

Integrated Modeling and Generation of a Reconfigurable
Network-On-Chip

Doris Ching
dorisc@ee.ucla.edu

Patrick Schaumont
schaum@ee.ucla.edu

Ingrid Verbauwhede
ingrid@ee.ucla.edu

Electrical Engineering Department, UCLA

Abstract

 While a communication network is a critical
component for an efficient system-on-chip
multiprocessor, there are few approaches available to
help with system-level architectural exploration of such
a specialized interconnection network. This paper
presents an integrated modeling, simulation and
implementation tool. A high level description of a
network-on-chip can be simulated and converted into
VHDL. The system simulation supports multiple
instruction-set simulators, and obtains cycle-accurate
performance metrics. This way, an optimal network
configuration can be determined easily. We discuss our
approach by designing a flexible network-on-chip and
present implementation results after mapping into
FPGA. The performance of our automatically
generated network is comparable with a reference
design directly developed in HDL.

1. Introduction

 Modern System-On-Chip (SoC) contain multiple
processors, dedicated hardware processing units and
peripherals. Such a distributed architecture is required
for reasons of performance and energy-efficiency, but
it also introduces the requirement of an efficient
system-level communication. As technology advances
with ever increasing processor speed, global wires
spanning across significant portion of chip size will
dominate the propagation delay [3], which becomes a
performance bottleneck for SoC design.
 In recent years, significant research has
demonstrated that an on-chip packet interconnection
network is a better candidate for handling on chip
communication [2]. System modules communicate to
one another by sending packets across the network.
This approach has the advantages of both performance
and modularity. In another example [11], researchers
implemented such a reconfigurable interconnection
network on FPGA for improved hardware-software
multitasking. In the result section, we will make

performance comparison between our automatically
generated prototype network and their design.
 The system level components of a SoC include,
besides the on-chip network, also embedded cores and
embedded software. Some on-chip communication
networks that target general-purpose multiprocessors
are the J-Machine [4] and Smart Memory [10].
However, very few research has been done on
modeling the on-chip communication architecture and
integrating the communication network with processor
units in a single simulation environment. Architectural
exploration of a network should be done in the early
stages of the design, using system-level simulation.
This exploration is required because the
communication requirements of a SoC are often
determined by the application. Also, making changes
to the communication protocol at late stages of the
design cycle is a costly and complicated matter. We
are therefore interested in combining the tasks of
network design and embedded software development.
This includes concise capturing of the interconnection
network architecture together with the embedded
software, cosimulation of the architecture with multiple
instruction set simulators, and implementation.

2. Related Work

 There has been very few research on modeling
methodologies that fill the design gap from high level
evaluation of communication network architecture with
processing units down to implementation. A research
group at Princeton University [14] has proposed a
hierarchical modeling framework for an on-chip
communication architecture using the Liberty
Simulation Environment (LSE) and PtolemyII. LSE is
a fast simulation and modeling environment with a
dedicated machine description [9]; while PtolemyII is
an object-oriented modeling framework written in
JAVA [12]. Although both design environments can
model system simulation between communication
network architecture and processing units at a higher
abstraction level, neither of them provides a code-
generation interface to VHDL. A network design

modeled in LSE or PtolemyII would have to be
manually translated into a hardware description before
it could be synthesized.
 We present an integrated approach to cosimulation
and implementation of a reconfigurable
interconnection network for system-on-chip. Our
environment, called GEZEL, captures the architecture
of the network at high abstraction level and enables
cosimulation with instruction-set simulators. The
network description can be readily translated into
VHDL for synthesis. The proposed design flow
significantly reduces the time spent going from high
level design of a multi-processor network to system
verification and implementation. Our interconnection
network is scalable and it can easily be changed to
handle different routing strategies and network
topologies.
 In the following section, a brief overview of the
GEZEL environment will be given. Section 4 describes
our interconnection network design in detail. Section 5
presents the system evaluation and verification
approach. Section 6 describes the code generation
model for hardware synthesis. Section 7 discusses the
implementation results of the interconnection network
onto FPGA and compares the proposed network with
related work. Finally, we draw conclusions and discuss
future work.

 3. Tool Overview

 Figure 1 demonstrates the main characteristics of
the GEZEL environment. GEZEL is a C++ library that
can be linked to a system simulation with one or more
instruction-set simulators (ISS) [6], illustrated in step 1.
To describe hardware, GEZEL uses a dedicated
language. This language uses finite-state-machine
datapath (FSMD) semantics, which allows designer to
capture datapath and control operations of hardware
models independently. The FSMD models are cycle-
true. When the GEZEL library initializes, it can read in
one or more hardware models described in this
language.
 The embedded software part of the system runs on
the ISS, and interfaces with hardware using a memory-
mapped interface. To model a SoC environment,
multiple ISS are used, one for each embedded
processor core. They are connected together with the
interconnection network and hardware accelerator units
and modeled in the GEZEL description language. The
system simulation runs with cycle accuracy and returns
various metrics of performance as shown in step 2 of
figure 1. This way, system exploration can be done
interactively. After this, the hardware description
modeled in GEZEL code can be converted into
synthesizable VHDL code and this process is labeled
as step 3 in the figure. We will now describe the

features of our interconnection network and how it is
modeled using FSMD semantics.

ISS

SoC Platform

Embedded
Software

Interconnection
Network
Models

in GEZEL Language

ISS
ISS

Compile

HW

HW
HW

Exploration +
Performance
Evaluation

ISS

VHDL

ISS
uP IP

VHDL
VHDL

VHDL

Code Generation

Parse

GEZEL
Library ISS

Create SoC Platform1

2

3

Figure 1: GEZEL System Exploration and Code

Generation Process

4. Reconfigurable Network

4.1 Network Exploration

 The interconnection network provides a fixed
communication layer between various components of a
SoC. In traditional design flow, the development of
embedded application and communication layer are
separated. The communication scheme is
predominantly based on point-to-point or shared bus
architectures. While this is suitable for today’s
embedded application that mostly comprise of a single
processor core with memory modules and peripherals,
the next generation SoC will demand more
computation power and processing units, memory
modules and on-chip traffic. With the increased
complexity of the application, the interconnect design
should be flexible to adapt to the needs of the system.
Prior on-chip network design is typically arranged in a
pre-defined form. The 2D mesh topology mapping for
example proposed by Hu [7], the SPIN micro-network
that uses a fat-tree topology [1], or the octagon network
topology [8]. In these interconnection schemes, system
modules connect to each other through the network in a
fixed architecture. However, it is possible to further
optimize the system by taking into account the specific
task distribution pattern of the application during
design exploration. Future SoC will likely consist of
application specific node processor, video/image
processing unit and general purpose micro processor

coexisting on the same chip. Our design environment
can provide the flexibility to support different system
configuration. Given an application, a communication
optimal network topology can be derived that can
balance the throughput, give a shorter transmission
latency and provide better resource utilization. This
will also result in a system with improved power
consumption, by reducing the congestion probability.
Our proposed methodology allows designer to
investigate on a variety of architecture during design
space exploration, and finally determine an optimal
topology and network configuration for a given system.

4.2 Network Structure

P

2D
router

2D
router

2D
router

2D
router

P

PP
1D

router

P

Figure 2: Example of a Network Topology

 In general, the network complexity is characterized
by two parameters: the routing algorithm and the
network topology. Both parameters can be configured
with our models. The tool can model any one or two-
dimensional array of processor cores running
embedded software. Each processor core is connected
to a dedicated router for communication into and out of
the network as illustrated in Figure 2.
 These routers are addressable for communication
among processors. The network uses a deterministic
routing algorithm in the form of a lookup table inside
each router for routing to the neighboring node.
Although flow control is not supported, a deterministic
routing approach significantly reduces hardware
complexity and overhead. Reconfiguration of the
network topology and placement of processing units
only requires a modification to the routing table.
Designers can arbitrarily instantiate multiple 1D- or
2D-routers library block to build a dedicated network.
Furthermore, they can reconfigure internal buffer size
of each router, and in this way, trade area for speed.
These two features allow creation of a network
topology that is matched to the traffic patterns of a
special purpose SoC. It also allows for more efficient
use of routing resources, which is an important design
factor in embedded system design.

4.3 Router Interfaces and Packet Format

 The 2D router shown in Figure 3 has data flowing in
two directions. Each router has three input interfaces
and three output interfaces dealing with synchronized
communication between routers and the network
interaction with processors. The communication
reliability is guaranteed through a two-way handshake
for each packet transmission. Each router performs
wormhole routing with a packet size of 32 bits. This
number is chosen to match a 32-bit embedded
microprocessor. The transmission does not make any
assumption on maximum message size or on the
message data type as long as the proper packet format
is abided. The first 2 bits of each packet contain control
information indicating a header packet, a tail packet or
a normal packet. The header packet will contain
additional information on destination port. Furthermore,
the transmission sequence is pipelined to obtain a
transfer rate of three cycles per packet among routers.

Virtual Channel 2

Virtual Channel 1

router
output

controller
status

V
ir

tu
al

 C
ha

nn
el

 2

V
ir

tu
al

 C
ha

n
ne

l 1

ro
ut

er
ou

tp
ut

co
nt

ro
lle

r
st

at
us

output buffer

processor
output

controller status

Input controller

routing table

?

input 1 input 2

output 1

output 2

processor inp
ut

processor output

 Figure 3: 2D Router’s architecture

4.4 Router Architecture

 As illustrated in Figure 3, the router contains three
concurrent controllers: an input controller, a router
output controller and a processor output controller.
The input controller handles simultaneous input
requests from neighboring routers and the processors.
Priority is given to router inputs because the processor
interfaces are driven by software, which is typically
slower. A round-robin scheme is employed to arbitrate
requests of equal priority. The router output controller
and two virtual channels handle communication to
neighboring routers. The two virtual channels can
avoid deadlocks in a two dimensional torus network

topology [5]. Finally, the processor output controller
interfaces with the processor core to receive packets
from the network. Because the communication
between network and processor is handled in a
blocking-send and receive manner, an additional output
buffer is added between the routing channel and the
processor output to relieve possible congestion caused
by the blocking. A 1-D router has a similar structure
but with a reduced interface and reduced number of
virtual channels. A routing table is used to determine
the subsequent routing path of each packet.

4.5 FSMD Model of the Network

 The interconnection network is described in GEZEL
in a FSMD model. The input controller, router output
controller and processor output controller are modeled
in a finite state machine with input requests triggering
state transitions. Control signals generated from the
finite state machine direct the operation of the datapath.

dp_inputcontroller(in inreq1:ns(1); out inack1_out:ns(1); in indata1:ns(8);

in inreq2:ns(1); out inack2_out:ns(1); in indata2:ns(8);

out ctlread:ns(2); out ctlch:ns(2); out ctlbuf:ns(1);

in ch0size:ns(5); in ch1size:ns(5); in bufsize:ns(5)) {

sig ready1 : ns(1); //input1 ready with resource

sig ready2 : ns(1); //input2 ready with resource

. . .

sfg idle {. . . /* sfg to clear all register, datapath idle */ . . .}

sfg chkack1first {. . ./* handle processor input handshake */ . . .}

sfg chkack2first {. . ./* handle router input handshake */ . . .}

sfg read {. . . /* sfg read input into virtual channel/buffer */ . . .}

. . .

}

fsm ctl_inputcontroller(dp_inputcontroller) {

initial s0;

state s1,s2,s3,s4,s5,s6,s7;

@s0 if(inreq2 & ~inreq1) then (chkack2first) -> s1; // input priority

else if(~inreq2 & inreq1) then (chkack1first) -> s4;

else (resetctl) -> s0;

@s1 if(~inack2) then (idle) -> s0; //granted admission

else (read) -> s2;

@s2 if(statecontinue & inreq2) then (chkack2)-> s3; //further request

else if(statecontinue) then (idle) -> s2;

else (resetctl) -> s0;

@s3 if(~inack2) then(idle) -> s2; //read/idle further packets

else (read) -> s2;

. . . }

 Figure 4: FSMD model of a 1D Router’s input
controller

 As an illustration of the compactness of the
language, a GEZEL description of the input controller
is shown in Figure 4. The FSM controls the execution
sequence of sfg, which includes idling, handling input
from neighboring routers, granting input admission,
acknowledging requests, and reading input data. These
concurrent operations (sfg) are specified in the
datapath. Likewise, the output controller is modeled
with an FSMD description. Because GEZEL supports
hierarchical datapaths, a router is built by instantiating
the components which include the FSMD model of
virtual channel, input controller and output controller
and making the connection. This way, the entire
interconnection network is created by interconnecting
multiple routers. GEZEL is an abstracted machine
description language that has a simpler syntax than a
traditional hardware description language such as
Verilog or VHDL [6].

5. System Verification

5.1 Simulation Platform

 The performance of the interconnection network is
verified through a cycle true simulation that combines
embedded software and simulation of the
reconfigurable network (see figure 5). Embedded
software written in C is cross-compiled into
executables to be simulated on an ARM instruction-set
simulator (ISS). They communicate with other C
programs by sending packets using a set of API calls
into the network. The API is an abstraction layer
handling precise packet format and handshaking
sequences between software and hardware. The system
uses a memory-mapped interface between ISS and
hardware, and all components in the system run in
lock-step. If, besides the network, dedicated hardware
processing units are needed, they are modeled as part
of the GEZEL description.
 The system simulation returns some important
performance parameters of the communication scheme,
allowing better design choice to be made in early
stages of the design phase. The execution of a single C
instruction often takes multiple hardware cycles due to
the complexity of the processor architecture (cache
misses, pipelining etc). Therefore, it is difficult to
predict the performance of the handshaking sequence
between the processor and network communication
interface. With our co-simulation platform, cycle true
measurements can be made. This gives us actual cycle
count for a sequence of packet transmissions among
parallel-embedded programs. The accuracy of the
instructions-simulators we used is better then 3% [13],
while the network is modeled exactly.

state machine controls
which sfg to execute

sfg contains operators, that
describe the datapath

C Program

Strong ARM

Memory Map

C Program

Strong ARM

Memory Map

C Program

Strong ARM

Memory Map

C Program

Strong ARM

Memory Map

Reconfigurable
Interconnection Network

Hardware
Accelerator

Hardware
Accelerator

Hardware
Accelerator

Figure 5: System Simulation Platform

5.2 Simulation Results

 Table 1 presents various performance numbers of
our 1D/2D torus network of four parallel processors.
The evaluation platform is a DELL 3.2GHz Pentium 4
PC, with 512 MB RAM. The 1x4 1D torus network
connects four processors in a ring. The 2x2 2D torus
network connects four processors in a 2 by 2 array.
Simulation numbers are taken between the
communication of two neighboring processors
(processor A to B), and of two processors that are two
hops apart (processor A to D). The unit of transfer is a
single 32 bits packet.
 The input handshake synchronizes the input
interface between embedded software and hardware,
and takes 14 cycles in steady-state. From cold-start of
the ARM software (with clean caches), these cycle
counts are slightly higher (91 cycles for input and 11
cycles for output).
 The cycle-per-hop performance number of 1D torus
and 2D torus are the same. However, a 2D torus
network gives a higher transmission bandwidth for the
cost of increased area and reduced speed (as will be
discussed in section 7). In the case where processor A
sends a packet to processor D, a 2D topology gave a
shorter routing path and faster transmission time. Most
of the simulation time is spent on simulating software
execution. Simulation of one packet’s transmission
from one processor to the next takes roughly 2 second
for a 1D network.
 Table 2 shows the simulation results of 1000
packets transmission. The average round trip time
(RTT) for sending a packet from source to destination
(1hop) is estimated to be 17 cycles. This number
includes the handshake process that is needed to
synchronize between hardware and software. As
mentioned, the cycle require for the handshake process
can varies and it depends on the state of the ARM
processor. Therefore our RRT number is obtained

from an average of 1000 transmissions. A simulation
of 1000 packets transmission in a 1D network
approximately takes 46226 cycles and 19 seconds to
simulate.

SIMULATION OF 1 (32-BITS) PACKET
 Processor A to B Processor A to D

 cycles simulation
time Cycles simulation

time
Input

handshake 91 -- 91 --

output
handshake 11 -- 11 --

cycle per hop 3 -- 3 --
1x4-1D torus
(without init) 105 2 sec

(total) 111 2 sec
(total)

2x2-2D torus
(without init) 105 6 sec

(total) 105 6 sec
(total)

Table 1: 1 Packet Simulation Result

SIMULATION OF 1000 (32-BITS) PACKETS
 Processor A to B Processor A to D

 cycles simulation
time Cycles simulation

time
average RTT

(1x4 – 1D
network)

17 -- 17 --

1000 packets
(1x4 – 1D
network)

46226 19 sec 46231 21 sec

Table 2: 1000 Packets Simulation Result

6. Code-Generator Model

 After performance evaluation and architecture
exploration, the selected network architecture can be
converted from GEZEL into synthesizable VHDL.
This feature closes the design path for hardware
implementation. The architectural exploration process
involves design changes only in the GEZEL
description. After design exploration, the target
architecture will be implemented through the VHDL
code-generator.
 VHDL code-generation of the network model is
implemented in three steps. Upon parsing, an
intermediate representation (IR) of the interconnection
network described in GEZEL is created in the form of
a symbol table. In the first step, an internal object
hierarchy is build through the symbol table interface.
Figure 7 presents this object hierarchy, which captures
the hardware model for each component in the design.
With this representation, the code generator can
reconstruct the hardware model in VHDL syntax. In
the next stage, the code-generator goes through each
datapath, controller and system to construct inter-block
control signals and the system interconnect. In the final

stage, the objects in the structure are mapped into
corresponding VHDL syntax. As an example, a
datapath object will consist of numerous signals and
registers which will be mapped into a VHDL clocked
process with signal update. Likewise, each of the
GEZEL operators will be mapped into VHDL
arithmetic operators from the IEEE standard library.
Following this approach, a .vhd file is generated for
each unique datapath and system. The code-generator
and network source file is available for download on
GEZEL homepage.

VHDL GENERATOR
C++

datapath

system obj datapath obj controller obj

portmap variable net fsmhardwiresequencer

state ctlstepsfgexevariable sfg control control tableportmap lut port

combinational operator register operator

assign lutopbinop dunop terop assign lutopbinop dunop terop

condition

Figure 7: Code Generator object structure

7. Results

 Synthesis results of the prototype reconfigurable
interconnection network from the GEZEL description
will be presented in this section. The synthesis
software is Xilinx ISE. Table 3 shows the synthesis
results of a 1D and 2D router supporting internal
buffering up to 2 packets, which has the same
parameter as the reference design [11]. However, it is
important to notice that the reference design uses a 16-
bit data bus while our design uses a 32-bit data bus.

GEZEL Reference [9]
 slices speed slices speed

1D-Router 253 - 223 n/a

2D-Router 674 - n/a n/a

1x2 1D torus 531 104MHz n/a n/a

1x4 1D torus 1061 104MHz 2385 n/a

2x2 2D torus 2733 85MHz 3227 n/a

Table 3: Router’s Synthesis Result

 As shown, the resulting area used for each router is
comparable to their design. In a network of four
routers, our area used is actually smaller. The area of

our network scales proportionally with the number of
routers in the network. The clock speed supported by
the 1D network goes up to 100MHz and it is
determined by the longest propagation delay between
two communicating routers. The 2D network has a
lower clock speed of 85MHz but it achieves a higher
transmission bandwidth (illustrated in section 5). If the
1D network is clocked at 100MHz, the maximum
transmission bandwidth goes up to (32-bit ∗ 100MHz/3
∗ 30/32) = 1G-bit/s among routers. However, due to
the limitation of the software speed (details in section
5), the transmission bandwidth of a packet is estimated
to be (32-bit ∗ 100MHz/17 ∗ 30/32) = 177M-bit/s
between ARM cores. A maximum speed comparison
with the reference design cannot be made because this
number was not available from publication.

8. Conclusion

 We proposed an integrated modeling framework to
generate an efficient reconfigurable network on chip.
With our development tool, a designer can easily make
architectural reconfiguration on the interconnection
network targeting their specific application. Design
changes can be verified through a cycle true system
simulation, and a hardware model is readily available
in synthesizable VHDL. The synthesized result is
comparable to a network implemented with a
traditional hardware design flow. With the GEZEL
design environment, a close connection between
system simulation and platform implementation can be
made. We are currently developing a methodology to
explore and select different on-chip reconfigurable
network architectures. We are also developing a
demonstrator that uses this technology.

9. Acknowledgements

 The research work described in this paper was made
possible by the supported from SRC [2003-HJ-1116]
and NSF [CCR-0310527].

10. References

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez,

C. A. Zeferino, “SPIN: A Scalable, Packet Switched, On-
Chip Micro-Network”, Proceedings of the Design
Automation and Test in Europe, March 2003

[2] L. Benini and G. Micheli, “Networks on Chips: A New
SoC Paradigm,” IEEE Computer 35(1) 2002, pp. 70-78.

[3] S. Charles,”Let’s Route Packets Instead of Wires,” Proc.
6th MIT Conf. 1990, Advance Research in VLSI, pp. 133-
138.

[4] W. Dally, “The J-Machine Network,” Proc.International
Conf on Computer Design. IEEE VLSI in Computer &
Processor, Oct 1992, pp 420-423

[5] W. Dally,” Virtual-Channel Flow Control,” IEEE
Transaction on Parallel and Distributive System, vol 3, no
2, March 1992.

[6] GEZEL Homepage,
http://www.ee.ucla.edu/~schaum/GEZEL

[7] J. Hu, R. Marculescu, “Exploiting the Routing Flexibility
for Energy/Performance Aware Mapping of Regular NoC
Architectures”, Proceedings of Design Automation and
Test in Europe, March 2003

[8] F. Karim, A. Nguyen, S. Dey, R. Rao, “On-chip
Communication Architecture for OC-768 Network
Processors”, Proceddings of 38th Design Automation
Conference, June 2001

[9] Liberty Simulation Environment Homepage,
http://liberty.princeton.edu/Software/LSE/

[10] K. Mai,” Smart Memories: A Modular Reconfigurable
Architecture,” Proc ISCA, June 2000, pp. 161-71

[11] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, R.
Lauwereins, “Interconnection Networks Enable Fine-Grain
Dynamic Multi-Tasking on FPGAs,” FPL, Sep, 2002

[12] PtolemyII Homepage, http://ptolemy.eecs.berkeley.edu
[13] W.Qin, et al. SimIT-ARM Homepage,

http://www.ee.princeton.edu/~wqin/armsim.htm
[14] X. Zhu, S. Malik, “A Hierarchical Modeling Framework

for On-Chip Communication Architectures”, Proceedings
of International Conf on Computer Aided Design, Nov
2002.

