
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’05, June 13-17, 2005, Anaheim, CA, USA.
Copyright 2005 ACM 1-58113-XXX-X/03/00XX…$5.00.

Cooperative Multithreading on Embedded Multiprocessor
Architectures Enables Energy-scalable Design

Patrick Schaumont
EE Department

UCLA
CA 90095-1594

schaum@ee.ucla.edu

Bo-Cheng Charles Lai
EE Department

UCLA
CA 90095-1594

bclai@ee.ucla.edu

Wei Qin
ECE Department
Boston University

MA 02215
wqin@bu.edu

Ingrid Verbauwhede
EE Dept, UCLA, CA

and
ESAT, K.U. Leuven, BE

ingrid@ee.ucla.edu

ABSTRACT
We propose an embedded multiprocessor architecture and its
associated thread-based programming model. Using a cycle-true
simulation model of this architecture, we are able to estimate
energy savings for a threaded C program. The savings are obtained
by voltage- and frequency-scaling of the individual processors. We
port a fingerprint minutiae detection application onto this
architecture, and show the resulting performance on single-, dual-,
and quad-processor configurations. The energy-scaled quad-
processor version results in a 77 % energy reduction over the
single-processor non-scaled implementation, at only a 2.2 %
degradation in cycle count.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]
Embedded Systems

General Terms
Design, Performance.

1. INTRODUCTION
The use of multiprocessors in system-on-chip context
(MPSOC) enables applications that require high performance
as well as low energy-consumption [8]. Indeed, under the
assumption that an application can be partitioned equally over
N processors, it can execute N times faster under constant
clock frequency. We can also apply voltage scaling, and
reduce the clock frequency. This results in reduced energy
consumption, provided that the increased leakage power is
appropriately addressed [12]. Recently, voltage-scaling
techniques in the areas of scheduling [2][9] and circuit design
[12][10] have been intensively studied. However, our work
addresses the complementary field of system architecture and
programming, and is an enabler for these scheduling- and
circuit techniques.
This paper shows how a multiprocessor can be used as an
energy-efficient replacement for a single processor. This is
done by means of a thread-based programming model, and the

use of voltage-scaling of individual processor units. Assume a
single-thread application can be partitioned into multiple equal
threads, each running on a separate processor. Rather than
running on a single processor at nominal voltage, the
application can then run on multiple processors at a slower
clock and at a scaled voltage. This way, the overall energy-
consumption of the application can be reduced without a
significant penalty to the performance.
Compared to other voltage-scaled multiprocessors, such as
MPCore from ARM [6], our approach is extremely
lightweight. Our complete multithreading library including
boot code fits in under 2Kbytes of object code. The second
benefit we have is a high-performance cycle-accurate
simulator of the multiprocessor. This way, we can obtain the
energy-consumption of actual threaded C programs. In this
paper, we present such a simulation result; we quantify the
performance as well as the energy consumption of a fingerprint
minutia detection application. These results will be obtained as
follows. In section 2, we present the architecture of the
multiprocessor. We discuss the mechanisms for process
synchronization, as well as for energy scaling. In section 3, we
discuss the programming model based on cooperative
multithreading. In section 4, the ideas of sections 2 and 3 are
brought together, by means of several examples including the
fingerprint minutia detection application. In section 5, related
work is reviewed, while section 6 puts the conclusions.

2. MULTIPROCESSOR ARCHITECTURE
An instance of our multiprocessor architecture is illustrated in
Figure 1. The system includes four ARM cores, connected to a
central bus. Each ARM has a 5-stage pipelined StrongARM micro-
architecture. In addition to an execution unit, each ARM has a
voltage/frequency scaling unit and local instruction- and data-
caches. A bus connects the four ARM processors with a hardware
test-and-set lock to support inter-process communication and
synchronization, and a memory interface to access off-chip

Figure 1. Energy-scaled MPSOC Architecture.

D I D I D I
ARM ARM ARM

V/f V/f V/f

system
clk

n1

BUS

memory interface main
memory

chip boundary

D I
ARM

V/f

test-and-set lock

n2 n3 n4

memory. We thus obtain a single-chip symmetric multiprocessing
architecture. This allows the multiprocessor chip to be ‘dropped-
in’ in place of a single-processor chip. Each of the four
processors runs at only one fourth of the original single-
processor clock frequency. Therefore, the total load on the
memory interface will therefore not increase assuming an
appropriate thread partitioning of the application. We now
discuss the operation of the multiprocessor on-chip bus, the
cache-coherency protocol, and the voltage/frequency (V/f)
scaling units.

Bus Operation. The bus is organized as a multi-master bus. It
supports two types of transactions: read- and write transactions. A
transaction can be initiated by any master, but the bus will allow
only a single transaction to proceed at a time. Bus access is granted
using a round-robin protocol. The transaction time is three system
clock cycles. When a bus slave is not ready to accept a transaction
from a bus master, the transaction time will be extended until the
slave is ready. The bus also contains a test-and-set lock, which
supports atomic read-modify-write operations [1]. Memory-
mapped semaphores are implemented in terms of this test-and-set
lock.

Cache Coherency. A shared-memory multiprocessing model
introduces a cache coherency issue [7]. This is resolved using a
simple bus-snooping protocol. The caches implement a write-
through policy, and all write-transactions over the system bus are
observed by all caches in order to obtain coherency. The timings
of our simulation model are as follows. Cache hits are
completed in a single cycle. Memory accesses take 4 cycles for
a word-write, while reading a complete cache line takes 24
cycles. The 4-cycle write time assumes a write buffer queue at the
memory interface. A similar single-cycle write/merge buffer exists
in the SA1100 implementation of the StrongARM.

Voltage/Frequency Scaling Units. The V/f units provide
several discrete voltage/frequency operation modes for each of the
processors. The bus and the bus interfaces of the caches always
operate at nominal speed. Each of the V/f units is individually
controlled out of embedded software. They are implemented by
means of a ‘power domain’ technology, such as proposed in [10].
Combined voltage/frequency scaling is essential to achieve energy
reduction. We use the energy model of Flautner [4] to estimate the
relative energy savings that are obtained by scaling voltage and
frequency. If a processor workload is divided in K pieces of scaled
voltage vi and frequency fi, running Ti time units each, then the
dynamic energy consumption for a single processor of capacitive
load Ceff is equal to:

The dynamic energy of N processors is the sum of
contributions of the individual processors:

Besides this dynamic component, there is also an important
static component caused by leakage. This leakage can be
minimized with circuit techniques, including multi- and
variable-threshold CMOS (MTCMOS/TVCMOS), and
adaptive body biasing [12]. The techniques in this paper are at
the level of architecture and programming model, and can be
combined with such circuit-level techniques.

Table 1. V/f pairs from some DVS projects.

The V/f units apply different voltage/frequency pairs under
control of embedded software. Some typical numbers of V/f
pairs from literature are listed in Table 1.
Cycle-accurate Performance Model. We have developed a
cycle-accurate model of the multiprocessor architecture
described above, based on a combination of SimIt-ARM [17]
and GEZEL [18]. The simulation environment can be
configured with different processor configurations, and
achieves high simulation efficiency. We obtain 441000 cycles
per second for a four-ARM-processor system on a 3GHz,
512MByte Fedora-2 PC. In our performance simulation model,
we can dynamically change the clock frequency of the
execution core of a processor. Our cycle-accurate system
simulation works with divided clocks, in which processor
clock rates have an integer relationship to the system clock
rate. This is a flexible and easy-to-implement simulation
mechanism. The clock division factors are programmed out of
the ARM application by means of a system call. During
simulation, the performance model also keeps track of the
amount of clock cycles executed in each operation mode. This
information, together with knowledge of valid V/f-pairs for a
processor, can be used to evaluate the dynamic energy
consumption according to Eq(1).

3. SOFTWARE PROGRAMMING MODEL
We next discuss the multiprocessor programming model and
the cooperative multithreading system. Threads are a well-
known software abstraction for task-level parallelism,
appealing to a wide range of software developers. An
important advantage of a threading approach to program a
multiprocessor is that it can be done using a standard software
tool-chain. The multiprocessor program is written in C and
compiled using the arm-linux gcc 3.2.2 cross-compiler. Thread
parallelism is supported by means of a software library.
Cooperative Multithreading. We have implemented a
multiprocessor version of the QuickThreads cooperative
multithreading library [11]. The data structures and procedural
interface of the threading system are illustrated in Figure 2. Thread
context information for user-defined threads is stored in a circular
queue Q. The context information for each thread consists of a
thread stack and a stack pointer — due to the cooperative
scheduling, all context switches are done with known processor
state, and processor registers (apart from the stack pointer) do not
need to be stored. All processors use the same thread queue for a
context switch. A central test-and-set lock Lq makes sure the
thread queue can be modified by only a single processor at a time.
The processors use four routines to control thread creation,
scheduling, and termination. New user threads are entered on
the thread queue with create, which takes a function as
argument. When a processor calls start, it will switch from
the main thread (i.e. the main or slave_main thread of
control) to the first user thread on the queue. If the thread

EAC 1, Ceff vi
2fiTi

K
∑= (1)

EAC N, EAC j,
N
∑= (2)

Project Pouwelse [14] Flautner [4]
Processor StrongArm Xscale XSA
V/f high power (V/MHz) 1.65 / 251 1.5 / 773
V/f low power (V/MHz) 0.79 / 59 0.75 / 150

V2f ratio (high/low) 18.5 20.6

f ratio (high/low) 4.25 5.15
switching time (us) 140 20

queue is empty, the function returns immediately. The yield
function puts a thread to the back of the user thread queue and
transfers control to the entry on the queue front. A user thread
terminates by calling abort or exiting the function that
started the user thread.

The stack pointer of the main thread of each processor is not
stored on the thread queue but in a global variable (sp0 ..
sp3). This way, the main threads can be tied to a single ARM
processor, while the user threads can still migrate from one
ARM processor to the next. These processor-specific main
threads can then be used to unambiguously insert voltage-
scaling commands, discussed next.

Voltage/frequency Scaling. The software abstraction of V/f
scaling is a function call that selects a V/f mode. While voltage
and frequency are adjusted independently in the
implementation, they are always changed together according to
a V/f pair table such as shown in Table 1. In the application
software, the programmer selects a power mode by means of a
system call. In our performance simulation, this system call is
used to select the simulation frequency of the core, and to
update energy-consumption statistics. The time required for a
V/f mode to stabilize depends on the implementation of the V/f
scaling technology. The use of clock division, in combination
with power switch tiles [10] gives a few discrete
voltage/frequency settings with very low switching time.

A V/f-scaled multiprocessor has multiple clock frequencies.
We will use the term processor clock cycles to indicate clock
cycle counts of individual processors, and the term system
clock cycles to indicate clock cycle counts at the clock input of
the multiprocessor system.

Discussion. Multithreading ensures scalable parallelism on top
of a multiprocessor system. A program with 5 threads, for
example, will run on a single processor but also on a quad-
processor. A central scheduler is not required because of the
cooperative multithreading, which benefits the multiprocessor
fault-tolerance. The software development approach is an
incremental evolution of standard practice. It does not require
a radical rethinking of the system-on-chip development
process. An application, originally running as a sequential C
program, can be incrementally partitioned into multiple
threads, and run on the multiprocessor gradually exposing
parallellism.

4. RESULTS
In this section we consider multiprocessor mapping of a
fingerprint minutiae detection algorithm onto the
multiprocessor architecture. Fingerprint minutiae detection

[15] is an image-processing operation taken out of the
biometrics domain. We use single-processor, dual-processor
and quad-processor configurations. Each time, we consider
two operation modes for each core, a high-power mode and a
low-power mode. We use V/f pairs as shown in Table 2.

Table 2. Processor V/f scaling for experiments.

Fingerprint minutiae detection is traditionally run on fairly
high-powered processors, such as on PC’s. However, an
important class of applications, including portable electronic
keys, require energy-efficient implementation of minutiae
detection. The reference algorithm used in this paper is a fixed-
point version of the NIST fingerprint software. The algorithm
works on grayscale images of 256 by 256 pixels. The detection of
minutia is a computation-intensive operation, and involves
multiple phases of image processing. On a single ARM processor,
the sequential C version of this algorithm takes over 200 million
clock cycles to complete, to detect typically 50 to 100 minutiae on
a fingerprint image.
Task partitioning. For the development of a task-level
parallel algorithm of minutiae detection, we make use of the
property that minutiae detection is a local image processing
algorithm. Indeed, a fingerprint ridge ending or bifurcation can
be detected on a relatively small area of a fingerprint. This
leads to a task partitioning as illustrated in Figure 3. The
original fingerprint image contains 256 by 256 pixels. Rather
than running minutiae detection over the complete image, we
detect minutiae in a smaller portion of the original image,
containing 144 by 144 pixels. The size of 144 by 144 pixels
has been chosen to guarantee an overlap between different
subregions. The fingerprint minutiae detection algorithm thus
decomposes into four different tasks, that each can be mapped
to a different thread. The detection algorithm accounts for the
majority of the clock cycles. In fact, the task partitioning
shown in Figure 3 results in an almost perfect distribution of
workloads. Over 95% of the total clock cycles are contained in
the four detection sub-tasks.
Performance/energy comparison. Figure 4 shows
performance/energy for single-, dual-, and quad-processor
architectures under different voltages. The labels on the X-axis
indicate the configuration. For example, 2_HL represents a
dual-processor architecture with one processor in high-power
mode and another one in low-power mode. Figure 4 clearly
points out the relevance of voltage-scaled multiprocessor
architectures. Two configurations in particular improve on the
single-processor nominal case (1_H). The first of them is

Figure 2. Multithreading data structures and
their procedural interface.

sp4

stack
4

sp5

stack
5

sp6

stack
6

user thread queue Q

proc0

thread
lock Lq

proc1 proc2 proc3

main thread stack pointers

sp1sp0 sp3sp2

void my_thread() {
// user thread
while (1)

yield();
abort();

}

int main() {
create(my_thread);
start();

}

slave_main {..}

user_program.c

high-power (H) low-power (L)
processor clk/ system clk 1/1 1/5

Relative power (V2f) [W/µF] 683 37

Figure 3. Parallel Minutiae Detection.

144X144

256

25
6

detect

detect

detect

detect

co
m

bi
ne

4 threads + main thread

2_HL, a dual-processor implementation. Compared to a single-
processor nominal version (1_H), this architecture offers lower
energy (12%) as well as lower execution time (16%). The
second configuration is that of a quad-processor at low-power
(4_LLLL). It runs only 2.2 % slower than the single processor
version at nominal voltage (1_H), yet it gives more than 77%
reduction in energy consumption. Figure 4 shows a smooth
tradeoff between performance and energy consumption. In
fact, by a simple extension of the V/f-scaling units and the
addition of a central controller, a processor could be
completely turned off as well. In that case, a quad-processor
configuration is able to implement all the design points for a
single-processor and a dual-processor.

5. RELATED WORK
Our work is complementary to the existing research on
scheduling for voltage-scaling. Voltage-scaling scheduling
strategies have been intensively researched, for example in the
work of Jejurikar [9] or Andrei [2]. These strategies are
however based on abstract task models, and none of them use
cycle-true instruction-set simulation to validate the results. An
obvious argument for on-chip multiprocessing has been cycle-
count performance. For example, Petrot proposes a pthread-
based programming model for an on-chip MIPS multiprocessor
[13]. Forsell describes the parallel random-access machine
(PRAM), as a class of multi-threaded shared-memory
architectures. These models focus on performance rather than
on energy-efficiency. ARM’s MPCore [7] proposes voltage-
scaled multiprocessing. In contrast to our approach, they use a
heavy kernel-thread programming model, based on Linux
SMP; and they use symmetric speed scaling, in which the
voltage and frequency of all cores is varied together.
Simultaneous multithreading [3] and hyper-threading
implement support for task-level parallelism at the processor
level. However, such processors consist of several tightly
integrated pipelines, that cannot be voltage-scaled in the same
way as can be done with multiprocessors. Task-level
parallelism is a newcomer in the area of on-chip parallellism.
Indeed, over the past years, instruction-level parallelism has
received more attention, both academically as well as
commercially. This has resulted in commercially available
ASIP (such as Xtensa from Tensilica) and VLIW architectures
(such as Optimode from ARM). An early task-level system
programming model was proposed by Improv [16].

6. CONCLUSIONS
We proposed the combination of an architecture and a
programming model for energy-scalable on-chip
implementation of C programs. The strong points of our work

are a cycle-accurate performance model that allows us to
evaluate actual applications; a programming model that is
familiar to a large group of programmers; and an energy-
scaling technology that is easy to understand and realistic to
implement. Currently we are investigating the detailed
implementation of the on-chip bus, the usage of new forms of
bus communication and the influence of advanced energy
scaling technology.

7. ACKNOWLEDGEMENTS
This work was possible thanks to the support of SRC (Grant
2003-HJ-1116) and the support of NSF (Grant CCR 0310527).

8. REFERENCES
[1] G. Andrews, “Concurrent programming - principles and practice”,

102—105, Benjamin Cummings Publ. 1991.
[2] A. Andrei, M/ Schmitz, P. Eles, Z. Peng, B. Al-hashimi, “Overhead-

Conscious Voltage Selection for Dynamic and Leakage Energy
Reduction of Time-Constrained Systems,” Proc. DATE 2004, 518—
523.

[3] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, D. Tullsen,
“Simultaneous multithreading: a platform for next-generation
processors,” IEEE Micro, 1997, 17(5):12—19.

[4] K. Flautner, S. Reinhardt, T. Mudge, “Automatic Performance
Setting for Dynamic Voltage Scaling,” Wireless networks, 2002,
8(5), 507—520.

[5] M. Forsell, “A Scalable high-performance computing solution for
networks on chips,”, IEEE Micro, 2002, 22(5):46—55.

[6] J. Goodacre, “Challenges in programming multiprocessor platforms,”
4th International seminar on Application-Specific MPSOC, France,
2004.

[7] J. Hennessy, D. Patterson, “Computer Architectures: A quantitative
approach,” Ch. 6.3, MKP Publishers, 2002.

[8] A. Jerraya, W. Wolf, “Multiprocessor Systems-on-Chips,” Morgan
Kaufmann, Sept 2004, ISBN 0-12-385251-X.

[9] R. Jejurikar, C. Pereira, R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” Proc. DAC 2004:275—
280.

[10] J. Rabaey, “Power Management in Wireless SOCs,” 4th International
seminar on Application-Specific MPSOC, France, 2004.

[11] D. Keppel, “Tools and Techniques for Building Fast Portable
Threads Packages,” UWCSE 93-05-06, U. Washington, 1993.

[12] S. Martin, K. Flautner, T. Mudge, D. Blaauw, “Combined Dynamic
Voltage Scaling and Adaptive Body Biasing for Lower Power
Microprocessors under Dynamic Workloads,” Proc. ICCAD
2002:721—725.

[13] F. Petrot, P. Gomez, “Lightweight implementation of the POSIX
Threads API for an On-chip MIPS Multiprocessor with VCI
Interconnect,” Proc. 2003 DATE:51—56.

[14] J. Pouwelse, K. Langedoen, H. Sips, “Application-directed voltage
scaling,” IEEE Trans. on VLSI Systems, 11(5):812—826.

[15] S. Yang, K. Sakiyama, I. Verbauwhede, "A compact and efficient
fingerprint verification system for secure embedded systems," 37th
Asilomar Conference, Nov 2003:2058—2062.

[16] C. Ussery, “ Method of generating application specific integrated
circuits using a programmable hardware architecture,” US. Pat.
6,075,935, 12/1/1997.

[17] W. Qin, S. Malik. Flexible and Formal Modeling of Microprocessors
with Application to Retargetable Simulation, 2003 Design
Automation and Test in Europe, March 2003, 556—561.

[18] P. Schaumont, I. Verbauwhede, "Interactive cosimulation with partial
evaluation," 2004 Design Automation and Test in Europe, Fe-bruary
2004, 642—647.

Figure 4. Impact of V/f scaling on Performance/Energy.

1_L
2_LL

4_LLLL
1_H

2_HL
2_HH

4_HHHH

Million
Cycles

0
200
400
600
800

1000
1200

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Dynamic Energy EAC Joule

System Cycle Count

