Architectural Design Features of a Programmable High
Throughput AES Coprocessor

Alireza Hodjat, Patrick Schaumont, Ingrid Verbauwhede
Electrical Engineering Department
University of California, Los Angeles
{ahodjat, schaum, ingrid} @ ee.ucla.edu

Abstract

Programmable, high throughput domain specific crypto
processors are required for different networking
applications. This paper presents the architectural design
features that lead to a multiple Gbits/s rate AES
coprocessor, which is programmable with domain
specific instructions for Gbit throughput IPSec and other
applications. Our design is a loosely coupled,
independently working crypto-coprocessor that runs AES
in ECB, CBC-MAC, Counter, and CCM modes of
operation at a maximum throughput of 3.43 Gbits/s in a
0.18-um CMOS technology without any penalty in
throughput for any of the above modes.

1. Introduction

High throughput security is a significant issue in a large
number of applications. High-speed IPSec applications
like VPN and Giga-bit Ethernet are examples of such
applications that require high performance and flexible
security engines. VPN applications that use IPSec require
a throughput of over 2 Gbits/s and Giga-bit Ethernet
might require a throughput of over 1 Gbit/s. A high-speed
CPU does not usually produce multi-gigabits/s throughput
because of different factors such as memory bandwidth,
cache misses, etc. Table 1 shows the throughput of the
AES algorithm on different CPUs clocked at over one
GHz. It is observed that the achieved throughput is around
or less than one Gbit/s in the case of high-speed CPUs.
These throughputs are obtained in ideal circumstances: the
AES is the only algorithm running on the CPU and there
is no overhead associated with other tasks. Only assembly
code optimizations are able to produce a throughput over
1 Gbit/s.

Therefore, multi-gigahertz CPUs are not the solution for
achieving multi-gigabits/s security. Instead, we propose
the design of programmable, multi-gigabits/s domain
specific coprocessors to obtain the required throughput.
IPSec uses the AES (Advanced Encryption Standard [1])
encryption algorithm in different modes of operations [2].
These modes are Counter mode, CBC-MAC, and CCM.
Recently some IETF efforts propose the AES encryption

algorithm in combination with different modes of
operation. Reference [3] describes the use of AES in
Counter mode of operation with IPSec and [4] addresses
the use of AES in XCBC-MAC with IPSec. Similarly, [5]
presents the use of AES in CCM mode (Counter and
CBC-MAC) for IPSec. The standard proposals have a
tendency to change. Usually these changes are limited to
initialization, setup, key management, etc. Therefore,
programmability is an important factor that provides
support for a wide range of current and future standards
for these applications. This imposes design challenges for
high throughput, programmable security processors.
Domain specialization is the main solution that helps to
cover the gap between performance and programmability.
This paper presents the architectural design features of a
high throughput, programmable crypto coprocessor that
runs the AES algorithm in different modes of operation
for IPSec applications. A maximum throughput of 3.43
Gbits/s is achieved at a 295 MHz clock frequency on the
crypto-coprocessor using a 0.18 ym CMOS technology.
The instruction set includes initialization, key-setup, and
AES encryption for different modes of operation. It also
includes pipeline instructions that allow AES to run in
ECB, CBC-MAC, Counter, and CCM modes of operation
in 11 clock cycles per block of 128 bits without any loss
in throughput compared to a plain AES without modes of
operation.

The rest of this paper is organized as follows: In section 2
the crypto coprocessor architecture and the design
principles for high throughput encryption is presented.
Section 3 includes the programming interface and section
4 provides the performance results. Section 5 is the
conclusion.

Table 1. Throughput comparison for the AES algorithm

Multi-Giga Hertz Machines (from [6])
Compiler CpPU Clock freq Throughput
Assembly Pentium 4 3.06 GHz | 1436.7 Mbits/s
gcc3.0.2 | AMD Athlon | 2.25GHz | 861.0 Mbits/s
Assembly Pentium III 1.33 GHz 718.4 Mbits/s
gec 3.0.2 Pentium III 1.33 GHz | 466.5 Mbits/s

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

2. Crypto Coprocessor Design Features

This section presents the architectural design features of
our programmable, high throughput crypto co-processor.
This coprocessor can perform the AES algorithm for
ECB, CBC-MAC, Counter, and CCM modes of operation
without any loss in throughput as a result of the feedback
in the modes (CBC-MAC) or due to other overhead. It is
highly programmable with domain specific instructions
and is compatible to the IPSec standard proposals.

2.1 The AES Core

Figure 1 shows the inside of the AES core that is used in
our crypto coprocessor. It uses 128-bit key and data and
performs the encryption in 11 cycles. One round of the
algorithm is executed in 1 clock cycle and there are 10
rounds in the128 bit key, 128 bit data AES version. There
is one additional clock cycle for the initial key addition
phase and after that there is one clock cycle for each
round. Therefore, the encryption of one 128-bit block
takes only 11 cycles.

The AES core is optimized for critical path and has the
least possible delay for one round. The S-boxes of the
substitution phase are designed using look-up tables and
all the other steps of each round are chains of XORs that
are optimized for minimum delay. For the implementation
of S-boxes there are other alternatives. We have evaluated
some options other than look-up table implementation and
found out that the straightforward implementation is the
fastest one. An experiment like that is presented in [7].

2.2 Modes of Operation

In almost every security application, AES is used in a
different mode of operation. The straightforward AES
mode (also called ECB), is not considered secure, because
it is vulnerable to statistical attacks [8]. Reference [9]
explains the NIST’s recommendation for block cipher
modes of operation. These modes are ECB, CBC,
Counter, CFB, and OFB. There is also a new mode of
operation called CCM that is the combination of the
Counter and CBC-MAC modes. It only requires the
encryption algorithm and is used to generate the encrypted
and authenticated data at the same time [10].

Figure 2 shows the datapath of the encryption module of
the proposed crypto coprocessor. This figure shows how
the AES core is used in the ECB, CBC-MAC, Counter,
and CCM modes of operation. The AES core is based on
the architecture that was presented in section 2.1. The
most important feature is to run the AES core in the above
modes of operation without any loss in throughput. There
are several enabling factors that provide this capability,
explained next.

Key i Key kg Key
sub rcon xor

| S-Box 1yl Shift Mix-
Row Column

o o>

Figure 1: Internal architecture of the AES core

Data
Data Register

A 4

Counter
*> Register

A 4

" CORE

Key

Qmm-—HCvHCO

» Key Register

CBC-MAC
> IV Register AES
CORE

Figure 2: The datapath of the encryption module.

2.3 Separate Data and Control Stream

Figure 3 shows the block diagram of the crypto
coprocessor. It includes the input module, encryption
module, output module, and the top controller. Encryption
module is based on the datapath presented in figure 2. The
input and output modules perform the handshaking to read
the input and write the encrypted data. Their main task is
to read or write the 128-bit block of data from the 32-bit
interface. Figure 3 shows how control and data streams
are separated in the coprocessor. The flow of data through
the co-processor is through the input module, then the
encryption module, and then the output module datapaths
while the top controller takes care of reading the
instructions. The input and output controllers perform
their task without any interference of the top controller.
Following this methodology, the coprocessor can be
programmed to encrypt the stream of input data and
produce the output continuously while the top control
interface can process new instructions.

2.4 Hierarchy of Control

Design with multiple controllers brings the issue of
partitioning the control to different modules. This is
important when there are multiple modules that
communicate together using a handshake protocol.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

Instruction

Configuration

Input Output
Instruction Instruction
Top Controller
4 4
Input 4 1 Output
Active Start Encrypt Active
Input Encrypt Done Output
request v A ready
« Input e P output
FSM FSM
Input Input Output Output
ready Done Done equest
_ v
32
12 =
32 128 7
4 l Al .
Encryption
N Module
12) 1’28 Datapath
7 7=> 12‘8 %2‘
7 77
Input Output
module module

Figure 3: Block diagram of the crypto coprocessor

Hierarchical design of the control is a solution that
simplifies the controllers’ communications and allows
combining high performance and programmability. The
top-level control in the system architecture is implemented
in the main processor core. The instructions from the main
embedded CPU bring the commands to the main
controller of the coprocessor. In the next level, the top
controller controls the lower level modules.

Figure 4 shows that for the crypto coprocessor of figure 3
there are four control blocks that are controlled by the
main control unit. These are the Input FSM, CBC FSM,
CNT FSM, and the Output FSM. The Input and Output
FSMs perform the handshaking sequence for reading and
writing of the data blocks. The CBC FSM controls the
sequence to generate a CBC-MAC and CNT FSM
controls the encryption sequence for the Counter mode of
operation. Depending on the instruction that is read by the
main control, it will assert the start signal for one of the
sub-controllers. Then the controller (sub-module), starts
its operation and will assert the done signal when its
operation is finished. This done signal will enable the
main controller to reassert the start signal for the
following instructions.

2.5 Block Pipelining

Since there is feedback in the CBC-MAC and CCM
modes of operation, the AES core cannot be pipelined. On
the other hand, a throughput of multiple Gbits/s is
required for high throughput applications. This
performance is achieved using the block pipelining
technique. It is enabled by the hierarchical control design
and the handshaking interface between all the modules

shown in figures 3 and 4. Figure 5 shows how this
pipeline can be designed for AES in the ECB mode of
operation. In steady state, encryption is performed on the
data while new data is read from the input and the
previous encryption result is written to the output. Based
on this method, the slowest block decides the cycle time.
In the execution of the AES algorithm, first the input data
and the key are added and then there are 10 additional
rounds where a new key is generated and added with the
byte permuted value of data (see figure 1). Therefore, in
the best case, it takes 11 cycles to encrypt one block of
data. Using the block level pipelining approach, it is
possible to keep this minimum of 11 cycles if the input
and output modules consume less than 11 cycles to finish
their job. The input and output FSMs are made such that
they take less than 11 cycles. Therefore, each pipe stage
will take only 11 cycles and one block of output will be
ready every 11 cycles.

Main
Control

1

CNT CBC
FSM FSM

o

Encryption
CNT/CBC

N\
1

Output
Processing

Input
FSM

I

Input
Processing

Figure 4: Control Hierarchy

Start_pipeline Finish_pipeline

l 11 Cycles
>
in 1 in 2 in 3 in in
i n
enc enc enc enc enc
1 2 i-1 n
out out out out out
1 i-2 n

Figure 4: Block Pipeline Model

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)

0-7695-2108-8/04 $ 20.00 © 2004 IEEE

YF]',F.

COMPUTER
SOCIETY

3. Programmability

This section presents the programming interface and the
instruction set of the proposed AES-based domain specific
crypto coprocessor. Two different categories of
instructions are introduced to provide a flexible
instruction set. They are called single and continuous
instructions. Single instructions are those that perform
one task. After they are done, a new instruction is required
for further processing. These instructions can take either
one cycle or multiple cycles to execute. One-cycle single-
instructions are those that move data from a specific
module or register to another module or register. These
are required for key set-up and initialization. Examples of
multiple-cycle single-instructions are single-block
encryption, reading one block of data and/or key, and
writing one block of output. Continuous instructions
provide high throughput encryption streams using block
pipelining. The most important continuous instruction is
the Start_pipeline instruction that performs block pipeline
encryption in any mode of operation. Using these types of
instructions, the input stream of data can be encrypted and
written to the output continuously, while the control
interface (Top Controller) is ready to read a new
instruction.

As an example consider the CCM mode of operation. This
mode is a complex mode that includes the AES in both
Counter mode and CBC-MAC. As shown in figure 2, in
this mode each input block goes to both AES CBC-MAC
and AES-Counter modules. The CBC-MAC module
generates the MAC value using AES in the feedback
mode of operation. This value is used for authentication.
In parallel, the Counter module encrypts the input payload
for confidentiality purposes. Figure 8 shows the pipeline
model of this mode. The Start_pipeline instruction along
with CCM mode configuration starts the pipeline. In
steady state, a new block of data is read [I], and a new
counter value is encrypted [C]. The previous encrypted
counter value is XORed with the previous input, and is
written to the output [O]. The previous input block is
XORed with the last CBC-MAC value and is encrypted
[B]. This continues until the Finish_pipeline instruction is
inserted. In the last pipe stage, the encrypted MAC value
is calculated and is written to the output.

Table 2 presents the list of all instructions that are
supported by this coprocessor. There are different types of
read input instructions that are defined to load the data
and/or key from the input. Read_32bit_key reads 32 bits
of the key from the 32-bit input port that is connected to
the main CPU core. Read_32bit_data does the same thing
for data. Write_32bit_out writes 32 bits of output result
into the port connected to the main CPU. On the other
hand Read_block_data reads a complete 128-bit block of
data from the other 32-bit port asynchronously. As shown
in figure 3, there are handshaking signals that make it

feasible to read the whole block of data asynchronously.
Also, Write_block_out writes the 128-bit encryption result
to the second 32-bit output port asynchronously.

Encrypt_once instruction performs one encryption of the
128-bit input block. This instruction takes 11 cycles.
Start_Pipeline and Finish_Pipeline are the instructions
that perform high throughput AES encryption
continuously in different modes of operation.
Move_input 2reg is a special instruction for moving the
input data or key to the specific internal registers.
Move_encrypt_2reg places the encryption result to a
specific internal register and Move_outreg_2out moves
the data stored in the output register to the output module.
For most of the instructions listed in table 2, there are
special settings through the configuration register. For
example, when the Start_pipeline instruction is used, the
configuration register specifies which mode of operation
must be performed-- ECB, CBC-MAC, Counter, or CCM.

Table 2. Instruction Set

Mnemonic Single or Continuous Cycles
reset Single 1
Read_32bit_key Single 1
Read_32bit_data Single 1
‘Write_32bit_out Single 1
Read_block_data Single 10
Read_block_key Single 10
Write_block_out Single 10
Encrypt_once Single 11
Move_input_2reg Single 1
Move_encrypt_2reg Single 1
Move_outreg_2out Single 1
Increament_counter Single 1
Start_pipeline Continuous 11
Finish_pipeline Continuous 11

l Start pipeline l Finish pipeline

B B B B
R /":L.)':l\ /‘:LA@)':l

W W

' ' :

D D S S S

ol)))

Figure 8: Block pipeline for the CCM mode

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

4. Performance Results

Table 3 shows the synthesis result of our AES-based
coprocessor using a 0.18-um CMOS standard cell library.
Synthesis is done using typical UMC 0.18 library with
Synopsys synthesis tool. The conservative model of the
wire load is used. Since the core produces a 128-bit output
every 11 cycles, the throughput is calculated by
multiplying the frequency with 128 divided by 11 which
results in the number of bits produced per second. The
maximum throughput of 3.43 Gbits/s is achieved at 295
MHz clock frequency. This satisfies the required
performance of the high throughput IPSec applications.
The power consumption is 86 mW at 1.8V and 295 MHz.

Table 4 compares the performance of our design with
some other security processors. Although our design is
synthesized using a 0.18 um CMOS technology, its
throughput is higher than other security processors that are
designed using 0.13 um or 0.11 wum CMOS technologies.
Unique to our design is that it supports a variety of modes
of operation for the AES algorithm at 3.43 Gbits/s. None
of the other cases support all four modes of ECB, CBC,
Counter, and CCM. Also our coprocessor is highly
programmable with a set of domain specific instructions

Table 3. Synthesis Results of the crypto coprocessor using
UMC 0.18 pm CMOS standard cell library

Critical path 3.38 nsec

Clock frequency 295 MHz

Optimized Total area 0.732 mm*
for Speed Gate count 73.2 kgates
Throughput 3.43 Gbits/s

Power Estimation 86 mWatts

Table 4. Performance Comparison with other AES based
Security Processors

Design Clock | Modes of CMOS Throu-
Freq. operation Technology | ghput
ECB, CBC
Our 295 | Counter, 0.18um | 343
Design MHz CcCM Gbits/s
Satoh 224 ECB CBC 0.11 um 2.60
[11] MHz Gbits/s
Cavium 500 ECB only 0.13 um 2.18
Networks | MHz Gbits/s
[12]
Hifn 133 CBC 0.13 um 2
HIPPIII MHz Counter Gbits/s
4300[13]

5. Conclusion

Separation of control and data streams, hierarchical design
of control, pipelining the block modules, designing single
and continuous instructions, and considering different
modes of operations are the design techniques that are
presented in this paper. These techniques help us to design
a high-throughput crypto coprocessor, which is
programmable with a domain specific instruction set. A
loosely coupled, independently working AES-based co-
processor is presented that runs in ECB, CBC-MAC,
Counter, and CCM modes of operation at a maximum
throughput of 3.43 Gbits/s at a 295 MHz clock frequency.

6. Acknowledgment

This material is based upon work supported by the Space
and Naval Warfare Systems Center - San Diego under
contract No.N66001-02-1-8938. The authors would like
to acknowledge the funding of this project.

7. References

[1] National Institute of Standards and Technology (U.S.),
Advanced Encryption Standard. Available at:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2] S. Frankel, S. Kelly, R. Glenn, “The AES Cipher
Algorithm and Its Use with IPsec”, May 2003.

[3] R. Housley, “Using AES Counter Mode with IPSec
ESP”, Internet Draft, July 2003.

[4] S. Frankel, H. Herbert, “The AES-XCBC-MAC-96
Algorithm and Its Use with IPSEC”, March 2003.

[5] R. Hously, “Using AES CCM Mode with IPsec ESP”,
Internet Draft, July 2003.

[6] http://www.tcs.hut.fi/~helger/aes/rijndael.html

[7] 1. Verbauwhede, P. Schaumont, H. Kuo, “Design and
performance testing of a 2.29 Gb/s Rijndael processor”,
IEEE Journal of Solid-State Circuits, March 2003.

[8] A. Menezes, P. Oorschot, S. Vanstine, “Handbook of
Applied Cryptography”, CRC Press, October 1996.

[9] M. Dworkin, SP 800-38A 2001, “Recommendation for
Block Cipher Modes of Operations”, Dec. O1.

[10] M. Dworkin, “Recommendation for Block Cipher Modes
of Operation: The CCM Mode For Authentication and
Confidentiality”,NIST special Publication 800-38c,
September 2003.

[11] A. Satoh, S. Morioka, K. Takano, S. Munetoh, “A
Compact Rijndael Hardware Architecture with S-Box
Optimization”, ASTACRYPT 2001, LNCS 2248, 2001.

[12] D. Carlson, D. Brasili, A. Hughes, A. Jain, T. Kisezly, P.
Kodandapani, A. Vardharajan, T. Xanthopoulos, V.
Yalala, “A High Performance SSL IPSEC Protocol
Security Processor”, ISSCC 2003, Feb. 03.

[13] http://www.hifn.com/products/4300.html

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

