
only 6 bits are required per pixel (four bits for direction_map,
one for low_flow_map, and one for high_curve_map). It is

Fig. 5. Block diagram for the memory-
mapped DFT accelerator

DFT Accelerator

AMBA Peripheral Bus

Controll er

DFT (k = 1)

DFT (k = 2)

DFT (k = 3)

DFT (k = 4)

32bit Data Bus

Data

Control Signal

Addre s s

Memory Mapped I/F

possible to compress these three different maps into one since
we can combine three elements (one from each map) in one 32-
bit integer. By doing this, the peak memory requirement
becomes 744Kbytes (Fig. 6(c)). The data segment memory
decreases by 590Kbytes compared to the previous result, while
the program segment size increases by 47Kbytes. The reason for
program size increasing is that additional calculations are needed
for the compression and decompression of the pixelized maps.

4.3.3 On-line Calculation

As shown in Fig. 6(c), the memory requirement bottleneck is still
in the pixelize_map routine. Further optimization can be
implemented by eliminating this routine. Instead of generating
whole pixelized maps, we calculate the map value for each pixel
only when it is referred in the program. This technique removes
the big memory usage jump in the memory trace map. The
drawback of it is that the pixel index needs to be calculated each
time it is referred. The result of this method is shown as Fig.
6(d). Comparison of the results shows that both the program
segment size and the data segment size decrease. The total
memory requirement is 483K Bytes.

5. CONCLUSION

In this paper, we design an efficient embedded fingerprint
recognition system. Both high-speed optimization and memory
optimization are implemented. Fig. 7 shows the overall
optimization results. Fig. 7(a) presents the execution time
reduction of the minutia detection. Fig. 7(b) shows the memory
reduction.

6. ACKNOWLEDGEMENTS

The authors would like to acknowledge the funding of NSF
account no CCR-0098361, the Langlois foundation and the
ThumbPod teammates.

7. REFERENCES

[1] Gil, Y., Moon, D., Pan, S. and Chung, Y., Fingerprint
Verification System Involving Smart Card, Information
Security and Cryptology - ICISC 2002 (LNCS 2587), Nov.
2002, Seoul, Korea.

[2] http://www.gaisler.com
[3] http://www.ThumbPod.com
[4] Hwang, D., Schaumont, P., Fan, Y., Hodjat, A., Lai, B.,

Sakiyama, K., Yang, S. and Verbauwhede, I., Design flow
for HW/SW acceleration transparency in the ThumbPod
secure embedded system, Proceedings of 40th ACM/IEEE
Design Automation Conference, Anaheim, CA, pp.60-65,
June 2003.

[5] Jiang, X. and Yau, W.-Y., Fingerprint minutiae matching
based on the local and global structures, Proceedings of
International Conference on Pattern Recognition, pp.6038-
6041, September 2000.

[6] Panda, P., Catthoor, F., Dutt, N., Danckaert, K.,
Brockmeyer, E., Kulkarni, C., Vandercappelle, A. and
Kjeldsberg, P.G., Data and memory optimization
techniques for embedded systems, ACM Transactions on
Design Automation of Electronic systems, vol.6, no.2,
pp.149-206, April 2001.

[7] Prabhakar, S., Pankanti, S., and Jain, A. K., Biometric
Recognition: Security and Privacy Concerns, IEEE Security
and Privacy Magazine, Vol. 1, No. 2, pp. 33-42, March-
April 2003.

[8] User’s Guide to NIST Fingerprint Image Software (NFIS).
NISTIR 6813, National Institute of Standards and
Technology.

[9] Yang, S., Sakiyama, K. and Verbauwhede, I., A Secure and
Efficient Fingerprint Verification System for Embedded
Systems, 37th Asilomar Conference on Signal, Systems, and
Computers, Nov. 2003, Pacific Grove, CA.

Fig. 6. Memory trace maps for:
(a) baseline; (b) fixed-point refined;
(c) “in-place” optimized; (d) final optimized.

M
em

or
y

U
sa

ge

M Bytes

0

0.4

0.8

1.2

1 2 3 4 5
(×105) (b)

2 4 6 8 10 12
(×105) (a)

M Bytes

M
em

or
y

us
ag

e

0.4

0.8

1.2

1.6

0

M
em

or
y

us
ag

e

M Bytes

0

0.2

1 2 3 4 5
(×105)

0.4

0.6

(c)

M
em

or
y

us
ag

e

1 2 3 4 5
(×105)

M Bytes

0

0.1

0.2

0.3

0.4

0.5

(d)

M Bytes

Fig. 7. (a) Execution time reduction;
(b) Memory reduction.

(a)

(b)

0
200
400
600
800

1000
1200

baseline fixed - point op - 1 op - 2
text segment data segment

(Kbytes)

0

1 , 000

2 , 000

3 , 000

4 , 000

5 , 000

6 , 000

7 , 000

8 , 000

9 , 000

10 , 000

ORG.

 (Fixed-point) S/W OPT.

 +HW_Acc.

 SW_OPT.

 +HW_Acc.

E

 TH

 = 27M

 E

 TH

 = 10M

E
xe

cu
tio

n
T

im
e

[m
se

c]

OTHERS

 MAPS

DETECT

 BINAR

