
Abstract
Coarse-grain reconfigurable systems offer high perfor-

mance and energy-efficiency, provided an efficient run-time
reconfiguration mechanism is available. Using an embed-
ded software vantage point, we define three levels of recon-
figurability for such systems, each with a different degree of
coupling between embedded software and reconfigurable
hardware. We classify reconfigurable systems starting with
tightly-coupled coprocessors and evolving to processor net-
works. This results in a gradual increase of energy-effi-
ciency when compared to software-only systems, at the cost
of increasing programming complexity.

Using several sample applications including signal-,
crypto-, and network-processing acceleration units, we
demonstrate energy-efficiency improvements of 12 times
over software for tightly-coupled systems up to 84 times for
network-on-chip systems.

1. Introduction
The next generation of embedded information processing

systems will require a considerable amount of computation
power. An example of such a system is a portable, personal
multimedia assistant. Silicon technology will be able to
offer all the processing power and heterogeneity required
for such a personal multimedia assistant. But we are faced
with two conflicting design goals.

On one hand, we need high energy-efficiency because
the system must be portable and battery-operated. Distri-
buted, dedicated architectures are more energy-efficient
than centralized, general-purpose ones. Therefore, we will
use a distributed architecture that uses besides general-pur-
pose cores also coarse-grain reconfigurable blocks with a
limited instruction set [6].

On the other hand, we must also resolve how we will
write programs for such a distributed and heterogeneous
architecture. The problem is that there is no generally
accepted programming method that covers all the elements
in the system. Individual cores can be programmed in C or
another general-purpose programming language, but
coarse-grain reconfigurable blocks usually have very spe-
cific and architecture-dependent programming mecha-
nisms. In addition, a system programming model should
expose and promote the parallelism offered by the target
architecture.

In this paper we advocate that traditional embedded soft-
ware design and coarse-grain reconfigurability are closely
related, and that the key of a successful energy-efficient
design is to identify the appropriate level of coupling of
each coarse-grain reconfigurable block to the embedded
software. Loosely-coupled blocks offer more opportunities
for specialization, and therefore offer potentially better
energy efficiency. On the other hand, loosely-coupled
blocks are more difficult to program and control.

Figure 1 presents a conceptual view on this relationship.
In classic embedded software, data-flow and control-flow
are tightly coupled, and execute in lock-step. In a coarse-
grain reconfigurable system, the links between data-flow
and control-flow are loosened. Several possibilities are
shown: (a) the granularity of processing can be increased,
(b) a single control/configure operation can apply over an
extended period, (c) control- and data-flow can be imple-
mented with independent processors.

In this paper, we investigate the effect of coarse-grain
reconfigurability on embedded software design. We will
compare several architectures for loosely-coupled systems,
quantifying the energy-efficiency improvement of each
case over software, and discussing the impact on embedded
software design. First we define three different levels of
configurability from the viewpoint of embedded software.
We then discuss three concrete examples to exemplify each
of those three reconfiguration scenarios, and discuss design
results for these examples.

Figure 1: A coarse-grain reconfigurable system can be 
seen as one in which the ties between data-flow and 

control-flow are loosened.
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2. Overview of Related work
Defining a programming paradigm for coarse grain

reconfigurable architectures is a difficult problem. We for-
mulate an approach based on application-specific special-
ization of embedded software.

Other researchers have proposed systematic program-
ming models. SCORE [3] uses the data-flow model of com-
putation to partition an application into pieces that can be
configured individually on reconfigurable hardware. Pipe-
Rench [5] defines a virtual pipeline model, that can be
mapped onto reconfigurable pipeline elements. For our
applications, we do not use such a homogeneous program-
ming model. Instead, we assume the presence of a general-
purpose core running software that can be specialized by
the designer, according to the needs of the application. 

There are many examples available of systems that com-
bine embedded software design with hardware acceleration.
XiRISC [2] uses an embedded software environment to
program the combination of a general-purpose processor
with a reconfigurable function unit. Another recent success
in applying a software methodology to loosely coupled
reconfigurable architectures is OS4RS [4]. This approach
uses a task-oriented formulation of the application. The
resource management and communication mechanisms of
an operating system are used to manage the combination of
embedded software as well as reconfigurable hardware. Our
key contribution to this existing work is that we provide an
integrated approach to the combination of embedded soft-
ware with different forms of reconfigurable hardware.

3. Embedded software view on coarse-grain 
reconfiguration

3.1. The RINGS system architecture

The discussion on coarse-grain reconfigurability is given
in the context of the RINGS [7] system architecture. A
RINGS architecture is a collection of heterogeneous and
application-domain-specialized blocks embedded into a
reconfigurable network-on-chip. There is at least one CPU

that is responsible to maintain overall system control. The
program running on this CPU is the embedded software that
we will use in our discussion.

Figure 2 demonstrates that there are three levels of cou-
pling between embedded software and reconfigurable hard-
ware. These levels correspond to the level of integration
between the CPU and the reconfigurable hardware. We dis-
tinguish register-mapped, memory-mapped and network-
mapped reconfigurable blocks.

3.2. Register-mapped reconfigurable blocks

Register-mapped reconfigurable blocks give the tightest
integration with embedded software. They can be created
by modifying the micro-architecture of an embedded core,
for example by integrating a custom reconfigurable data-
path next to the ALU. In this case, the presence of such a
block is directly visible in the instruction-set of the embed-
ded core.

This type of reconfigurable blocks is popular because
their design can be tightly integrated into the existing tool-
and architecture infrastructure for this core. However, we
should also realize that this solution requires a tight cou-
pling of control-flow and data-flow. The parallelism that
can be obtained with these solutions is primarily data-paral-
lellism. We cannot easily modify the data-flow and control-
flow of an algorithm outside the model provided by the
CPU. Another issue is that control- and data-flow depen-
dencies need to be resolved instruction-by-instruction. For
example, pipeline conflicts in the CPU will also affect the
processing performance of the reconfigurable block.

3.3. Memory-mapped reconfigurable blocks

By providing reconfigurable blocks with a memory inter-
face, they can be integrated into the memory-map of a pro-
cessor. This method results in looser coupling between
software and the reconfigurable block. A set of shared
memory locations between the software and the config-
urable block is defined. These shared memory locations can
convey control- as well as data-flow oriented information,
depending on the requirements of the design. As a result,
coupling between data-flow and control-flow is less tight. A
typical example of loose control-data coupling is the use of
so-called continuous instructions in streaming-media pro-
cessors. A continuous instruction is one that is assumed to
be applicable to a stream of data elements. For this purpose,
the processor can be programmed into a predefined mode of
operation using a continuous instruction. The same type of
instruction can also be created for a reconfigurable block:
one memory location of the interface is used to configure
the operation of that block, and after that another location
accepts a stream of data values to be processed.

A drawback of this type of integration is that a reconfig-
urable block must share the memory address space with
other memories and peripherals. Also, both the control and

Figure 2: Coarse-grain Reconfigurable Blocks 
are Register-Mapped (C1), Memory-Mapped 

(C2) or Network-Mapped (C3)
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data-flow are eventually routed through the CPU and the
embedded software. Direct-memory access techniques can
help to break this bottleneck but do not eliminate the funda-
mental problem of a shared memory address space. The
CPU remains a bottleneck in the overall system.

3.4. Network-mapped reconfigurable blocks

Reconfigurable blocks can also be attached as indepen-
dent entities in a Network-on-Chip [1]. In this case, integra-
tion of embedded software and reconfigurable blocks can
be done using communication primitives. These can be
integrated into an operating system such as in [4]. 

Network-mapping allows to treat the integration of data-
and control-flow independently. In a network-on-chip, net-
work packets can contain control- as well as data-flow
information. Therefore, data-flow and control-flow might
literally have a different route in the system. For example, it
is possible to create a system where a CPU sends configura-
tion and control packets to reconfigurable blocks that at the
same time have high-throughput data-streams between
them. In this case the embedded software on the CPU main-
tains overall system synchronization, rather than being a
data pipe. This programming model is the most compli-
cated, because it deviates the most from a classic sequential
programming model.

3.5. Impact on embedded software design

Each of the three schemes discussed has specific require-
ments towards system- and embedded software design. In
Table 1, we give an overview of the issues that are relevant
to select a particular strategy, as well as the impact of each
strategy on design support. 
• Architecture Strategy relates to the reconfigurable
block. Self-contained architectures such as peer processors
are harder to design because their integration interface is
more complicated.
• Reconfiguration Mechanism indicates how instructions
are provided to the reconfigurable block.
• Data-flow/Control-Flow Coupling indicates how close
the design of data-flow is linked to the design of control-
flow. Uncoupled offers higher performance, potential better
energy improvement, but is also the hardest to program.

• Energy Efficiency Improvement is a relative apprecia-
tion how energy-efficient a coarse grain reconfigurable sys-
tem will perform when compared to a software-only,
single-CPU system with the same functionality.
• Simulation Technology indicates the required simula-
tion technology to design software for this reconfigurable
system effectively. Each of the three approaches requires
instruction-set simulation (ISS), but the complexity of the
cosimulation setup shows large variations.
• Integration Technology indicates the requirements
towards embedded software development. A tightly cou-
pled, register-mapped system requires a compiler that can
create custom instructions. Memory-mapped systems can
be supported using software libraries. Network-mapped
systems need communication primitives, and can require
the introduction of specialized operating system software.

In our experience, each of these three models for coarse-
grain reconfigurability has virtues and deficiencies, and
none of them can be pointed at as a universal solution. In
the following section, we discuss three concrete design
cases.

4. Example design cases
The three examples will illustrate the characteristics of

the three classes of coarse-grain reconfigurable blocks. The
first two, a DFT acceleration unit and an AES coprocessor,
are part of the biometrics system discussed earlier. A third
one is a TCP/IP checksum coprocessor.

We use the DFT unit as an example of a tightly-coupled
(register-mapped) block, the AES unit as an example of a
loosely-coupled (memory-mapped) block and the check-
sum processor as an example of an uncoupled (network-
mapped) block. We will discuss the impact of each of the
coprocessors on embedded software.

4.1. DFT signal processor

This DFT processor implements a one-dimensional 24-
point DFT on four different discrete sample frequencies,
namely for k = 1, 2, 3 and 4 (corresponding to 1, 2, 3, and 4
periods per 24 samples). The micro-architecture of this pro-
cessor is shown in Figure 3. The processor is organized as a
memory-mapped coprocessor. Two memory locations are

Table 1: Coarse Grain Reconfiguration Mechanisms
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used between the CPU and the coprocessor: one for data
input and control, and one for data output. After a ‘reset’
command, the processor will accept a sequence of 24 sam-
ples during the 24 consecutive writes to the data-input. This
is an example of a continuous, implicit instruction.

The 24 samples are used to accumulate sine and cosine
components of the DFT at all four frequencies in parallel.
After 24 samples have been provided, a ‘read_cosine’ or

‘read_sine’ command will retrieve the sine and cosine accu-
mulators for each of the four frequencies in a sequence of
consecutive reads. The embedded software that controls
this memory-mapped processor is shown in Figure 4. The
top part (a) shows the original, software-only implementa-
tion of the 4-point DFT. The bottom part (b) shows the C-
code that drives the coprocessor. While this code uses
memory-mapped accesses, it exhibits the characteristics of
a register-mapped design: the control-flow of the DFT algo-
rithm is not carried over to the DFT processor, but remains
in C on the embedded processor. 

4.2. AES encryption processor

The AES coprocessor is a stand-alone, memory-mapped
block that evaluates the AES encryption algorithm. The
integration onto a 32-bit memory bus is illustrated in
Figure 5. The encryption is done on a 128-bit key and a
128-bit plaintext, and produces 128-bit of crypttext. The
processor uses three memory locations for interfacing to the
embedded software - one for instructions, one for data-input
and one for data output. The instructions allow to assemble
the 128-bit key or plaintext out of 32-bit writes, and execute
the encryption. The embedded software that controls this
AES processor is shown in Figure 6. This fragment
assumes that the key was already programmed, and that the
AES processor encrypts subsequent blocks of plaintext with
this key.

Figure 3: DFT Processor Micro-Architecture
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Figure 4: Embedded Software for 
(a) software-only DFT and (b) DFT-coprocessor

for (k=0; k<3; k++) { /* DFT at 4 frequencies */
/* Initialize accumulators */
cospart[k] = 0;
sinpart[k] = 0;

/* Accumulate cos and sin components */
for (i = 0; i < 16; i++) {

cospart[k] += (rowsums[i] * wave[k]->cos[i]);
sinpart[k] += (rowsums[i] * wave[k]->sin[i]);

}
}

volatile int *ioarea = (int *) 0x20000000;

for (i = 0; i < 16; i++) {
ioarea[0] = 0x80000000; /* cmd = send next */
ioarea[0] = rowsums[i];

}
for (k=0; k<3; i++) {
ioarea[0]  = 0x40000000; /* cmd = read cos */
cospart[k] = ioarea[1]; 
ioarea[0]  = 0x20000000; /* cmd = read sin */
sinpart[k] = ioarea[1];

}

(a) DFT accumulation loop in C

(b) DFT accumulation loop in C using a memory-mapped
coprocessor mapped at 0x20000000
(GEZEL code not shown)

Figure 5: Memory-mapping of 
AES Processor Micro-Architecture
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Figure 6: Embedded Software for 
AES Processor

volatile int *ioarea = (int *) 0x20000000;

void aes(int data[4], int result[4]) {
for (int i=0; i<4; i++) {

ioarea[0] = data[i];     // data input
ioarea[1] = LOAD_DATA;   // instruction

}
ioarea[1] = ENCRYPT;
for (int i=0; i<4; i++) {

ioarea[1] = READ_OUTPUT; // data ouput
result[i] = ioarea[2];   // instruction

}
}
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While the software fragment looks similar to the one
shown for DFT coding, the granularity of the two functions
is considerably different. For the case of the DFT, the con-
trol-flow of the original algorithm in software still shows up
in the resulting accelerated algorithm. For the AES, the
software corresponding to a complete encryption has been
substituted by a write to the instruction memory location.
Thus, if we consider the AES processor as a migration of
software to hardware, both control- and data-flow of the
AES algorithm C have been moved onto hardware, and the
functionality in C is reduced to a few memory writes and
reads. We can see however that data leaves from software -
as plaintext - and also returns to it - as crypttext. The
embedded software remains responsible for the system-
level data-flow.

4.3. TCP/IP checksum evaluation

A third example shows system-level migration of data-
and control-flow to a coprocessor. A TCP/IP protocol stack
runs on an embedded core. Each packet processed by the
protocol stack has checksum fields embedded into it. The
checksums are generated using the header bytes only (for

the IP-layer), or else using bytes from both the header and
the payload (for the TCP-layer). Checksum verification and
generation is a computation-intensive process because it
affects the complete packet. It is therefore migrated to inde-
pendent coprocessor units as illustrated in Figure 7. A
checksum generator generates TCP and IP checksums. For
the input channel, they are used for checksum verification.
For the output channel, they are used by a checksum
inserter to place them in the correct position in a packet. An
extra packet memory is required because TCP checksums
are non-causal - they are evaluated on bytes that succeed
the TCP checksum bytes.

The software that accesses the input channel is illustrated
in Figure 8. The checksum processor operates indepen-
dently from the embedded core and interfaces with it using
a set of communication primitives. The embedded core has
four functions for access. 
• input_available indicates if the checksum processor has
a word available. The embedded core polls the checksum
processor (rather then using interrupts) to improve through-
put when reading blocks of packet data. 
• input_complete indicates if a complete packet was pro-
vided.
• input_read accepts the next word in a packet. Bytes are
grouped by 4 in a word to improve throughput. 
• input_get_checksum reads the checksum values
obtained by the checksum processor.

This example corresponds to the network-mapped strat-
egy discussed earlier - even if no network on chip is used
here. When we compare the embedded software to a com-
plete, software-only TCP/IP stack, we see that checksum
evaluation has completely migrated to another (peer) pro-
cessor. The checksum evaluation functions have been sub-
stituted with a set of communication primitives.

5. Results
We have implemented the three design cases starting

from a LEON-2 embedded SPARC v8 core, and extending
it with coarse-grain accelerator processors. For each case
we obtained the implementation cost and energy cost for
the software-only implementations as well as for the hard-
ware-accelerated systems. We used a LEON2 32-bit, 50
MHz Sparc core as embedded software host. We used Xil-
inx Virtex-2 FPGA technology as the mapping target and
obtained power estimates with Xilinx xpower. The energy
figures still show the overhead of a fine-grain platform and
have primarily a relative value. Our results are presented in
Table 2.

Before presenting the conclusions, it is useful to moti-
vate the methodology of the experiment. 
• First, we use three different applications, based on
actual designs, rather than a single one. The designs there-
fore are representative to what a designer would do. 

Figure 7: TCP/IP Checksum Generation/Verification
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Figure 8: Embedded Software Communication 
Primitives for TCP/IP Input Channel

volatile int *ioarea = (int *) 0x20000000;

int input_available() {
return (ioarea[0]);

}

int input_complete() {
return (ioarea[1]);

}

void input_read(u8_t *dbuff) {
*(u32_t *) dbuff = ioarea[2];

ioarea[3] = 0x1; // acknowledge
ioarea[3] = 0x0;

}

void input_get_checksum () {
ipchecksum_val  = ioarea[4];

}
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• Second, we compare each design case to itself, without
a change of the target technology. The goal of our experi-
ment is to demonstrate the potential of effective system
level design regardless of the target technology. In addition,
any improvement in target technology will benefit both the
software-only as well as the hardware-accelerated case.
• Third, while the energy-improvement of hardware over
software is well known, our techniques also demonstrate
how such improvements can be obtained. We specifically
point to the role of intelligent on-chip interconnection
mechanisms as a way to make coarse-grain acceleration
hardware easily available.

From these observations, the conclusions are as follows.
Introducing accelerator hardware in the form of coarse-
grain reconfigurable blocks reduces energy consumption.
The DFT design can evaluate Fourier Transforms with 12
times less energy than equivalent software. By moving not
only data processing, but also control-flow to the accelera-
tor, further improvements are achieved. The AES design
can evaluate Rijndael encryption with 25 times less energy
as software. The biggest savings are obtained by detaching
the coarse grain reconfigurable block from all bottlenecks
in the embedded core (such as the memory bus). The TCP/
IP Checksum design, which makes this transformation, can
perform checksum insertion and verification with 84 times
less energy than embedded software.

6. Conclusions
We have illustrated the impact various types of coarse-

grain reconfigurable systems on embedded software.
Coarse-grain reconfigurable systems are good candidates
for energy-efficient designs. In our examples, we have
shown energy-efficiency improvements of 12 to 84 times
over software. We have presented three strategies for

coarse-grain reconfigurable block integration, each with a
different effect on data- and control-flow of the original
software implementation. An important aspect is that a C
programming model, despite the assumption of sequential
execution, does not prevent any of the strategies explained
above. Indeed, a single application could use register-
mapped, memory-mapped as well as network-mapped
reconfigurable blocks. 
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Table 2: Design results for the three design cases

(*) The implementation and performance is that from a stand-alone checksum verifier/inserter

Application Target 
Architecture

Performance
(ms)

Implementation
Cost

(Memory + LUT)

Estimated
Power

(mW/MHz)

Estimated
Energy

(mJ)

DFT
(1000 iterations)

SW on 
LEON2

118.7 9.7 KByte ROM
4856 LUT

11.4 67.6

LEON2 with
Accelerator HW

9.23 8.9 KByte ROM
7700 LUT

12.5 5.76
(12X Improvement)

AES
(175 iterations)

SW on 
LEON2

158.3 36.3 KBytes ROM
4856 LUT

11.4 89.2

LEON2 with
Accelerator HW

5.23 8.6 KByte ROM
8330 LUT

13.5 3.5
(25X Improvement)

TCP/IP Chksm
(100 packets

from HTTP seq)

SW on
LEON2

5.54 10.0 KByte ROM
4856 LUT

11.4 17.0

Accelerator HW
(stand-alone *)

0.699 1556 LUT 5.78 0.20
(84X Improvement)
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