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Abstract

This paper presents the design decisions and area
optimizations to obtain a high throughput, over 30 Gbits/s
AES processor. With loop unrolling and outer-round
pipelining techniques, throughputs of 30 Gbits/s to 70
Gbits/s are achievable in a 0.18ÿm CMOS technology.
Moreover, by using inner round pipelining of the
composite field implementation of the substitution phase
and designing an offline key scheduling unit for the AES
processor the area cost is reduced by 48 % while the
same throughput is maintained. Therefore, the over 30
Gbits/s, fully pipelined AES processor operating in the
counter mode can be used for the encryption of data on
optical links.

1. Introduction

The data rate on a typical optical link is several tens of
Gbits/s. In an optical network the transmitted data must be
secure. Data encryption at rates over 30 Gbits/s is a
requirement for such networks. An encryption algorithm is
never used stand-alone for security reasons. Therefore, it
is combined with so-called modes of operation. One mode
of operation, called the counter mode, is suitable for high
throughput applications. It is used to produce high
throughput cryptographically strong pseudo-random
number generations. It has the advantage that the
algorithm can be pipelined because there is no feedback in
this mode of operation.

In this paper we will discuss different pipelining
options for the Advanced Encryption Standard (AES) [1],
which is a symmetric key algorithm widely used for
security of different applications. The encryption
algorithm of the Advanced Encryption Standard in the
counter mode of operation [2] is used to perform data
encryption and generate random numbers at the rate of
over 30 Gbits/s.

This paper presents the techniques and the
architectures that can achieve the required throughput for
the above application. Loop unrolling and inner and outer
round pipelining of the AES algorithm are techniques that
can help us to achieve the throughput of 30 Gbits/s to 70
Gbits/s using a 0.18ÿm CMOS technology. However, the
area cost will increase very much. Therefore, a pipelined

implementation of the composite Galois Field design of
the byte substitution phase and the offline key scheduling
scheme are used to reduce the area. The maximum area
reduction of 48 % was achieved using these techniques.

The rest of this paper is organized as follows. Section
2 will investigate the related work. In section 3 the ultra
high speed AES algorithm is presented. The different
steps of the algorithm and the design considerations that
will lead to a high throughput design will be described.
Section 4 shows how the area efficient byte substitution
phase of the AES algorithm can be implemented without
any loss in speed and throughput. Section 5 presents the
architectures and the throughput-area trade-off for the
high throughput AES processor with area efficient byte
substitution and on the fly key scheduling. In section 6 the
architecture for the offline key scheduling is presented and
the further area optimization of the AES processor using
the offline key scheduling scheme is explored. Finally
section 7 provides the conclusion of this paper.

2. Related work

The Advanced Encryption Standard was accepted as a
FIPS standard in November 2001 [1]. Since then, there
have been many different hardware implementations for
ASIC and FPGA. References [3], [6], [9] and [10] present
their architecture and their results for ASIC
implementation. On the other hand, references [7] and [8]
present an efficient implementation of the AES algorithm
for FPGA. None of these references present a throughput
of over 30 Gbits/s. Our previous work [12] presented the
possibilities of achieving a throughput of over 30 Gbits/s
encryption using the AES algorithm. This paper is a
continuation of [12] which presents an AES processor that
runs between 30 to 70 Gbits/s with minimum area cost.
The new designs which are addressed in this paper can
achieve the same throughput with a maximum of 48%
reduction in the area cost.

3. Ultra high speed AES

In the Advanced Encryption Standard [1], the input
data is 128 bits. The input key can be 128, 192, or 256
bits long and the algorithm repeats for Nr number of
rounds. Figure 1 shows the different steps of the AES
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algorithm for each round. These are substitution, shift
row, mix column, and key addition. All four are required
for every round except that the last round does not include
the mix column phase. Similar steps are followed in the
key scheduling flow. Besides the byte substitution phase,
most of the operations in the AES algorithm are
implemented using a chain of XORs. Byte substitution is
the most critical part of this algorithm in terms of
performance. The most efficient implementation of this
phase will be discussed in the next section.

In order to achieve an ultra high speed implementation
of the AES algorithm, there are a number of design
considerations as follows.
1. The critical path of the AES algorithm is in the key
scheduling datapath for the key lengths larger than 128
bits. Therefore, in order to have a balanced critical path
for both encryption and key scheduling datapaths, a key
length of 128 bits long is used. This way the critical path
moves in the encryption flow. Moreover, the number of
rounds Nr will be fixed, equal to 10.
2. For an ultra high speed design the AES iteration loop
has to be unrolled. If the datapath is shared for different
rounds of the algorithm, then the throughput will
significantly decrease. The highest possible throughput is
achieved when one output sample is generated every clock
cycle. This is possible only when the loop is unrolled and
pipelining is applied.
3. Pipelining can be applied both for inside each round
and around each round. Inner round pipelining will be
presented in the next section. For outer round pipelining,
the pipeline registers will be placed between the datapath
instances of each round. Figure 2 shows the outer round
pipelined implementation of the AES algorithm. There is
one pipeline stage for each round and the key schedule is
calculated on the fly.
4. Byte substitution is a critical phase of the AES
algorithm. In this phase every byte of input data is

substituted with another byte. Either look-up tables can be
used to implement the substitution phase or the
substitution calculation has to be designed in logic. The
former has minimum delay but consumes huge amount of
area. The latter has efficient area consumption but it has a
long critical path [10]. In the next section we show how
we can achieve a minimum area and maximum throughput
using a pipelined implementation of the second approach.

4. Area efficient byte substitution

In the byte substitution phase, the input is considered
as an elements of GF(28). First the multiplicative inverse
in GF(28) is calculated. Then, an affine transformation
over GF(2) is applied [1]. Since there are only 256
representations of one byte, all the byte substitution
results can be calculated before hand. In this case the
implementation of a Sbox (substitution box) can be done
by a look-up table, as shown in figure 3-a. On the other
hand, we can implement a Sbox using Galois Field
operations. Calculating the multiplicative inverse of
elements in GF(28) is very expensive. The inventors of the
AES algorithm suggest an algorithm that calculates the
multiplicative inversion in GF(28) using the GF(24)
operations [11]. Also reference [6] presents one
implementation of such algorithm. This is the composite
field implementation of the byte substitution phase. Figure
3-b shows how the complete Sbox can be designed using
GF(24) operations. We call it a non-pipelined Sbox using
GF operators. Here, the input byte (element of GF(28)) is
mapped to two elements of GF(24). Then the

Figure 1: Advanced Encryption Standard
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Figure 2: Outer round pipelining for AES algorithm



multiplicative inverse is calculated using GF(24)
operators. Then the two GF(24) elements are inverse
mapped to one element in GF(28). In the end the affine
transformation is performed. Notice that an inversion in
GF(24) can be efficiently implemented using look-up
tables because there are only 16 possibilities for four bits.
The details of the GF(24) operators are from reference [6].

Although the composite field implementation of the
Sbox is very area efficient, it suffers from a long critical
path. This will reduce the overall throughput,
significantly. To overcome this drawback, further
pipelining can be used. This is inner round pipelining for
the AES algorithm because pipeline registers will appear
inside of the byte substitution phase which is inside of
each round. The only problem is that pipelining of the
Sbox will increase the number of registers used in the
whole design and therefore the area can increase if the
pipeline registers are not in the right place. Figure 3-c
shows the two-stage pipelined implementation of a Sbox
using GF operators. The critical path is broken into half
and there are only three 4-bit registers. Figure 3-d shows
the three-stage pipelined implementation of a Sbox using
GF operators. The critical path is divided into three
stages. Notice that the first pipeline stage is after the
addition operation because it saves area. The addition
operation could be part of the second pipe stage, but that
would double the number of registers that are necessary
for the first pipeline stage. Therefore this way fewer
registers are used and area is saved.

Figure 4 shows the area-delay trade-off of the different
implementations of the byte substitution phase that were
presented in figure 3. The results shown in this figure are
for a 0.18ÿm CMOS technology. The Synopsys synthesis
tool is used. For synthesis, the UMC 0.18ÿm CMOS
standard cell library with conservative wire load model is
used. This synthesis set-up is used for all the synthesis
results in this paper. As seen in figure 4, the pipeline
composite field implementation of the Sbox saves area
while it has the same critical path delay as the look-up
table implementation. Depending on the required speed
(throughput) either two or three pipelined implementation
should be used. The area cost of one Sbox using two-stage
composite field implementation is 23% less than the LUT
design with the same speed. For a three-stage composite
field implementation this cost is 32% less than the LUT
design.

5. High speed AES with online key schedule

This section presents the architecture and throughput-
area trade-off of our high speed AES processor which
includes an online (on the fly) key scheduling unit. Figure
5 shows the inner and outer round pipelined architecture
for the encryption and key scheduling datapath. The
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difference between this architecture and the design
shown in figure 2 is that for the inner round pipelining
the datapath inside each round is divided into two
pipeline stages. The first stage is the byte substitution
phase and the second one includes the rest of the steps in
each round, which are shift-row, mix column, and key
addition. In the first experiment, the look-up table
implementation of the byte substitute phase is used. We
call this design the AES architecture with two pipeline
stages per round and online key scheduling. This design is
synthesized using 0.18ÿm CMOS technology. It can be
clocked with really high clock frequencies, but the area
cost is very high. For area optimization, the conclusion of
section 4 can be used.

In section 4 it was shown that the two or three stages
pipelined implementation of a Sbox using GF operations
can reduce the area significantly. Therefore, these two
implementations of the byte substitution phase can be
used instead of the look-up table implementation of
Sboxes in figure 5. When the Sbox with two pipeline
stages (figure 3-c) is used, each round of the AES
algorithm will have three pipeline stages., When the Sbox
with three pipeline stages (figure 3-d) is used, there are
four pipeline stages inside of each round. These are the
most area efficient AES implementations with online key
scheduling that can achieve a throughput between 30 to 70
Gbits/s. There is a significant area reduction in these two
designs compared to the two stages pipelined architecture
that uses the look-up table implementation for the Sbox.

Figure 6 shows the throughput-area trade-off of the
proposed architectures of the AES processor with online
key scheduling. Four different pipelined architectures are
compared together. The architecture with one pipeline
stage per round with LUT Sbox is the implementation of
figure 2. The design with two pipeline stages per round
with LUT Sbox is the implementation of figure 5. The
architecture with three pipeline stages per round with
composite Sbox is the implementation of figure 5 when
the Sbox of figure 3-c is used. The design with four
pipeline stages per round with composite Sbox is the
implementation of figure 5 when the Sbox of figure 3-d is
used.

Figure 6 shows that the inner and outer round
pipelined architectures of the AES algorithm that use the
pipelined architectures of the composite Galois Field
implementation of the byte substitution phase, can
produce the throughput rate from 30 to 70 Gbits/s in much
smaller area compared to the architectures that use the
LUT based implementation of Sboxes. The area cost for
the architecture with three pipelined stages per round can
be up to 35 % less than the design with LUT Sbox
implementation. Moreover, the architecture with four
pipeline stages per round can cost up to 30 % less area
than the design with LUT Sbox implementation Also the

area cost does not vary much when the design is
synthesized for higher clock frequencies.

The inner round pipelining of the AES algorithm using
the pipelined version of the composite filed
implementation of Sbox can reduce the area while the
same throughput is maintained, but the price that we have
to pay is latency. Latency is defined by the number of
cycles that it takes for each data sample to go through the
encryption datapath before the encrypted output is
generated. When there is only outer round pipelining (one
stage pipeline per round), the latency is 11 cycles. In the
design with two pipeline stages per round the latency is 21
cycles. For the fully inner and outer round pipelined
designs with three or four pipeline stages per round the
latencies are 31 and 41 cycles, respectively. Since in our
application the latency is not important and the main
concern is throughput, therefore we can gain much by
defining inner round pipeline stages.

50

100
150

200
250

300
350

400

20 30 40 50 60 70 80

Throughput (Gbits/s)

A
re

a
(K

ga
te

s)

1 pipeline stage
per round
LUT Sbox

2 pipeline stages
per round
LUT Sbox

4 pipeline stages
per round

Composite Sbox
3 pipeline stages

per round
Composite Sbox

Round
10

Add
Key

…Round
1

Round KeyRound Data

S

SS S

S S …

+

+

+

+

+

+

+

…Mix
Column

1

Mix
Column

4

…

XOR

SSSS

+
+

+
+

Figure 5: AES with inner and outer round pipelining

Figure 6: The throughput-area trade-off of the AES
processor with online key scheduling



6. High speed AES with offline key schedule

In most encryption applications, the encryption key
does not vary as frequent as data. Specially in our
application, over 30 Gbits/s throughput is required for the
optical link during each session. The key schedule is
calculated for every session key and remains constant
during the whole session because the session key is fixed.
In this case, the online (on the fly) key scheduling
datapath performs the same function for every input
sample of data. Thus, there is further room for area
optimization by calculating the key schedule of the AES
algorithm offline. In this approach, for every session key,
first the offline key scheduling unit calculates the required
round keys for every round and stores them inside the
round key registers. Then the encryption datapath
performs the AES algorithm on the input data samples and
uses the stored round key values for the key addition
phase. This way the area consumption is reduced and the
same throughput rate is maintained for the encryption of
input data in each session. The most important reason that
causes this area reduction is the following. Since in our
implementation the AES round loop is unrolled, therefore
there are a number of registers that keep the value of
round keys. Thus, by defining an offline key scheduling
unit, there is no overhead in terms of the number of
required registers and no extra memory is required. On the
other hand, in the offline key scheduling unit, there is no
need to unroll the round loop of the key scheduling
datapath and therefore only one round can be
implemented. This way the area is reduced significantly.

Figure 7 shows the architecture of the offline key
scheduling unit that is designed for our high speed AES
processor. Figure 7-a shows the block diagram of the
processor that includes the key scheduling controller, the
offline key scheduling datapath, and the encryption
pipeline. Thekeysch_startsignal will activate the key
scheduling unit. After 20 clock cycles the key schedule,
which includes 11 of 128-bit round keys, is generated.
Then thekeysch_donesignal is asserted which indicates
that the processor is ready to perform the encryption of
the input data.

Figure 7-b shows the inside of the offline key
scheduling datapath. One round of the key scheduling
algorithm with two pipeline stages is designed in the
feedback loop. Every two clock cycles, one round key is
generated and is shifted to the round key registers. After
total of 20 cycles all the round keys are calculated and
stored in the round key registers. Notice that the Key_0
register will contain the input key for round 0. Also
because there are only four Sboxes used in the offline key
scheduling unit, the fastest Sbox which is the look-up
table implementation, is used.

Figure 8 shows the new encryption pipeline which
does not include the key scheduling datapath. This is the
exact unit that is used for the encryption pipeline block
that is shown in figure 7-a. Also notice that figure 8 is
similar to the design in figure 5 with the difference that
the online key scheduling datapath is removed. Following
the same methodology that was mentioned in section 5 for
the choice of Sboxes, there will be three different AES
implementations that will have two, three, or four pipeline
stages inside each round of the algorithm. The two stage
pipelined design uses the look-up table implementation of
the Sboxes. The three stage pipelined design uses the
pipelined Sbox implementation of figure 3-c and the four
stage pipelined design uses the pipelined Sbox
implementation of figure 3-d. All these architectures are
synthesized using the 0.18ÿm CMOS technology. The
synthesis results show that the architectures with an offline
key scheduling unit can reduce the area up to 28 %.

Figure 9 shows the throughput-area trade-off of the
proposed architecture of the high speed AES with offline
key scheduling unit. When the offline key scheduling unit
is used, the area cost for the architecture with three
pipeline stages per round can be up to 37 % less than the
design with LUT Sbox implementation. Moreover, the
architecture with four pipeline stages per round can cost
up to 33 % less area than the design with LUT Sbox
implementation. Therefore, by using the pipelined
implementation of the composite Galois Field
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implementation of the Sbox presented in section 4 and the
offline key scheduling unit that is presented in this section,
the maximum area reduction of 48 % is achieved for the
high AES core that provides a throughput rate over 30
Gbits/s.

7. Conclusion

This paper presented area efficient architectures for
fully pipelined high speed AES processors that can
provide an encryption throughput of 30 to 70 Gbits/s.
Loop unrolling and inner and outer round pipelining were
used to reduce the critical path and increase the maximum
throughput. By using the pipelined design of the
composite field implementation of the byte substitution
phase of the AES algorithm the area is reduced up to 35%.
Also by designing an offline key scheduling unit for the
high speed AES processor an area reduction of up

50

100

150

200

250

300

20 30 40 50 60 70

Throughput (Gbits/s)

A
re

a
(K

ga
te

s)

1 pipeline stage
per round
LUT Sbox

2 pipeline stages
per round
LUT Sbox

3 pipeline stages
per round

Composite Sbox

4 pipeline stages
per round

Composite Sbox

to 28% was achieved. Therefore, the total area cost of the
final architecture was reduced up to 48% without any loss
in the throughput. The most area efficient AES
architecture with throughput rate of over 30 Gbits/s is
used in the counter mode of operation for the encryption
of data streams in optical networks.
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Figure 8: Encryption pipeline for the AES design with
offline key scheduling
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