
IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 

Contributed Paper 
Manuscript received September 6, 2004                                   0098 3063/04/$20.00 © 2004 IEEE 

1222 

Design of Portable Biometric Authenticators— 
Energy, Performance, and Security Tradeoffs 

David D. Hwang, Student Member, IEEE, Ingrid Verbauwhede, Senior Member, IEEE 

 
 Abstract — Biometrics have become a popular means for 
access control and authentication. As the processing power of 
embedded systems has grown, efforts have been made to 
perform biometrics locally on constrained devices such as 
smart cards. This paper presents the design and consumer 
application of a portable fingerprint biometric authenticator 
with the form factor of a key dongle (as an alternative to 
biometric smart cards). A thorough investigation has been 
performed to determine the tradeoffs between security, 
performance, and energy and to determine the secure 
partitioning between dongle and server. Such a device could 
be used for applications such as automotive access control, 
secure credit card payments, and related authentication 
scenarios1. 

Index Terms — Authentication, Fingerprint Biometrics, 
Embedded Systems, Security.  

I. INTRODUCTION 
 Authentication is becoming an increasingly important issue 
in modern society. In consumer applications as diverse as 
financial transactions, remote computer login, building access 
control, and keyless entry, it is extremely important to prove 
that a person is who he claims to be. In recent years, traditional 
methods for authentication such as passwords and PIN 
numbers have been shown to suffer flaws in security. Such 
flaws include forgotten or easily guessed passwords, PIN 
numbers written on the back of cards, etc. Therefore, 
alternative methods for authentication have been sought to 
alleviate these problems. 

One alternative to traditional authentication is biometrics 
[1]. Biometrics is based on the fact that a person possesses 
certain characteristics—such as retinal patterns, fingerprint 
patterns, gait, etc.—that are biologically or behaviorally 
unique to an individual. It is this characteristic, rather than a 
forgettable code or password, which is used to corroborate a 
user’s claimed identity. Because such characteristics are not 
easily forged, cannot be forgotten, and are not easily guessed, 
biometrics solves many of the problems that exist in traditional 
authentication. Fingerprint biometrics is by far the most 
popular and inexpensive form of biometrics used in consumer 
applications. 
 Another alternative has been the use of embedded systems  
(e.g. PDAs and cell phones) for user-server authentication. For 

 
1 This work was supported in part by the National Science Foundation 

(CCR-0098361) and the Fannie and John Hertz Foundation (DH).  
The authors are with the Electrical Engineering Department, University of 

California—Los Angeles, Los Angeles, CA 90095 USA (email: 
dhwang@ee.ucla.edu, ingrid@ee.ucla.edu).   

example, the Infrared Data Association (IrDA) [2] has recently 
announced standards to facilitate wireless payment 
authentication using infrared transmission on cell phones. 
Instead of using a credit card with a signature to pay for an 
item, a user merely sends data over an infrared link from a cell 
phone to a card reader to make an electronic transaction. An 
embedded authentication system being widely deployed on toll 
roads is the radio frequency identification (RFID) tag [3]. 
Smart cards are also frequently used for financial transactions 
and consumer authentication purposes, as a replacement for 
magnetic stripe cards.  

In this paper we describe a device which combines both 
biometrics and embedded system authentication into a portable 
authenticator, as shown in concept in Fig. 1. The device 
contains a fingerprint sensor, a 32-bit RISC microcontroller, a 
Bluetooth wireless transceiver, and memory in the form factor 
of a key dongle. In the next section, we explain the consumer 
motivation of such a device and describe prior art. 

II. CONSUMER APPLICATIONS AND PRIOR ART 
A portable biometric authenticator has many advantages 

over a traditional user-to-server fingerprint verification system. 
In a traditional system, a user approaches a server (e.g. a 
building access station, a computer workstation, etc.) and 
enters a claimed identity either manually or via a magnetic 
card. After the user depresses a fingerprint on the server’s 
sensor, the server performs a matching algorithm with a pre-
stored template and allows access to the system based on a 
match or reject.  

Though this type of verification system is the most common 
and simple, there are a number of potential security problems. 
One weakness is that fingerprints often leave a residue [4]; 
therefore a fingerprint can be lifted from the public sensor and 
a false finger can be generated from the lifted print. Another 
weakness is sociological, as users may be wary of storing their 
template at every bank, PC, employer, sports club, office, etc. 
that they interact with. 

Thus we have designed the device concept in Fig. 1, which 
is a portable biometric authenticator. Such an authenticator 

 
Fig. 1. Portable fingerprint biometric authenticator concept drawing. 



D. D. Hwang and I. Verbauwhede:  Design of Portable Biometric Authenticators—Energy, Performance, and Security Tradeoffs 1223

possesses its own fingerprint sensor and can also store the 
template and perform all biometrics locally, alleviating the 
problems of the server-based system. By using a challenge-
response protocol and encrypting all data on the wireless 
channel, the communication between device and server 
remains secure. The device could be used in a variety of 
applications. For example, it could be used as an automotive 
access controller, which would not only open the doors, but 
also customize user-specific environment settings 
simultaneously. The authenticator could also be used in 
building access control for secure employee entry. Another 
potential application scenario is for financial and commercial 
transactions as a replacement for (biometric) smart cards, 
which is the most similar system to that described in this 
paper. 

A biometric smart card is a processor-based device which 
can be used to authenticate a user with a server (e.g. the user’s 
bank) via biometrics. There is much current research being 
performed on such devices [5]. There are several variants of 
such cards which can store the template only, perform feature 
extraction, or perform matching only.  

There are two main differences between our authenticator 
and a biometric smart card. One potential drawback of 
biometric smart cards is the form factor, as inserting a 
fingerprint sensor on the device may not allow the card to 
conform to flexibility requirements of the smart card standard. 
We solve this drawback by using a key dongle form factor, 
popularized recently with key dongle flash memory. 
Furthermore, what differentiates this work with biometric 
smart cards is the link between the server (i.e. card reader) and 
device. A card reader to smart card link is often assumed to be 
a secure channel which is difficult to tamper with and 
eavesdrop. Our channel, however, is a wireless channel, which 
an attacker can easily eavesdrop or tamper with. Hence, 
additional cryptographic techniques are employed to provide 
confidentiality and integrity.  

The primary design decisions to be made when creating 
such a device are biometric partitioning decisions. In other 
words, which biometric components should be located on the 
device versus on the server, and how do these decisions affect 

memory requirements, protocol latency, energy expenditure, 
and security. These metrics are extremely important because 
we are dealing with a portable embedded device with limited 
battery life, processing power, and memory capacity.  

This paper will explain in depth such design decisions and 
their consequences in an embedded context. An examination 
of the security (not performance) aspects of different schemes 
using biometric smart cards is given in [6] and [7]. Design 
techniques for biometric smart cards are given in [8] and [9]. 
However, performance tradeoffs for metrics such as memory, 
latency, and energy—coupled with security analysis—of 
biometric verification is unique to this work. We address these 
factors in detail. 

The remainder of the paper is organized as follows. A brief 
overview of fingerprint biometrics on an FPGA platform is 
presented in Section III. Section IV introduces six design 
alternatives for biometric partitioning. Section V presents 
simulation results and analysis of these alternatives for 
security, performance, energy, and memory. Section VI 
provides a design analysis summary, and Section VII provides 
concluding remarks. 

III. FINGERPRINT BIOMETRICS ON AN FPGA PLATFORM 
This paper deals with a biometric verification system, or a 

one-to-one match. In this system the user enters a claimed 
identity into a biometric processor and attempts to corroborate 
this identity with a candidate biometric. The biometric 
processor loads the pre-stored template associated with the 
claimed identity. After performing a match algorithm with the 
candidate biometric, the processor either accepts or rejects the 
user. A verification system is used in financial transactions and 
other consumer-based authentication systems and requires an a 
priori enrollment phase in which a template is first generated 
and pre-stored in the biometric processor. For the purposes of 
this paper, we assume the enrollment phase has already been 
completed. A verification system is in contrast to an 
identification system, or a one-to-many match, such as those 
used in criminal databases. There are four primary components 
in a verification system: the data collection subsystem, the 
feature extraction subsystem, the matching/decision subsystem, 

 xc2v1000
FPGA

amba AHB 

32 MByte DDR RAM 

Memory Ctrl 

APB Bridge 
UART

Boot PROM

LEON 
Sparc 

DDR Ctrl Bluetooth
Radio

Fingerprint
Sensor

                            
 

Fig.  2. Target system architecture and target FPGA test platform for the biometric authenticator. The architecture consists of a LEON Sparc V8 32-
bit processor, memory, a Bluetooth radio, and a CMOS fingerprint sensor. 



IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1224 

and the storage subsystem. Each of these components is 
discussed in detail in relation to our test platform, which is 
shown in Fig.  2.  

The target platform used in simulation is an embedded 
system built around a soft-core LEON processor [10]. The 
processor is a 32-b RISC processor which is Sparc V8 
compatible, and is synthesized to operate at 50 MHz on a 
Xilinx Virtex-II FPGA. The LEON core possesses an ALU, 
data and instruction caches, as well an AMBA bus structure 
containing interfaces with memory, two UARTs, and other 
peripherals interfaces. The first UART is connected to a 
Brainboxes Bluetooth wireless radio which operates over the 
RS-232 protocol, over which an socket IP protocol is overlaid. 
The second UART is connected to an Authentec AF-2 live-
scan CMOS fingerprint sensor. The data and instruction 
memory are housed in 32-MByte DDR DRAM.  

For the simulation results obtained in this paper, the 
protocol is implemented as a C program operating on LEON. 
To obtain accurate cycle counts for analysis, the protocols 
were simulated using the TSIM-LEON cycle-accurate 
instruction set simulator.  

A. Data Collection 
The data collection subsystem refers to the hardware 

required to obtain the fingerprint input from the user. In our 
system, we have used an Authentec image sensor to provide 
the raw image. The sensor uses capacitive differentials of a 
human fingerprint to obtain a raw bit map image of 256 x 256 
pixels, with each pixel represented by one byte. Hence a raw 
image is a total of 65536 bytes. In this paper, the data 
collection is always performed on the device. 

B. Feature Extraction 
The purpose of feature extraction is to extract the unique 

characteristics of the fingerprint, which are called minutiae. 
The feature extraction is primarily a signal processing 
algorithm. Most feature extraction algorithms are designed in 
floating point format for operation on a workstation or PC. We 
have developed a fixed-point extraction algorithm which is 
optimized for operation on embedded devices. Starting with a 
baseline floating-point NIST standard reference algorithm, 
fixed-point refinement and optimization were accomplished 
for performance and memory.  

The steps of the refined algorithm are illustrated in Fig.  3. 
The raw image is input into the extraction algorithm and a 
number of maps are generated (including ridge flow, quality, 
etc.). Based on these maps the image is binarized, that is, each 
pixel is mapped to either a black or white one-bit 
representation. A pattern search is performed on the binarized 
image to produce minutiae results, namely the type (ridge or 
bifurcation), direction (angle), and location to nearest neighbor 
(distance and angle). The output of the feature extraction 
algorithm is the set of all minutiae, usually between twenty to 
eighty for a typical fingerprint using our sensor. During the 
initial enrollment phase, this set is called the template minutiae 

set (or template, in short); during the verification phase, this 
set is called the candidate minutiae set. In this paper, the 
feature extraction algorithm can be performed either on the 
LEON or on a 500 MHz workstation. 

C. Matching / Decision 
The matching algorithm is used during verification and 

compares the pre-stored template minutiae set with the 
candidate minutiae set. A new matching algorithm based on 
neighborhoods for embedded systems has been developed and 
is illustrated in Fig.  3. A reference point is first generated in 
the candidate minutiae set. Following this, the candidate set is 
aligned according to this point. Based on the correlation of the 
template with the candidate minutiae set, a matching score is 
produced. A pre-determined threshold decides if this score 
produces an acceptance or rejection of the user. In our final 
feature extraction plus matching system, we achieve a 0.5% 
false rejection rate (FRR) and a 0.01% false acceptance rate 
(FAR) [11]. Matching can be performed locally on the LEON 
or remotely on the workstation server. 

D. Storage Subsystem 
The storage subsystem is the physical means by which the 

template of the fingerprint is stored. In our platform, the 
template is stored either in the embedded device RAM or the 
server RAM. Our template maximally requires 2560 bytes for 
storage of one fingerprint. 

IV. DESIGN ALTERNATIVES: BIOMETRIC PARTITIONING  
As stated earlier, in the design of an embedded biometric 

authenticator, the primary top-level design decision that must 
be made is how to partition these four biometric components 
onto the device or server. As we shall demonstrate, performing 
the biometric processing on the server provides performance 
benefits with significant security problems. Performing all the 
biometric processing locally provides the best security, but 

Generate Flow Maps

Minutiae Detection

Binarization

Raw Image Pre-Stored
Template

Transformation
into Match Space

Local Matching
Algorithm

Decision

 
Fig.  3. Feature extraction and matching algorithms. This figure shows 
the steps required to extract candidate minutiae and compare them with 
a pre-stored template. 



D. D. Hwang and I. Verbauwhede:  Design of Portable Biometric Authenticators—Energy, Performance, and Security Tradeoffs 1225

requires a relatively larger amount of energy and latency. 
We have investigated the following six scenarios, or 

partitioning alternatives, as those we feel are most likely to be 
deployed in an actual authentication context. Each of the six 
partitioning alternatives is wrapped with a symmetric-key 
challenge/response protocol to ensure secure communications 
over the wireless channel and to allow for cryptographic 
authenticity verification. Table I provides a legend of the 
various cryptographic and biometric terminology used to 
describe the protocols. The remainder of this section will 
outline each of the partitioning strategies. 

 
TABLE I 

LEGEND OF FUNCTIONS AND DATA 

Function or Data Description 

X | Y Concatenation of data X and Y. 
Y = EKEY(X) AES encryption of variable-length plaintext X 

with 128-b key KEY, producing ciphertext Y of 
the same length as X.  

HKEY(X) Keyed-hash function (otherwise called a message 
authentication code algorithm) on variable-
length data X using 128-b key KEY to produce a 
128-b hash code. The code is generated using the 
cipher block chaining message authentication 
mode (CBC-MAC) of the AES cipher. 

IDD  128-b identifier of the device. 
IDS     128-b identifier of the server. 
RAND 128-b random number. 
K 128-b shared secret key. 
SK = HK(RAND | 0) 128-b encryption session key. 
SK’ = HK(RAND | 1) 128-b hash function session key. 
RAW IMAGE 65536 byte raw image collected from the sensor. 
MINUTIAE 2560 byte candidate minutiae set. 
TEMPLATE 2560 byte pre-stored fingerprint template. 
RESULT 128-b server-generated value indicating a match, 

rejection, or other problem. 
 

A. Case 1—Device Data Collection, Server Processing 
The first scenario (SC1) is described in Fig.  4 and in Table 

II. This represents a scenario in which the device is only used 
to collect the raw image, and all biometric functions are 

performed on the server. Of all scenarios, this is the easiest to 
implement as no signal processing is performed on-device.  

 
TABLE II 

SCENARIO 1 (SC1)—DEVICE DATA COLLECTION, SERVER PROCESSING 

Function Device Server 

Data collection X  
Feature Extraction  X 
Storage  X 
Matching/Decision  X 

 
In this scenario, the device and the server share a 128-b 

secret key K. The secret key K can be an independent value or 
can be linked to the fingerprint template (e.g. K can be the 
result of applying a one-way hash function to the template.) 
The device first transmits its identifier (IDD) together with the 
server’s identifier (IDS) to the server. The server verifies these 
identifiers, generates a random number RAND, and generates 
an encryption session key SK = HK(RAND | 0), where the 0 
denotes a 128-b zero vector. The server also generates a hash 
session key SK’ = HK(RAND | 1), where 1 denotes a 128-b 
vector of ones. The encryption and hash keys are different for 
stronger security. The server also generates a hash code of the 
random number and the two identifiers using the hash key SK’. 
It transmits RAND and this hash code to the device. After 
receiving this data, the device regenerates SK and SK’, and 
verifies the hash code (thus verifying that the server possesses 
the correct key K). Upon verification, the device obtains the 
raw image from the user, encrypts this raw image with SK, 
creates a hash code of the raw image (to detect message 
tampering on the wireless channel), and transmits this to the 
server. The server decrypts the raw image and verifies the hash 
code. It performs all the biometrics and decides on a final 
result. It encrypts the final result and sends this to the device 
along with a hash code, simultaneously allowing or rejecting 
access to the system. The device decrypts the transaction result 
and verifies the hash code. 

Scenario 1 (SC1)—Device data collection, server processing

Storage: Device and Server share key K. 
Device Server: IDD | IDS
Server: Verify IDD | IDS

Generate RAND, SK = HK(RAND | 0), SK’ = 
HK(RAND | 1), and HSK’(RAND | IDD | IDS)

Server Device: RAND | HSK’(RAND | IDD | IDS)
Device: Generate SK = HK(RAND | 0) and SK’ =  HK(RAND | 1)

Verify integrity via HSK’(RAND | IDD | IDS) 
Obtain RAW IMAGE from user

Device Server: ESK(RAW IMAGE) | HSK’(RAW IMAGE) 
Server: Decrypt RAW IMAGE

Verify integrity via HSK’(RAW IMAGE)
Perform FEATURE EXTRACTION algorithm
Load TEMPLATE
Perform MATCHING algorithm
Perform DECISION algorithm to get RESULT

Server Device: ESK(RESULT) | HSK’(RESULT)
Device: Decrypt RESULT

Verify integrity via HSK’(RESULT)

Scenario 2 (SC2)—Device data collection and storage, server processing

Storage: Device and Server share key K.
Device Server: IDD | IDS
Server: Verify IDD | IDS

Generate RAND, SK = HK(RAND | 0), SK’ = 
HK(RAND | 1), and HSK’(RAND | IDD | IDS) 

Server Device: RAND | HSK’(RAND | IDD | IDS)
Device: Generate SK = HK(RAND | 0) and SK’ = HK(RAND | 1) 

Verify integrity via HSK’(RAND | IDD | IDS) 
Obtain RAW IMAGE from user
Load TEMPLATE

Device Server: ESK(RAW IMAGE | TEMPLATE) | HSK’(RAW 
IMAGE | TEMPLATE)

Server: Decrypt RAW IMAGE | TEMPLATE
Verify integrity via HSK’(RAW IMAGE | TEMPLATE)
Perform FEATURE EXTRACTION algorithm
Perform MATCHING algorithm
Perform DECISION algorithm to get RESULT

Server Device: ESK(RESULT) | HSK’(RESULT) 
Device: Decrypt RESULT

Verify integrity via HSK’(RESULT) 
Fig.  4. Protocols for scenario SC1 and scenario SC2. In these protocols, the server performs the feature extraction and matching/decision algorithms. 
They differ in the location of the template storage. 



IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1226 

TABLE III 

SCENARIO 2 (SC2)—DEVICE DATA COLLECTION AND STORAGE,  
SERVER PROCESSING 

Function Device Server 

Data collection X  
Feature Extraction  X 
Storage X  
Matching/Decision  X 
 

B. Case 2—Device Data Collection and Storage, Server 
Processing 
Scenario SC2 is described in Fig.  4 and in Table III. SC2 

represents a scenario similar to SC1 in that the device only 
serves to acquire the data; the server performs all biometric 
processing. However, in SC2 the device stores the template. 
This situation would be used in practice when a device is 
computationally-limited, yet for the aforementioned security 
reasons the template is stored on-device.  

In this scenario, the device and server share secret key K. 
The initial steps of the protocol are the same as that for SC1. 
However, after the raw image is acquired, the device not only 
sends the image across the channel but also sends the template, 
both encrypted with SK. Similar to SC1, the data RAW 
IMAGE | TEMPLATE is hashed to produce a hash code, 
which insures data integrity on the channel. The server 
receives this data and decrypts the raw image and template. It 
then verifies the hash code of the data to insure the data was 
sent undisturbed. After this, the server performs the biometric 
feature extraction, matching, and decides on a final result. The 
transaction result is sent encrypted to the device along with a 
hash code.   

C. Case 3—Device Processing, Device Storage 
Scenario SC3 is described in Fig.  5 and in Table IV. This 

represents a scenario in which all biometric components—data 
collection, feature extraction, storage, and 
matching/decision—are performed locally on the device. If a 
device can be made tamper-proof in hardware and software, 
this presents a very secure solution [6], yet comes with a 
performance penalty (to be discussed).  

 
TABLE IV 

SCENARIO 3 (SC3)—DEVICE PROCESSING, DEVICE STORAGE 

Function Device Server 

Data collection X  
Feature Extraction X  
Storage X  
Matching/Decision X  
 
In this scenario, the device and server share secret key K. 

After the device sends the identifiers and the server sends its 
response, the device performs the biometrics. It first obtains 
the raw image from the user and performs feature extraction to 
obtain a candidate minutiae set. It then loads the template, 
which is stored on the device, and performs the matching and 
decision steps. Finally a decision is made. This decision is 
forwarded to the server along with a hash code. The server 
decrypts the decision and verifies the code. If satisfied, the 
server allows access to the system and sends the final 
transaction result to the device along with a hash of the result. 

D. Case 4—Device Processing, Server Storage 
Scenario SC4 is described in Fig.  5 and in Table V. SC4 

represents a scenario in which all biometric processing is done 
on the device, just as SC3. However, the storage of the 
template is on the server rather than on the device. (In this 
sense, SC3 and SC4 are analogues of SC1 and SC2.) This 
situation would be used in cases where the device’s memory is 

Scenario 3 (SC3)—Device processing, device storage

Storage: Device and Server share key K. 
Device Server: IDD | IDS
Server: Verify IDD | IDS

Generate RAND, SK = HK(RAND | 0), SK’ = 
HK(RAND | 1), and HSK’(RAND | IDD | IDS)

Server Device: RAND | HSK’(RAND | IDD | IDS)
Device: Generate SK = HK(RAND | 0) and SK’ =  HK(RAND | 1) 

Verify integrity via HSK’(RAND | IDD | IDS)
Obtain RAW IMAGE from user
Perform FEATURE EXTRACTION algorithm
Load TEMPLATE
Perform MATCHING algorithm
Perform DECISION algorithm

Device Server: ESK(DECISION) | HSK’(DECISION)
Server: Decrypt DECISION

Verify integrity via HSK’(DECISION)
Generate RESULT

Server Device: ESK(RESULT) | HSK’(RESULT)
Device: Decrypt RESULT

Verify integrity via HSK’(RESULT)

Scenario 4 (SC4)—Device processing, server storage 

Storage: Device and Server share key K. 
Device Server: IDD | IDS
Server: Verify IDD | IDS

Generate RAND, SK = HK(RAND | 0), and SK’ = 
HK(RAND | 1) 
Load TEMPLATE
Generate ESK(TEMPLATE) and HSK’(RAND | 
TEMPLATE | IDD | IDS) 

Server Device: RAND | ESK(TEMPLATE) | HSK’(RAND | TEMPLATE 
| IDD | IDS) 

Device: Generate SK = HK(RAND | 0) and SK’ =  HK(RAND | 1) 
Decrypt TEMPLATE
Verify integrity via HSK’(RAND | TEMPLATE | IDD | IDS)
Obtain RAW IMAGE from user
Perform FEATURE EXTRACTION algorithm
Perform MATCHING algorithm
Perform DECISION algorithm

Device Server: ESK(DECISION) | HSK’(DECISION) 
Server: Decrypt DECISION

Verify integrity via HSK’(DECISION) 
Generate RESULT

Server Device: ESK(RESULT) | HSK’(RESULT)
Device: Decrypt RESULT

Verify integrity via HSK’(RESULT)  
Fig.  5. Protocols for scenario SC3 and scenario SC4. In these protocols, the device performs the feature extraction and matching/decision algorithms. 
They differ in the location of the template storage. 



D. D. Hwang and I. Verbauwhede:  Design of Portable Biometric Authenticators—Energy, Performance, and Security Tradeoffs 1227

untrusted, while the server database is trusted. 
TABLE V 

SCENARIO 4 (SC4)—DEVICE PROCESSING, SERVER STORAGE 

Function Device Server 

Data collection X  
Feature Extraction X  
Storage  X 
Matching/Decision X  

  
In this scenario the device and server share secret key K. 

The protocol proceeds as follows. After the device transmits 
the identifiers, the server produces the usual RAND and hash 
code. In addition, the server loads the template and encrypts 
this template with the key SK. It then transmits RAND, the 
encrypted template, and a keyed-hash of (RAND | 
TEMPLATE | IDD | IDS) to the device. The device generates 
the session keys and decrypts the template. Next, it verifies the 
integrity of the transmitted data via the hash code. After this, it 
obtains the raw image from the user and performs the feature 
extraction and matching/decision algorithms. It sends the 
encrypted decision and its hash to the server. The server 
verifies this decision and sends the final transaction result to 
the device. 

E. Case 5—Mixed Processing (Device Feature Extraction) 
Scenario SC5 is described in Fig.  6 and in Table VI. In this 

scenario, we attempt to split up the biometric processing 
elements for performance evaluation by assigning the feature 
extraction to the device and the matching/decision to the 
server. This scenario would be deployed in cases where the 
server database is trusted, and the server is required to make 
the final decision.  

TABLE VI 

SCENARIO 5 (SC5)—MIXED PROCESSING (DEVICE FEATURE EXTRACTION) 

Function Device Server 

Data collection X  
Feature Extraction X  
Storage  X 
Matching/Decision  X 
 
The device and server share secret key K. The device begins 

by sending the identifiers to the server, and the server responds 
by sending the usual RAND and hash code. After verifying the 
hash code, the device obtains the raw image from the user. It 
then directly performs the feature extraction algorithm on this 
raw image and sends the candidate minutiae set to the user in 
encrypted format, along with a hash of this set. Note that this 
saves on transmission cost, as sending a raw image requires 
transmitting 65536 bytes whereas sending the minutiae set 
requires a transmission of only 2560 bytes. The server 
decrypts the minutiae and verifies the hash code (to detect 
tampering of data). It then loads the template, performs the 
matching and decision and sends the final transaction result 
encrypted to the device. 

F. Case 6—Mixed Processing (Server Feature Extraction) 
The final scenario (SC6) is described in Fig.  6 and in Table 

VII. This scenario is the analogue of SC5. In this scenario, we 
again split the biometric processing elements; however, the 
feature extraction is performed on the server whereas the 
matching/decision is performed on the device.  

Scenario 6 (SC6)—Mixed processing (server feature extraction)

Storage: Device and Server share key K. 
Device Server: IDD | IDS
Server: Verify IDD | IDS

Generate RAND, SK = HK(RAND | 0), SK’ = 
HK(RAND | 1), and HSK’(RAND | IDD | IDS) 

Server Device: RAND | HSK’(RAND | IDD | IDS)
Device: Generate SK = HK(RAND | 0) and SK’ =  HK(RAND | 1) 

Verify integrity via HSK’(RAND | IDD | IDS)
Obtain RAW IMAGE from user

Device Server: ESK(RAW IMAGE) | HSK’(RAW IMAGE) 
Server: Decrypt RAW IMAGE

Verify integrity via HSK’(RAW IMAGE)
Perform FEATURE EXTRACTION algorithm

Server Device: ESK(MINUTIAE) | HSK’(MINUTIAE)
Device: Decrypt MINUTIAE

Verify integrity via HSK’(MINUTIAE)
Perform MATCHING algorithm
Perform DECISION algorithm

Device Server: ESK(DECISION) | HSK’(DECISION))
Server: Decrypt DECISION

Verify integrity via HSK’(DECISION)
Generate RESULT

Server Device: ESK(RESULT) | HSK’(RESULT)
Device: Decrypt RESULT

Verify integrity via HSK’(RESULT)

Scenario 5 (SC5)—Mixed processing (device feature extraction)

Storage: Device and Server share key K.
Device Server: IDD | IDS
Server: Verify IDD | IDS

Generate RAND, SK = HK(RAND | 0), SK’ = 
HK(RAND | 1), and HSK’(RAND | IDD | IDS)

Server Device: RAND | HSK’(RAND | IDD | IDS)
Device: Generate SK = HK(RAND | 0) and SK’ =  HK(RAND | 1) 

Verify integrity via HSK’(RAND | IDD | IDS)
Obtain RAW IMAGE from user
Perform FEATURE EXTRACTION algorithm

Device Server: ESK(MINUTIAE) | HSK’(MINUTIAE) 
Server: Decrypt MINUTIAE

Verify integrity via HSK’(MINUTIAE) 
Load TEMPLATE
Perform MATCHING algorithm
Perform DECISION algorithm to get RESULT

Server Device: ESK(RESULT) | HSK’(RESULT)
Device: Decrypt RESULT

Verify integrity via HSK’(RESULT)

 
Fig.  6. Protocols for scenario SC5 and scenario SC6. In these protocols, the biometric processing is split into two components. For SC5, the feature 
extraction is on the device and the matching is on the server. For SC6, the feature extraction is on the server and the matching is on the device.  



IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1228 

TABLE VII 

SCENARIO 6 (SC6)—MIXED PROCESSING (SERVER FEATURE 
EXTRACTION)  

Function Device Server 

Data collection X  
Feature Extraction  X 
Storage X  
Matching/Decision X  
 
In this scenario, the device and server share secret key K. 

The device begins the transaction by sending the identifiers to 
the server. The server responds by sending the RAND and the 
usual hash code. Upon verifying the hash code, the device 
obtains the raw image from the user and encrypts this (and 
hashes it) and sends this to the server. The server decrypts the 
raw image and verifies the hash code for tampering, and then 
proceeds to perform the feature extraction algorithm to obtain 
the candidate minutiae set. It then sends this encrypted set with 
its hash to the device. The device decrypts the minutiae set and 
verifies the integrity via the hash code. It then loads the stored 
template set and performs the matching/decision algorithm. It 
sends the decision and its hash to the server. The server 
verifies the decision and hash, and finally accepts or rejects the 
user and sends the transaction result to the device. 

V. COST ANALYSIS: SECURITY AND PERFORMANCE 
TRADEOFFS 

The device can be implemented as one of the 
aforementioned design alternatives. In this section, we perform 
a comparative analysis to see how the alternatives affect the 
device in terms of security, device cycle count, transmission 
bytes, energy expended, latency of the protocol, and device 
memory requirements.  

A. Security Analysis 
To analyze the security of each of the alternatives, we 

describe five attacks on the system and describe which of the 
alternatives are vulnerable to each attack. The first attack we 
consider is a replay attack. In a replay attack, a passive 
attacker would record a transmission on the channel and later 
rebroadcast this, masquerading as an authentic party. For 
example, an attacker can hear the message from the server to 
the device of 

RAND | HSK’(RAND | IDT | IDS) 
and store this value. Later, the attacker can masquerade as the 
server and use this value to respond to the device’s initial 
query. Since the device has no means to check if this RAND 
has been used before and if it is sent by the genuine server, the 
device will consider the attacker as an authentic server. All six 
scenarios are susceptible to this attack. This attack can be 
remedied by using a sequence number SQN which 
automatically increments both on the server and the device at 
each message. Hence, the server would now send: 

RAND | HSK’(RAND | SQN | IDT | IDS). 
 

Based on the sequence number, the authenticity of the server 
can be determined by the device. A resynchronization 
procedure would be required if the device and server 
legitimately lose synchronization. A second attack on the 
system is a server template storage attack. In this attack, the 
active attacker attempts to hack the database of the server (i.e. 
a bank) to obtain the template of the user by out-of-bounds 
methods. This attack is similar to an internet attack on a bank’s 
database of credit card numbers. Template attacks (both server 
and device) are important due to the fact that biometric 
characteristics cannot be replaced and that they are of limited 
number. Server template storage attacks are only valid against 
those scenarios in which the template is stored at the server, 
namely SC1, SC4, and SC5. With the template stored at the 
server, there are the additional sociological ramifications 
described in Section II that also must be taken into account in 
these scenarios. These attacks must be remedied by physical 
and software protection of the large consumer fingerprint 
databases. Server template attacks may be expensive to mount 
but also reward the attacker with not only a single fingerprint, 
but potentially all fingerprints in the database. 

A third attack on the system is a malicious server attack. In 
this attack, the server does not store the template. However, if 
matching is performed on the server, the device must transmit 
the template to the server for matching; a malicious server 
would save this template and use it later for unscrupulous 
purposes. Similarly, if feature extraction is performed on the 
server, the malicious server would store the extracted 
candidate minutiae set. The malicious server attack is similar 
to the server template storage attack; in both cases, sensitive 
data is eventually stored on the server. The malicious server 
attack can be carried out on scenarios SC2 and SC6. The only 
scenario that is safe from both the server template storage 
attack and the malicious server attack is SC3, in which all 
biometrics are done on device. 

A fourth attack on the system is the device template storage 
attack. In this attack, an attacker either steals a device or 
obtains a device lost by the user. He then proceeds to hack the 
device physically to obtain the memory component that houses 
the key and the template, thus compromising it. The scenarios 
that are vulnerable to this attack are SC2, SC3, and SC6. The 
device template storage attack can be thwarted by using 
tamper-resistance techniques [12] (such as zeroing the memory 
when an attack is sensed) and other techniques to make the 
memory secure. 

A fifth attack on the system is a device bypass attack. In this 
attack, the device itself is hacked at the software level to 
always produce a valid authentication. In other words, the 
biometric functions of the device (fingerprint acquisition, 
feature extraction, etc.) are bypassed. The device always 
falsely produces a value that indicates a match has been made. 
This attack essentially uncouples the user from the device and 
allows anyone to use the device to authenticate with the server. 
The scenarios prone to this attack are the ones in which the 
decision is on the device side, namely SC3, SC4, and SC6. 



D. D. Hwang and I. Verbauwhede:  Design of Portable Biometric Authenticators—Energy, Performance, and Security Tradeoffs 1229

The device bypass attack can be addressed by the design of 
secure instruction sets at the micro-architecture level. Table 
VIII summarizes the scenarios susceptible to the various 
attacks.  
 

TABLE VIII 

SUMMARY OF SECURITY ATTACKS 

Attack Affected Scenarios 

Replay SC1, SC2, SC3, SC4, SC5, SC6 
Server Template Storage SC1, SC4, SC5 
Malicious Server SC2, SC6 
Device Template Storage SC2, SC3, SC6 
Device Bypass SC3, SC4, SC6 

 

B. Active Computation Cycle-Count Analysis 
In this section we compare the protocols based on active 

computation cycles. An active computation cycle is defined as 
a cycle in which the LEON processor is actively using its 
resources to perform computation. This is in contrast to a 
passive computation cycle in the LEON, where the processor 
is waiting for a response for the server or is otherwise idle. 

Table IX shows the total active computation cycles for each 
of the scenarios. The first number shows the number of cycles 
and the second number shows the relative percentage of that 
column to the overall active cycle count. Protocol cycles refer 
to the cycles required for the protocol, such as socket setup 
and comparison operations. Cryptography cycles include those 
for encryption and hashing. Feature extraction cycles include 
the number of cycles required for the feature extraction 
algorithm, and matching/decision cycles refer to the cycles 
required to perform matching and generate a final acceptance 
or rejection. The results can also be seen in Fig.  7.  
 

TABLE IX 

LEON ACTIVE COMPUTATION CYCLES AND RELATIVE COMPOSITION 

Scenario Protocol Cryptography 
Feature 

Extraction 
Matching / 
Decision 

TOTAL 
ACTIVE 

SC1 1.67 × 106 2.32 × 107 - - 2.49 × 107 
 (6.71 %) (93.29 %)    

SC2 1.68 × 105 2.49 × 107 - - 2.66 × 107 
 (6.33 %) (93.67 %)    

SC3 1.63 × 105 6.59× 105 4.58 × 108 1.64 × 107 4.75 × 108 
 (0.03 %) (0.14 %) (96.37 %) (3.45 %)  

SC4 3.99 × 105 9.36 × 106 4.69 × 108 1.30 × 107 4.92 × 108 
 (0.08 %) (1.90 %) (95.37 %) (2.65 %)  

SC5 2.44 × 105 1.74 × 106 4.69 × 108 - 4.71 × 108 
 (0.05 %) (0.37 %) (99.58 %)   

SC6 2.06 × 106 2.53 × 107 - 1.98 × 107 4.71 × 107 
 (4.37 %) (53.64 %)  (41.99 %)  

 
From the table, it is clear that the most dominant consumer 

of cycles is the feature extraction algorithm. On the scenarios 
that perform local feature extraction (SC3, SC4, and SC5), 
between 96% and 99% of the cycles are used to perform this 
function, with a final active computation count on the order of 
108. For the scenarios that do not require local feature 
extraction (SC1, SC2, and SC6), the number of active cycles is 

an order of magnitude lower, on the order of 107. 
 

TABLE X 

TRANSMISSION OF DATA BETWEEN SERVER AND DEVICE 

Scenario Bytes Transmitted Bytes Received TOTAL 

SC1 65584 64 65648 
SC2 68144 64 68208 
SC3 64 64 128 
SC4 64 2624 2688 
SC5 2608 64 2672 
SC6 65584 2640 68224 

 

C. Data Transmission Analysis 
The number of bytes transmitted in each protocol is shown 

in Table X. Scenarios SC1, SC2, and SC6 require the largest 
number of bytes to be transmitted, as the encrypted fingerprint 
is sent over the wireless channel. The greatest number of bytes 
received is in SC4 and SC6, which require the template to be 
sent from the server to the device. The number of bytes 
transmitted affects both the energy of the device and the 
latency of the protocol, as discussed in the ensuing sections. 

D. Energy Analysis 
In this section we analyze the energy requirements of the 

device for each protocol. Energy is an extremely important 
metric because we assume our embedded device will be 
battery operated and hence is able to perform a limited number 
of authentications. The total device energy is composed of the 
device active computation energy (ACE), the device passive 
computation energy (PCE), and the device communication 
energy (CE). These are calculated as follows. 

We estimate the LEON FPGA soft-core energy by the 
estimate of 10mW/MHz. This coarse-grain estimate is based 
on the average behavior of LEON using Xilinx xpower, a 
toggle counter. Therefore our processor at 50 MHz consumes 
500 mW of energy. To be conservative, this number is used 
for both active and passive computation cycles, as LEON was 
not in sleep mode while waiting for server transmissions. 
Therefore, the energy per cycle is 500 mJ/s × 50-1 s/Mcycle = 
1 × 10-8 J/cycle. We calculate ACE and PCE in Joules as: 

Device Active Computation Cycles

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

1 2 3 4 5 6

Scenario

C
yc

le
s

 
Fig.  7. Device active computation cycles. The number of cycles is 
dominated in SC3, SC4, and SC5 by the feature extraction algorithm. 



IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1230 

ACE = 1 × 10-8 J/cycle × active cycles 
PCE = 1 × 10-8 J/cycle × passive cycles. 

To calculate CE, we use the following manufacturer energy 
estimates. Assuming a 2 meter separation with the Bluetooth 
device transmitting and receiving at 115,000 b/s, the current 
drawn from the supply is 48.7 mA and 44.1 mA for 
transmission and reception, respectively. We calculate the 
energy per bit required to transmit as 48.7 mA × 5 V ×  
115,000-1 s/b = 2.11 × 10-6 J/b. For reception, the energy per 
bit is 44.1 mA × 5 V × 115,000-1 s/b = 1.91 × 10-6 J/b. Hence 
the device communication energy (CE) in Joules as: 

CE = 2.11 × 10-6 J/b  × bytes transmitted × 8 b/byte  
+ 1.91 × 10-6 J/b × bytes received × 8 b/byte. 

The total device energy is thus ACE + PCE + CE. The 
energy results for each of the scenarios can be seen in Fig.  8. 
As the results show, the largest consumer of cycles is the 
active consumption cycles due to the feature extraction 
algorithm, as described in the active cycle count analysis. For 
those scenarios that do not perform feature extraction, the 
largest consumer of cycles is the cycles expended as the 
transmission of the raw image takes place over the channel, 
expending radio energy and passive computation energy.  

E. Latency Analysis 
Since this device will be used in consumer scenarios in real-

time, latency is another important design factor. Latency is 
defined as the total number of seconds expended from the 
beginning of the protocol to its completion. Latency is 
composed of three components: device active computation 
latency (ACL), device-to-server communication latency 
(DSCL), and server computation latency (SCL). (Note that the 
device-to-server communication latency plus the server 
computation latency make up the factor we call passive 
computation cycles.) The device active computation latency is 
defined as the number of seconds per cycle multiplied by the 
number of active computation cycles, hence: 

ACL = (1/50 × 108) s/cycle × active cycles. 
 The device-to-server computation latency is calculated as 
the time required to transmit a single bit multiplied by the 
number of bytes transmitted and received by the device, hence: 

DSCL = 115,000-1 s/b × 8 b/byte ×  
(bytes transmitted + bytes received). 

 The server computation latency (SCL) is the number of 
seconds required for the server to perform its local 
computations, which differ according to different scenarios. 
The UNIX gprof tool was used for these simulations to obtain 
estimates of computation time on a 500 MHz workstation. The 
total latency of the protocol is thus ACL + DSCL + SCL, 
which is shown on Fig.  9. The latency of the protocol for our 
limited 50 MHz device ranges from 5.58 seconds to 10.03 
seconds. Scenarios SC3, SC4, and SC5 require the most 
latency due to the processing time required for the feature 
extraction algorithm. 

F. Memory Analysis 
Memory analysis is performed using the Atomium memory 

profiling tool [13]. This tool requires that a particular C 
program be instrumented into an Atomium-compatible format 
and re-compiled using Atomium include files. The results of 
the program give peak memory information and access for the 
RAM.  

The results of our Atomium analysis are shown in Fig.  10. 
The figure demonstrates that the largest memory is required 
for the feature extraction algorithm of SC3, SC4, and SC5. 
The memory is primarily consumed during the map generation 
operations, as the algorithm obtains spatial information about 
the entire fingerprint before pattern matching. The maximum 
memory required is 1.04 MB for scenario SC4 and the least 
RAM required is 208 KB for scenario SC1. 

VI. DESIGN ANALYSIS SUMMARY 
Final design decisions for embedded biometric devices 

therefore involve significant tradeoffs between performance 
and security metrics. In terms of security, we conclude that 
storing the template at the server (such as in SC1, SC4, and 
SC5) is not ideal due to server storage attacks as well as the 
sociological issues involved. The remaining scenarios are SC2, 
SC3, and SC6. However, both SC2 and SC6 are prone to the 
malicious server attack (resulting in the same problems as the 

Energy Analysis

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6

Scenario

E
ne

rg
y 

(J
)

Device Communication
Energy

Device Passive
Computation Energy

Device Active Computation
Energy

 
Fig.  8. Device energy analysis. The figure shows the energy consumed by 
the device for different partitioning scenarios.  

Latency Analysis

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6

Scenario

La
te

nc
y 

(s
)

Server Computation
Latency

Device-Server
Communication Latency

Device Active Computation
Latency

 
Fig.  9. Device latency analysis. The graph depicts the total number of 
cycles required to complete the entire authentication protocol. 



D. D. Hwang and I. Verbauwhede:  Design of Portable Biometric Authenticators—Energy, Performance, and Security Tradeoffs 1231

server storage attack). Hence, for maximum security from this 
perspective, all biometric components should be performed 
on-device, as in SC3. Care must be taken to insure the device 
is tamper-proof in both hardware and software in this scenario.  

In terms of performance, the greatest consumer of energy, 
cycle time, and memory in the device is the feature extraction 
algorithm, which consumes 96% to 99% of the cycles of the 
respective protocols, on the order of 108 cycles. (In contrast, 
the matching algorithm requires an order of magnitude fewer 
operations, on the order of 107 cycles.) Thus, the scenarios 
which require device feature extraction (SC3, SC4, and SC5) 
require the most energy and memory; those that use the server 
for feature extraction (SC1, SC2, and SC6) are more efficient 
in regard to these metrics. In general, the most efficient 
scenario is SC1, where the device is used only to transmit the 
encrypted raw image. 

Different applications may place varying emphasis on 
security and performance. In our particular application, 
focusing on secure transactions, security is the most important 
metric and our final implementation is SC3, with all biometrics 
performed on-device. 

VII. CONCLUSION 
In this paper we have examined the design choices required 

to implement a portable biometric authenticator. Such choices 
focus around top-level decisions on how to partition the 
biometric functions between a device and server. Our results 
have shown that in terms of performance, off-loading the data 
to the server is the most efficient, yet produces a number of 
security problems. In terms of security, implementing all 
biometrics on-device is the most secure solution, but one with 
a performance downside. However, for high-security consumer 
applications (such as medical or financial applications) this is 
the solution that should be implemented. 

Future work in this area includes optimizing embedded 
feature extraction algorithms, developing techniques to allow 
for secure non-volatile storage for the template or other secure 
data. 

ACKNOWLEDGMENT 
The authors wish to thank Patrick Schaumont, Yi Fan, 

Shenglin Yang, Alireza Hodjat, Bocheng Lai, and Kazuo 
Sakiyama for their contributions and Danny De Cock of K.U. 
Leuven for feedback on security issues. 

REFERENCES 
[1] S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric Recognition: 

Security and Privacy Concerns,” IEEE Security & Privacy, pp. 33-42, 
March/April 2003.  

[2] Infrared Data Association, http://www.irda.org. 
[3] P. Blythe, “RFID for road tolling, road-use pricing and vehicle access 

control,” IEE Colloquium on RFID Technology, pp. 8/1 – 8/6, Oct. 
1999. 

[4] T. Matsumoto et al., “Impact of artificial gummy fingers on fingerprint 
systems,” Proc. SPIE, Optical Security and Counterfeit Deterrence 
Techniques IV, vol. 4677, pp. 275-289, Jan. 2002. 

[5] Fingerprint Cards, http://www.fingerprints.com. 
[6] L. Rila and C. Mitchell, “Security analysis of smartcard to card reader 

communications for biometric cardholder authentication,” Proc. 
USENIX Fifth Smart Card Conference and Advanced Application 
Conference (CARDIS ’02), pp. 19-28, Nov. 2002. 

[7] G. Hachez, F. Koeune, and J.-J. Quisquater, “Biometrics, access control, 
smart cards: a not so simple combination,” Proc. USENIX Fourth Smart 
Card Conference and Advanced Application Conference (CARDIS ’00), 
pp. 273-288, Sept. 2000. 

[8] A. Noore, “Highly robust biometric smart card design,” IEEE 
Transactions on Consumer Electronics, pp. 1059-1063, Nov. 2000. 

[9] S. B. Pam, D. Moon, Y. Gil. D. Ahn, and Y. Chung, “An ultra-low 
memory fingerprint matching algorithm and its implementation on a 32-
bit smart card,” IEEE Transactions on Consumer Electronics, pp. 453-
459, May 2003.  

[10] LEON2 Processor, http://www.gaisler.com. 
[11] S. Yang, K. Sakiyama, and I. Verbauwhede,  “A compact and efficient 

fingerprint verification system for embedded systems,” 37th IEEE 
Asilomar Conference on Signals, Systems, and Computers, pp. 2058-
2062, Nov. 2003. 

[12] R. Anderson, Security Engineering: A Guide to Building Dependable 
Distributed Systems, John Wiley and Sons, 2001. 

[13] ATOMIUM Suite, http://www.imec.be/design/atomium. 
 

David D. Hwang received his B.S. and M.S. degrees in 
Electrical Engineering at University of California, Los 
Angeles. He is currently pursuing a Ph.D. degree from 
University of California, Los Angeles in the field of system 
design and VLSI implementations of secure embedded 
systems. He is a member of Phi Beta Kappa, Tau Beta Pi, 
Eta Kappa Nu, and is a graduate fellow of the Fannie and 

John Hertz Foundation.  
 

Ingrid Verbauwhede (M’92-SM’02) is an Associate 
Professor of Electrical Engineering at the University of 
California, Los Angeles. She received the Electrical 
Engineering Degree and the Ph.D. Degree in electrical 
engineering from the Katholieke Universiteit Leuven, 
Belgium in 1991. She was a lecturer and visiting research 

engineer at UC Berkeley from 1992 to 1994. From 1994 to 1996 she was with 
TCSI, and from 1996 to 1998 she was with Atmel. She has been on the 
faculty of UCLA since 1998 and her interests include processor architectures 
and VLSI design methodologies for real-time, embedded systems in 
application domains such as cryptography, digital signal processing, algebra, 
wireless and high speed communications. 

Memory Analysis

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1 2 3 4 5 6

Scenario

R
A

M
 R

eq
ui

re
m

en
ts

 (B
yt

es
)

 
Fig.  10. Memory analysis. This graph shows the peak RAM memory 
requirements for each scenario. 


	footer1: 


