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ENCRYPTION STANDARD COMBINES HIGH THROUGHPUT WITH

PROGRAMMABILITY. USING DOMAIN-SPECIFIC INSTRUCTIONS AND DESIGN

PRINCIPLES SUCH AS CONTROL HIERARCHY AND BLOCK PIPELINING, THE

SECURITY ENGINE SUPPORTS INTERNET PROTOCOL SECURITY AND OTHER

NETWORKING APPLICATIONS.

e e o 0 o o High-speed Internet Protocol secu-
rity (IPsec) applications require high through-
put and flexible security engines. Virtual
private networks, for example, require a
throughput of over 2 gigabits per second.
IPsec uses the Advanced Encryption Stan-
dard! algorithm in various operation modes.
Most security applications combine AES and
block ciphers in general with different oper-
ation modes because the straightforward elec-
tronic code book (ECB) mode is vulnerable
to statistical attacks.’ The US National Insti-
tute of Standards and Technology recom-
mends block cipher modes of operation,*
which, in addition to ECB, include cipher
block chaining (CBC), counter, cipher feed-
back (CFB), output feedback (OFB), and
CCM, a new mode that combines the
counter and CBC-MAC (message authenti-
cation code) modes. CCM only requires the
encryption algorithm and can generate
encrypted and authenticated data simultane-
ously.” As the “Related Work on Program-
mable Security Engines” sidebar mentions,
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no current systems support all four modes:
ECB, CBC, counter, and CCM.

Recent Internet Society Request for Com-
ments (RFC) efforts propose combining AES
with block cipher modes, such as AES in
counter mode with IPsec® and AES in XCBC-
MAC with IPsec.” Other researchers use AES
in counter and CCM modes for IPsec.® Stan-
dard proposals tend to change, but these
changes are usually limited to initialization,
setup, key management, and so on. Combin-
ing programmability with high throughput
supports a wide range of current and future
standards for security applications.

A high-speed CPU is one way to implement
security primitives. However, factors such as
memory bandwidth and cache misses prevent
the CPU from achieving multi-Gbps
throughput. The “AES/Rijndael: Speed” Web
(http://www.tcs.hut.fi/ ~helger/aes/
rijndael.html) reports AES throughput on var-
ious CPUs at over 1 GHz. Optimized C code
compiled with gec (GNU Compiler Collec-
tion) 3.0.2 achieves only 861 Mbps on a 2.25-
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Related Work on Programmable Security Engines

Ravi et al. present a system-level design methodology for program-
mable security processor platforms.! It uses Tensilica’s Xtensa proces-
sor? and includes customized instructions, which improve performance
from less than one Mbps to several tens of Mbps. In the instruction set
extension approach, which Barat, Lauwereins, and Deconinck refer to
as a tightly coupled processing scheme, the main CPU (Xtensa) is cus-
tomized for a specific domain by adding a new functional unit to its
pipeline.> Custom instructions flow through the pipeline and the new
functional unit decodes and executes them. Qur approach differs in that
we use loosely coupled, independent coprocessors in conjunction with

a main embedded processor core. These programmable coprocessors
are designed for specific domains and attached to the main processor on
a dedicated interface.

A typical embedded system contains multiple tasks that might need
acceleration—for example, network protocol processing in the network-
ing domain, image or speech processing in the digital signal processing
(DSP) domain, and authentication and privacy protection in the security
domain. Figure A1 shows the stream of data samples that typically flow
from the DSP unit to the security unit and continue to the networking unit.

continued on p. 36
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Figure A. Embedded security system: Typical data sample stream from the DSP unit to the security and networking units
(1); system design using a tightly coupled instruction set extension (2); and system-level view of our design (3).

GHz AMD Athlon. A hand-optimized assem-
bly code of the AES algorithm achieves up to
718 Mbps on a 1.33-GHz Pentium III and
up to 1,436 Mbps on a 3.06-GHz Pentium
IV. The CPUs achieved these throughputs in
ideal circumstances; the AES was the only
algorithm running, so there was no overhead
for other tasks.

We have developed a high-throughput, pro-
grammable cryptocoprocessor that runs the
AES algorithm in different operation modes
for IPsec applications. Instead of using multi-
GHz CPUs, we use domain-specific processors
to obtain the required throughput. Domain
specialization helps close the gap between per-

formance and programmability. The crypto-
coprocessor achieves a maximum throughput
of 3.43 Gbps at a 295-MHz clock frequency
using 0.18-micron CMOS technology. The
instruction set includes initialization, key setup,
and AES encryption for different operation
modes. Block pipeline instructions allow AES
to run in ECB, CBC-MAC, counter, and
CCM modes in 11 clock cycles per 128-bit
block without loss in throughput compared to
an AES without a mode of operation.

Architecture
The cryptocoprocessor architecture consists
of three modules. These are input module,
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continued from p. 35

Figure A2 shows how these systems can be designed using a tightly cou-
pled instruction set extension. The processor is customizable for each
domain by adding functional units to the pipeline. This way, the corre-
sponding functional units decode and execute the domain instructions.
Figure A3 is a system-level view of our design. Programmable coproces-
sors meet the throughput requirements for each domain. The main embed-
ded processor programs each domain-specific coprocessor. Thus, the
embedded processor exercises control while data is transferred between
COprocessors.

Another related system is the CryptoManiac, a coprocessor for cryp-
tographic workloads.* Its domain-specific processor performs crypto-
graphic functions on the data path through its processing elements. The
processing elements support various cryptographic algorithms, thus cre-
ating some overhead. In the AES algorithm, CryptoManiac performs 624
Mbps at 390-MHz clock frequency.

Recent publications report ASIC implementations of the AES algo-
rithm.>-8 Hifn's storage security processor,® for example, uses 0.13-micron
technology, achieving 2 Gbps at 133 MHz, and can be used in the counter
and CBC modes. Carlson et al.” present another implementation in 0.13-
micron technology that operates only in ECB mode and achieves 2.18
Gbps at 500 MHz. Satoh et al.® report a compact AES implementation in
0.11-micron technology that runs at 2.6 Gbps at 224 MHz for the ECB and
CBC modes. None of these cases support all four modes: ECB, CBC,
counter, and CCM.

output module, and the encryption module,
which includes the AES core.

AES core

Figure 1 shows the AES core’s architecture.
It implements the 128-bit key, 128-bit data
version of the AES algorithm and performs
encryption in 11 cycles, with one round of the
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« the input and output modules, which
perform handshaking to read the input
and write the encrypted data;

« the encryption module, which contains
logic to run AES in the ECB, CBC-
MAC, counter, and CCM modes; and

« the top controller, which issues com-
mands to the other three modules.

algorithm executing in one clock cycle. AES-

128 execution takes 10 rounds, leaving one
clock cycle for the initial key-addition phase.

We optimized the AES core for speed, with
a goal of minimizing delay for one round.
The substitute-phase (S-boxes) is imple-
mented using lookup tables; all other steps in
each round are XOR chains. Other alterna-
tives for implementing S-boxes exist,”!® but
we found that the straightforward imple-

The cryptocoprocessor includes four 32-bit
/O interfaces. The input and output mod-
ules can read or write a 128-bit block of data
using two of the interfaces—one for data
input and one for output—asynchronously.
The other two interfaces are synchronous; the
main CPU core and the coprocessor use
them—one as input and the other as out-
put—for data communication.

mentation—lookup tables—is fastest.!

Therefore, the core performs each round in
a single clock cycle optimized for minimum

combinational delay.

Cryptocoprocessor

As Figure 2 shows, the cryptocoprocessor

includes
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Memory-mapped interface with host CPU. Fig-
ure 3a shows how the cryptocoprocessor attach-
es to a CPU core through the memory-mapped
interface. Four registers connect the host CPU
to the cryptocoprocessor: instruction, config-
uration, 32-bit input, and 32-bit output. The
host CPU can read or write to these registers
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Figure 1. Advanced Encryption Standard core architecture.

by accessing different memory locations. The
memory-mapped interface decodes the mem-
ory addresses and updates the register values.
The main CPU can therefore easily program
the cryptocoprocessor.

The CPU programs the coprocessor
through the 8-bit instruction and configura-
tion registers. Moreover, the main CPU core
and the coprocessor use the 32-bit input and
output registers for data communication. The
main CPU uses these registers for key setup
and initialization of the CBC-MAC, counter,
and CCM operation modes. Therefore, it is
possible to change the key and initial vector
values in the software.

Asynchronous I/O interfaces. The inputand out-

put interfaces use two handshaking signals to
read and write a 128-bit data block asynchro-
nously in multiple clock cycles. Figure 3b shows
how the cryptocoprocessor connects to the
input and output modules through these inter-
faces. The modules work independently of the
cryptocoprocessor and the main CPU host and
can be programmed through the CPU core’s
memory-mapped interface. The modules pro-
duce data for the cryptocoprocessor and use the
coprocessor’s encrypted output.

Design principles

Several design principles let the crypto-
coprocessor achieve the required through-
put for IPsec and other networking
applications.
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Figure 2. Cryptocoprocessor block architecture.
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Separate data and control streams

Separating data and control streams enables
high-throughput data encryption and a high
level of programmability. In Figure 2, data
flows through the coprocessor from the input
module to the encryption module and then
to the output module while the top controller
handles instructions. The input and output
finite-state machines (FSMs) perform hand-
shaking to read input and write encrypted
data without interference from the top con-
troller. Following this methodology, we can
program the coprocessor to encrypt the input
data stream and produce output continuous-
ly while the top controller interface processes
new instructions.

Control hierarchy

Designing with multiple controllers
requires partitioning the control over different
modules, particularly when multiple modules
communicate asynchronously. Hierarchical
control design simplifies the controllers’ com-
munications and lets us combine high per-

formance and programmability. Harel pro-
posed a control hierarchy for specification in
Statecharts.'> We propose this design tech-
nique for implementation. We implement the
system’s top-level control in the main proces-
sor core. Instructions from the main embed-
ded CPU bring commands to the
coprocessor’s top controller. The top con-
troller also controls the lower-level modules.

Figure 4 shows the control hierarchy for the
cryptocoprocessor in Figure 2. The top con-
troller unit manages the input FSM, CBC
ESM, counter FSM, and output FSM. As
mentioned, the input and output FSMs per-
form the handshaking sequence for reading
and writing of the 128-bit data blocks. The
CBC FSM controls the encryption sequence
to generate a CBC-MAC, and the counter
ESM controls the encryption sequence for the
counter operation mode.

Depending on which instruction it reads,
the main controller asserts the start signal for
a subcontroller. The submodule starts its
operation, asserting the done signal when fin-
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Figure 3. Cryptocoprocessor interfaces: memory-mapped interface with main CPU core (a) and asynchro-
nous /O interface with input and output modules (b).

ished. The done signal lets the main con-
troller reassert the start signal for subsequent
instructions.

Block pipelining

Because the CBC-MAC and CCM modes
involve feedback, we cannot pipeline the
AES core. We use a block pipelining tech-
nique to achieve multi-Gbps throughput for
high-throughput applications. The hierar-
chical control design and the handshaking
interface between modules enable this tech-
nique. Figure 5 shows how we designed this
pipeline for AES in the ECB mode. In
steady state, the coprocessor encrypts data
while it reads new data from the input and
writes the previous encryption result to the

output. In this methodology, the slowest
block (the encryption module) decides the
cycle time. Encrypting one block of data in
any of the supported modes takes 11 cycles.
Therefore, one block of output will be ready
every 11 cycles.

Single and continuous instructions

We use two categories of instructions. Sin-
gle instructions perform one task and execute
in a finite number of cycles. One-cycle sin-
gle instructions move data from a specific
module or register to another module or reg-
ister and are required for key setup and ini-
tialization. Examples of multiple-cycle single
instructions include single-block encryption,
reading one block of data or key, and writ-
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Figure 4. Hierarchical control design.

ing one block of output. Continuous instruc-
tions provide high-throughput encryption
streams using block pipelining. The most
important continuous instruction is Encryp-
tion_pipeline_begin, which performs block
pipeline encryption in any operation mode.
Continuous instructions let the coprocessor
encrypt the data stream and write the result
to the output continuously, until the main
CPU issues a done instruction.

For example, consider the CCM operation
mode: As Figure 6a shows, each input block
goes to both the AES CBC-MAC and the
AES counter modules. Using AES in feedback
mode, the CBC-MAC module generates the
MAC value, which is used for authentication.
In parallel, the counter module encrypts the
input payload for confidentiality. Figure 6b
shows the CCM pipeline model. The Encryp-
tion_pipeline_begin instruction, along with
CCM mode configuration, starts the pipeline.
In steady state, the coprocessor reads a new
block of data (IN) and encrypts a new counter
value (CNT). It XORs the previous encrypt-

ed counter value with the previous input and
writes it to the output (OUT). The previous
input block is XORed with the last CBC-
MAC value and is encrypted (CBC). This
continues until the main CPU inserts Encryp-
tion_pipeline_done. In the last pipe stage, the
coprocessor calculates the encrypted MAC
value and writes it to the output.

Modularity

As mentioned earlier, the cryptocoprocessor
architecture has a modular design. For example,
we could replace the AES core with an imple-
mentation of any other symmetric-key encryp-
tion algorithm without changing the control
hierarchy and programming interfaces.

Programming interface

Table 1 lists the instructions supported by
our cryptocoprocessor. Different types of read
input and write output instructions load the
data or key from the input and return the
result to the output. Moreover, various types
of encryption instructions can refresh the
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Table 1. Cryptocoprocessor instruction set.
No. of clock Single or

Mnemonic Meaning cycles continuous
Software_reset Reset the cryptocoprocessor 1 Single
Load_word_key Read 32 bits of the key from the 32-bit input

port connected to the main CPU core 1 Single
Load_word_data Read 32 bits of data from the 32-bit input port

connected to the main CPU core 1 Single
Write_word_out Write 32 bits of output into the port connected

to the main CPU 1 Single
Load_key_block Read a 128-bit block of the key from the 32-bit

input port asynchronously 10 Single
Load_data_block Read a 128-bit block of data from the 32-bit input

port asynchronously 10 Single
Wirite_block_out Read a 128-bit block of the output result to the

second 32-bit output port asynchronously 10 Single
Single_AES_encryption Perform one encryption on the current data and

key; takes 11 cycles 11 Single
Move_input_2reg Move input to one of the data path registers 1 Single
Move_encrypt_2reg Move encryption output to one of the data

path registers 1 Single
Move_outreg_2out Move output register to the output module 1 Single
Increase_counter_value Increase the counter value for the CCM and

counter modes based on the protocol

specification 1 Single
Encryption_pipeline_begin Start the continuous encryption pipeline 11/block Continuous
Encryption_pipeline_done Finish the continuous encryption pipeline 11 Single

Table 2. Configuration definitions.

Instruction Configuration definition
Load_word_key Which word of the key block (first, second, third, or fourth 32 bits of the key) to load
Load_word_data Which word of the data block (first, second, third, or fourth 32 bits of the data) to load
Write_word_out Which word of the output block (first, second, third, or fourth 32 bits of the output) to write
Single_AES_encryption Whether the encryption is performed on input data, counter register, or CBC initial vector
Move_input_2reg Where the input is moved: to the key register, counter register, CBC initial register, or data register
Move_encrypt_2reg Where the encryption result is moved: to the output register, key register, or CBC initial register
Encryption_pipeline_begin ~ Whether the continuous encryption is in ECB, counter, CBC-MAC, or CCM mode

42 [EEE MICRO

content of the internal registers of the encryp-  performs the AES encryption in CCM mode

tion module’s data path.

Most of the instructions use special settings
through the configuration register. Table 2
lists some meaningful configurations for each
instruction. For example, when Encryp-
tion_pipeline_begin executes, the configura-
tion register specifies the operation mode to
be performed—ECB, CBC-MAC, counter,
or CCM.

Figure 7 shows an example program that

on the continuous stream of input data.

We use the CCM mode from Housley’s
specifications.® First, we load the required key
for the CBC-MAC and counter modes and
move them to the key registers. We then load
the CBC-MAC initial value and move it to
the initial vector register, where it is encrypt-
ed and stored again in the IV register. To do
this, we use the Single_AES_encryption and
Move_encrypt_2reg instructions. We load



Software_reset
Load_key block

Move_input_2reg (Move the input key to the key register)

Load_data_block

Move_input_2reg (Move the input data to the initial vector register)
Single_AES_encryption (Single AES encryption on CBC initial value)

Move_encrypt_2reg (Move encryption result into the initial vector register)

Load_data_block

Move_input_2reg (Move the input data to the counter register)

Load_data_block
Increase_counter_value

Encryption pipeline_begin (Continuous encryption in CCM mode of operation)

Encryption pipeline_done

Figure 7 Example program performing AES encryption in CCM mode.

Critical path Clock frequency

Total area

Equivalent gate count

Throughput

Table 3. Synthesis results for the AES-based cryptocoprocessor.

Power estimate

3.38 nsec 295 MHz

0.732 mm? 73,200

3.43 Gbps

86 mW

the initial counter value and place it in the
counter register, where it is incremented.
When initialization is complete, we start the
block pipelining in CCM mode. On starting
the pipeline, the cryptocoprocessor loads the
data stream, encrypts it, and writes it to the
output. For every 11 cycles, one block of 128-
bit output is generated. The pipeline contin-
ues until Encryption_pipeline_done is set.

Performance results

Table 3 presents synthesis results for our
AES-based cryptocoprocessor. We performed
synthesis using a typical United Micro-
Electronic Corp. (UMC) 0.18-micron stan-
dard cell library with the Synopsys synthesis
tools and the conservative wire load model.
Because the core produces a 128-bit output
every 11 cycles, we calculated throughput by
multiplying the frequency by 128 and divid-
ing the result by 11, giving us the number of
bits produced per second. We achieved the
maximum throughput of 3.43 Gbps at 295
MHz clock frequency with a power con-
sumption of 86 mW at 1.8 V and 295 MHz.

System prototype

The complete system includes the Leon
CPU core® and our cryptocoprocessor. We
implemented a prototype system and tested
the software routines on the Virtex-II FPGA
board. As Figure 8a shows, the Leon CPU

core controls the cryptocoprocessor through
a memory-mapped interface. Figure 8b is a
sample software routine for programming
the cryptocoprocessor. The program per-
forms one AES encryption in ECB mode.
To fairly compare ours with earlier results,'
we implemented the same setup, meaning
the required data for the coprocessor is
transferred through the Leon core. Thus, all
data flows through the Leon core and does
not use the separate streaming-data I/O
modules.

The AES algorithm takes 24,419 cycles per
128-bit block (1,526.2 cycles per byte) using
an efficient, high-speed software code on
Xtensa; and it takes 1,400 cycles per 128-bit
block (87.5 cycles per byte) to run AES using
custom instructions on the customized Xten-
sa core.'" Running the AES algorithm on our
memory-mapped cryptocoprocessor using the
program in Figure 8b takes 1,228 cycles. The
coprocessor uses most of the 1,228 cycles for
transferring the data and key from the Leon
core and for the context switching necessary
to call the program of Figure 8b from the
main C program. The performance bottle-
neck is in the data transfers through the main
CPU and the associated control overhead.

We also tested a program that uses block-
pipelining continuous instructions for differ-
ent operation modes. The difference between
this program and the program in Figure 8b is
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e Software_reset

e Move the key from memory to the registers
e Load_word_key (First 32-bit)

e Load_word_key (Second 32-bit)

e Load_word_key (Third 32-bit)

e Load_word_key (Fourth 32-bit)

e Move the data from memory to the registers
e Load_word _data (First 32-bit)

e Load_word_data (Second 32-bit)

e Load_word _data (Third 32-bit)

e I,oad_word_data (Fourth 32-bit)

e Single AES_encryption (ECB mode)
eWrite_word_out (First 32-bit)
eWrite_word_out (Second 32-bit)
eWrite_word_out (Third 32-bit)
eWrite_word_out (Fourth 32-bit)

e Move the data from registers to the memory

Each of these instructions is equivalent to a group of assembly
instructions that can set a value for a register, store a register to a
memory address, or load a memory value to a register. For

%02"
%03"

Leon core
Cache
AMBA Integer Register
High-speed unit file
bus
interface
_ | Memory RAM
~ | controller interface
. Memory-mapped
Y coprocessor interface
Bus .
example:
controller [ IZI IZI IZI IZI *ae
“set 0x80000058,
" " " " “gset 0x00000001,
“st %03, [%02]"
“1d [%10],%03"
Cryptocoprocessor
(b)

Figure 8. Cryptocoprocessor connected to Leon CPU core: memory-mapped interface (a); sample software routine for pro-
gramming the cryptocoprocessor (b).
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that we replace Single_AES_encryption with
Encryption_pipeline_begin and Encryp-
tion_pipeline_done. We also used the input
and output interfacing modules to transfer the
actual data to the cryptocoprocessor, as Fig-
ure 3b shows. The coprocessor continuously
encrypts the input data in all the supported
modes in only 11 clock cycles per block of
input data.

Most future embedded systems will
require high throughput and program-
mable security engines similar to the crypto-
coprocessor presented in this article.
Therefore, a system-level design methodolo-
gy providing a hardware and software code-
sign environment for constructing similar
embedded security engines is of interest for
future work. Achieving such a methodology
requires research on highly efficient interfaces
for programming encryption accelerators
through an embedded CPU core as well as
high-throughput data transmission schemes
between the hardware accelerators of a typi-
cal embedded system on a chip. MCRD
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