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ABSTRACT 
This paper proposes a light-weight cooperative multi-
threading programming model for an embedded multi-
processor system. The synchronization between different 
threads is obtained by a test-and-set-lock. Each processor 
needs to acquire the lock before accessing shared resources. To 
reduce the overhead of software thread-management, a 
hardware thread-queue manager is added to maintain the 
stack pointer for each thread. This reduces off-chip memory 
accesses during context switches. The whole multi-processor 
system, including software stack and hardware architecture, is 
evaluated with a cycle-accurate simulation platform. With a 
data-flow-based image encoder as the driver application, the 
multi-processor system with hardware thread-queue manager 
achieves 9.5% performance speedup compared to a pure 
software thread-queue manager.  
  

I. Introduction 

In traditional single-processor systems, the approach of 
increasing clock frequency can no longer bring up required 
performance enhancement [1]. This is due to the fact that it 
is becoming difficult and cost-inefficient to expose more 
instruction level parallelism. A Multi-processor system-on-
chip (MPSOC) has been proposed to achieve better 
performance [2]. Multiple cores on a chip offer higher 
parallel computation capability and thus potentially higher 
performance. In order to take advantages out of the parallel 
computation capability provided by multi-processors, the 
parallelism of an application has to be exposed by 
partitioning the application into tasks that can be executed 
concurrently. Threads are a well-known software 
abstraction for task-level parallelism [3]. In a multi-
processor system, applications are partitioned into threads. 
By executing threads on multiple cores concurrently, the 
performance can be enhanced and applications can be 
completed faster.  

In this paper, we propose a light-weight cooperative multi-
threading programming model which supports multi-
threading execution on a shared-memory SMP (Symmetric 
Multi-Processing) architecture. By adapting a cooperative 
multi-threading scheme, all context switches are done with 
known processor states, and processor registers do not need 
to be stored. The stack of context information is stored in a 
circular queue which resides in main memory. Thus every 
context switch needs to read the pointer of a stack before 
the system can locate the stack. In order to further speed up 
context switches, a low-complexity hardware thread-queue 
manager is proposed to accelerate accessing the stack 
pointers. With a data-flow-based image encoder as the 
driver application, the multi-processor system with 
hardware thread-queue manager achieves up to 9.5% 
performance speedup compared to a pure software thread-
queue manager. The whole multi-processor system, 
including multi-threading software and SMP hardware 
architecture, is simulated by a cycle-accurate simulation 
platform.  

This paper is organized as follows. Section II discusses the 
related work of multi-threading programming model and 
multi-processor systems. Section III gives brief introduction 
to the SMP architecture used in this paper. Section IV 
details the cooperative multi-threading programming model 
and library. A hardware thread-queue manager which 
supports accessing stack pointers will be discussed in 
Section V. Section VI introduces a data-flow image 
encoder which will be used as the application driver. 
Simulation results will be shown in Section VII. Section 
VIII gives the conclusion of this paper and related future 
work.  
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II. Related Work 

Task-level parallelism is a newcomer in the area of on-chip 
parallellism. Indeed, over the past years, instruction-level 
parallelism has received more attention, both academically 
as well as commercially. This has resulted in commercially 
available ASIP (such as Xtensa from Tensilica) and VLIW 
architectures (such as Optimode from ARM). ARM’s 
MPCore [11] proposes a SMP multi-processor system. 
They support symmetric energy/speed scaling, in which the 
voltage and frequency of all cores is varied together. In 
contrast to our approach, they use a heavy kernel-thread 
programming model, based on Linux SMP. 

POSIX thread [8], or Pthread, is a widely used multi-
threaded interface that has been specified for UNIX 
systems. It provides APIs (Application Programming 
Interfaces) for programmers to create threads and manage 
the parallel execution of the threads. However, it requires 
support by a heavy OS-kernel such as Linux SMP, which 
makes it impractical to be mapped on a resource-limited 
embedded system. MultiFlex [9] is a multi-processor 
programming environment, which can support a message 
passing model and a shared-memory symmetric multi-
processing model (SMP). In order to be used in a resource-
constrained system, MultiFlex is implemented by a 
combination of a light-weight software layer and a 
hardware concurrency engine, which is similar to our 
system organization.  

III.  Shared-Memory SMP Architecture 

A shared-memory SMP architecture is a common model for 
multi-processor systems. Each processing core in a SMP 
architecture is identical such that a thread can be executed 
by any of the processors. Due to the fact that the memory 
space is shared, a mechanism is required to implement 
inter-process synchronization and atomic operations, such 
as accessing semaphores or mutexes.  

Here we introduce a shared-memory SMP architecture 
which will be used as a platform to demonstrate our multi-
threading library. Fig.1 shows an instance of a shared-
memory SMP architecture. The system contains four ARM 
processors, and each processor has its own data cache and 
instruction cache. Four processors are connected by a 
central bus, which is based on a master/slave scheme. Each 
processor is a master and can initiate a read- or write-
transaction. The bus allows only one transaction at a time. 
A hardware test-and-set lock supports inter-process 
communication and synchronization of the system. 
Processors need to acquire the lock to access shared 
resources, such as main memory. The main memory resides 

in off-chip memory which can be accessed through the 
memory interface. Due to the cooperative multi-threading 
model, all the context switches are done with known 
processor states. During a context switch, a processor  
needs to store the stack pointer of the current running 
thread and to load a stack pointer of the next thread. A 
hardware thread-queue manager is added to reduce the 
overhead of accessing off-chip memory for stack pointers 
during context switches.  
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Fig.1: Multi-processor architecture with hardware thread-
queue manager and test-and-set lock  

A cycle-accurate simulation platform [10] has been 
implemented to simulate the whole SMP system and return 
cycle-accurate performance. The processor core is modeled 
by SimIt-ARM[4], an instruction set simulator of the 
StrongARM micro-architecture. The other hardware 
modules, including the thread-queue manager, the test-and-
set lock and the memory interface, are modeled and 
integrated by GEZEL[5], which is a cycle-accurate 
software/hardware co-simulation environment.  

Table 1: Interfaces and models used in the multi-
processor simulation platform 

GEZEL [5]

SimIt-ARM ISS [4]

Multi-Processor version of 
QuickThreads [6][10]  

(2KB of code)

C/C++

HW modules, 
system 

integration

ARM processor
Hardware 
Modules

Multi-threading 
library

Applications
Software 
Interfaces

GEZEL [5]

SimIt-ARM ISS [4]

Multi-Processor version of 
QuickThreads [6][10]  

(2KB of code)

C/C++

HW modules, 
system 

integration

ARM processor
Hardware 
Modules

Multi-threading 
library

Applications
Software 
Interfaces

Tools and models
Interfaces and 

system modules
Tools and models

Interfaces and 
system modules

IV. Cooperative Multi-threading Programming 
Model  

We have implemented a multi-processor version of the 
QuickThreads cooperative multi-threading library [6]. This 
programming model has two important advantages. First, it 
is light-weight. The complete multi-threading library 
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including boot code fits in under 2Kbytes, which makes it 
appropriate for resource-limited embedded systems. The 
second advantage is that it can be implemented by using a 
standard software tool-chain, which is familiar to software 
programmers. The multi-threaded program is written in C 
and compiled using an arm-linux gcc 3.2.2 cross compiler, 
and thread-management is supported by a software library.

A. Booting Sequence  

While standard C is used to program the multi-processor, 
there are at any moment as many threads of control in the 
program as there are active processors. When the multi-
processor starts, the boot code may allow only a single 
processor to enter main(). This is solved, as illustrated in 
Fig.2, by means of a boot lock Lb. When the processors 
execute the boot code, they will compete for this lock. The 
processor that grabs the lock executes the standard C 
library initialization code resulting in a call to main(). For 
the other processors, a custom stack frame is created by the 
boot code and the function slave_main() is called 
instead, with a processor id as argument. The C 
programmer thus sees a unique entry point for each 
processor in the application program. Once the application 
program is running, additional user threads can be created 
by means of cooperative multi-threading. 

ARM

boot lock Lb

libc
custom

stack frame
initialize

takenmissed

compete
int main( ) {
// processor 0

}

int slave_main(int id){
// processor 1..3

}

user_program.cARM ARM ARM

proc 0 proc 1 proc 2 proc 3

Fig.2: Booting process of a multi-processor system 

B. Cooperative Multi-threading

Test-and-set lock. The synchronization of the multi-
processor system is supported by a hardware test-and-set 
lock (Fig.3). Two atomic operations, tsread() and 
tswrite(V), are implemented using the lock. The first 
operation sets the lock to TRUE and returns the previous 
value. The second operation writes value V to the lock. The 
semaphores and mutexes can be implemented by using 
these two operations by means of spin-lock [7]. When a 
processor wants to acquire the hardware lock, it will 
repeatedly check tsread() until it returns FALSE. The 
lock can be released by calling tswrite(FALSE).  

As illustrated in Fig.3, additional test-and-set locks can be 
implemented in software on top of the hardware lock. In 
that case, the hardware lock is used to protect a memory 
location that holds the value of a software lock. This way, 
the amount of dedicated hardware for synchronization is 
kept minimal. 

hardware lock Lhw

memory

L1

memory interface

tsread(L1) {
while (tsread(Lhw))  /* wait */;
retval = L1; L1 = true;
tswrite(Lhw, false);
return retval;

}

tswrite(L1, v) {
while (tsread(Lhw))  /* wait */;
L1 = v;
tswrite(Lhw, false);

}

test-and-set lock

Fig.3: Test-and-set lock and tsread()/tswrite()

Thread queue. Context information of threads is stored in 
a circular queue (Fig.4). The context information contains a 
thread stack and a stack pointer. All processors use the 
thread queue for context switches. The queue is protected 
by a test-and-set lock Lq to ensure the thread queue can be 
modified by a single processor at a time. Threads can be 
constructed and entered the thread queue with create().

When a processor calls start(), it will switch from the 
main thread to the first thread in the queue. The yield()
function puts the thread back into the thread queue, and the 
abort() function can terminate a thread. 

sp4

stack
4

sp5

stack
5

sp6

stack
6

user thread queue Q

proc0

thread
lock Lq

proc1 proc2 proc3

main thread stack pointers

sp1sp0 sp3sp2

void my_thread() {
// user thread
while (1) 

yield();
abort();

}

int main( ) {
create(my_thread);
start();

}

slave_main {..}

user_program.c

Fig.4: Thread programming model and thread queue 

In the software thread library, the thread queue is located in 
the main memory. Therefore each context switch requires 
access to the main memory for context information. 
Accessing main memory, which is usually implemented as 
an off-chip memory, impairs the system performance due to 
long memory-access latencies. A hardware thread-queue 
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manager, which will be further discussed in Section V, is 
added to speed up the context switch by keeping stack 
pointers within a chip. 

C. An Example: Accumulating Numbers 

Here we use a simple example to illustrate the multi-
threaded programming interface for task level 
parallellization on C programming. We wish to accumulate 
a list of one million numbers stored in off-chip memory. 
Listing 1 shows a version of the code that uses 4 threads. 
Each thread accumulates 250K numbers with 
accumulate (lines 2—10). Thread completion is signaled 
with a lock-protected counter (lines 7—9). In the main
function, the four threads are created (lines 13—16) and 
executed through completion (lines 18—19 and 26—27). 
The execution cycles of this example on a single-processor 
and a quad-processor system are 8.0M and 2.1M 
respectively. It clearly shows that the task-level 
parallelization really takes advantages of the parallel 
computation capability provided by a multi-processor 
system. 

LISTING 1. Accumulating Numbers Example 
1.  int thread_done = 0; 
2.  void accumulate(long long *r) { 
3.    long long acc = 0; 
4.    for (int i=0; i < 250000; i++) 
5.    acc += numbers[i + 250000*thread_id()]; 
6.    *r = acc; 
7.    while (tsread(DONE_LOCK)); 
8.    thread_done++; 
9.    tswrite(DONE_LOCK,0); 
10. } 
11. int main(int argc, char **argv) { 
12.   long long result[4]; 
13.   create(accumulate, &(result[0])); 
14.   create(accumulate, &(result[1])); 
15.   create(accumulate, &(result[2])); 
16.   create(accumulate, &(result[3])); 
17.   
18.   while (thread_done < 4) 
19.     start(); 
20.   for (int i=1; i<4; i++) 
21.     result[i] += result[i-1]; 
22.   exit(0); 
23. } 
24. void slave_main(int procid) { 
25. 
26.   while (thread_done < 4)  
27.     start(); 
28.    
29.   exit(0); 
30. } 

V. Hardware Support Thread Queue Management 

Fig.5 illustrates the architecture of a thread-queue manager. 
It is composed of a register file and a controller. The 
manager is connected to the central bus. Because it is a 
circular queue, two indexes, q_head and q_tail, need to be 
maintained. When a thread is created or yielded, the stack 
pointer of the thread will be stored into the thread-queue 
manager. When a processor is idle or needs to context 
switch to a different thread, it will ask the thread-queue 

manager for the stack pointer of the next thread. The access 
to the thread-queue manager is merged with the thread 
library, thus the atomicity is ensured by the test-and-set 
lock. The controller only needs to store/load the stack 
pointer to/from the register file, maintain the q_head/q_tail 
of the stack pointer queue, and implement the bus protocol. 
This results in low hardware cost and complexity for the 
thread-queue manager. 

Reg0

q_head q_tail

Thread Manager
Controller

Bus

Reg1 Reg2 Reg(n-1) Reg(n)

Fig.5: Thread-queue manager 

VI. Data-flow Image Encoder 

A data-flow image encoder is used as the application driver. 
Data-flow model is commonly used in digital signal 
processing applications. It is similar to a 
producer/consumer model. The system is composed of 
actors, where each of them represents a functional block of 
the system and can be executed concurrently. After 
processing the input data, actors produce output data, which 
will be input into the subsequent actors. Fig.6 shows an 
image encoder which is implemented as a data-flow system. 
The circles represent the actors, and the bars represent the 
intermediate queues which are used for passing data 
between actors. When mapping onto a multi-processor 
system, each actor is implemented as a thread and can be 
executed by any processor cores in the system. Intermediate 
queues are located in the main memory of a multi-processor 
system. Thus every access to the queues is translated as 
traffic on the bus to access the external memory. There are 
a total of 26 actors in the system.  

Actor Queue

Fig.6: Data-flow image encoder 
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VII. Results 

Fig.7 shows the performance of different multi-processor 
systems. The results are based on cycle-accurate 
simulations. The increasing number of processors in a 
system will enhance the overall performance. For systems 
with pure software thread-management, the dual-processor 
and the tri-processor systems are 29% and 28% faster than 
the single-processor system respectively. However, more 
synchronization traffic is induced when the number of 
processors is increased. Also, contention for the central bus 
impairs the overall system performance. The quad-
processor system is only 16% faster than the single-
processor system. It is even slower than the dual- and tri-
processor system.   

The hardware thread-queue manager maintains the stack 
pointer information on chip, thus processors do not need to 
access the external memory for stack pointers during 
context switches. Compared to the pure software thread 
library, multi-processor systems with hardware thread-
queue manager give 3.7% to 9.5% performance 
enhancement.  
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              Fig.7: Performance of multi-processor systems 

VIII. Conclusion 

This paper proposed a cooperative multi-threading library 
and programming model on an embedded multi-processor 
system. The programming model is based on a light-weight 
cooperative multi-threading library, which fits in 2KB of 
object codes. A low complexity hardware thread-queue 
manager is added to reduce the stack pointer accesses to the 
external memory during context switches. Demonstrated by 
cycle-accurate simulation results, the hardware thread-
queue manager offers 3.7% to 9.5% performance 
enhancement.   

We are currently working on more hardware extensions to 
support multi-threading on embedded multi-processors. We 
are also implementing an energy-efficient multi-processor 
platform, which adapts energy scaling to achieve energy 
reduction. Next to a data-flow model, other multi-threading 
models are being evaluated as well. 
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