
A Light-Weight Cooperative Multi-threading
with Hardware Supported Thread-Management

on an Embedded Multi-Processor System

Bo-Cheng Charles Lai
EE Department

 UCLA
CA 90095-1594

bclai@ee.ucla.edu

Patrick Schaumont
ECE Department

Virginia Tech.
VA

schaum@vt.edu

Ingrid Verbauwhede
EE Dept. UCLA, CA

and
ESAT, K.U.Leuven, BE

Ingrid@ee.ucla.edu

ABSTRACT
This paper proposes a light-weight cooperative multi-
threading programming model for an embedded multi-
processor system. The synchronization between different
threads is obtained by a test-and-set-lock. Each processor
needs to acquire the lock before accessing shared resources. To
reduce the overhead of software thread-management, a
hardware thread-queue manager is added to maintain the
stack pointer for each thread. This reduces off-chip memory
accesses during context switches. The whole multi-processor
system, including software stack and hardware architecture, is
evaluated with a cycle-accurate simulation platform. With a
data-flow-based image encoder as the driver application, the
multi-processor system with hardware thread-queue manager
achieves 9.5% performance speedup compared to a pure
software thread-queue manager.

I. Introduction

In traditional single-processor systems, the approach of
increasing clock frequency can no longer bring up required
performance enhancement [1]. This is due to the fact that it
is becoming difficult and cost-inefficient to expose more
instruction level parallelism. A Multi-processor system-on-
chip (MPSOC) has been proposed to achieve better
performance [2]. Multiple cores on a chip offer higher
parallel computation capability and thus potentially higher
performance. In order to take advantages out of the parallel
computation capability provided by multi-processors, the
parallelism of an application has to be exposed by
partitioning the application into tasks that can be executed
concurrently. Threads are a well-known software
abstraction for task-level parallelism [3]. In a multi-
processor system, applications are partitioned into threads.
By executing threads on multiple cores concurrently, the
performance can be enhanced and applications can be
completed faster.

In this paper, we propose a light-weight cooperative multi-
threading programming model which supports multi-
threading execution on a shared-memory SMP (Symmetric
Multi-Processing) architecture. By adapting a cooperative
multi-threading scheme, all context switches are done with
known processor states, and processor registers do not need
to be stored. The stack of context information is stored in a
circular queue which resides in main memory. Thus every
context switch needs to read the pointer of a stack before
the system can locate the stack. In order to further speed up
context switches, a low-complexity hardware thread-queue
manager is proposed to accelerate accessing the stack
pointers. With a data-flow-based image encoder as the
driver application, the multi-processor system with
hardware thread-queue manager achieves up to 9.5%
performance speedup compared to a pure software thread-
queue manager. The whole multi-processor system,
including multi-threading software and SMP hardware
architecture, is simulated by a cycle-accurate simulation
platform.

This paper is organized as follows. Section II discusses the
related work of multi-threading programming model and
multi-processor systems. Section III gives brief introduction
to the SMP architecture used in this paper. Section IV
details the cooperative multi-threading programming model
and library. A hardware thread-queue manager which
supports accessing stack pointers will be discussed in
Section V. Section VI introduces a data-flow image
encoder which will be used as the application driver.
Simulation results will be shown in Section VII. Section
VIII gives the conclusion of this paper and related future
work.

16471424401321/05/$20.00 ©2005 IEEE

II. Related Work

Task-level parallelism is a newcomer in the area of on-chip
parallellism. Indeed, over the past years, instruction-level
parallelism has received more attention, both academically
as well as commercially. This has resulted in commercially
available ASIP (such as Xtensa from Tensilica) and VLIW
architectures (such as Optimode from ARM). ARM’s
MPCore [11] proposes a SMP multi-processor system.
They support symmetric energy/speed scaling, in which the
voltage and frequency of all cores is varied together. In
contrast to our approach, they use a heavy kernel-thread
programming model, based on Linux SMP.

POSIX thread [8], or Pthread, is a widely used multi-
threaded interface that has been specified for UNIX
systems. It provides APIs (Application Programming
Interfaces) for programmers to create threads and manage
the parallel execution of the threads. However, it requires
support by a heavy OS-kernel such as Linux SMP, which
makes it impractical to be mapped on a resource-limited
embedded system. MultiFlex [9] is a multi-processor
programming environment, which can support a message
passing model and a shared-memory symmetric multi-
processing model (SMP). In order to be used in a resource-
constrained system, MultiFlex is implemented by a
combination of a light-weight software layer and a
hardware concurrency engine, which is similar to our
system organization.

III. Shared-Memory SMP Architecture

A shared-memory SMP architecture is a common model for
multi-processor systems. Each processing core in a SMP
architecture is identical such that a thread can be executed
by any of the processors. Due to the fact that the memory
space is shared, a mechanism is required to implement
inter-process synchronization and atomic operations, such
as accessing semaphores or mutexes.

Here we introduce a shared-memory SMP architecture
which will be used as a platform to demonstrate our multi-
threading library. Fig.1 shows an instance of a shared-
memory SMP architecture. The system contains four ARM
processors, and each processor has its own data cache and
instruction cache. Four processors are connected by a
central bus, which is based on a master/slave scheme. Each
processor is a master and can initiate a read- or write-
transaction. The bus allows only one transaction at a time.
A hardware test-and-set lock supports inter-process
communication and synchronization of the system.
Processors need to acquire the lock to access shared
resources, such as main memory. The main memory resides

in off-chip memory which can be accessed through the
memory interface. Due to the cooperative multi-threading
model, all the context switches are done with known
processor states. During a context switch, a processor
needs to store the stack pointer of the current running
thread and to load a stack pointer of the next thread. A
hardware thread-queue manager is added to reduce the
overhead of accessing off-chip memory for stack pointers
during context switches.

D I D I D I

ARM ARM ARM

BUS

memory
interface

main memory

chip boundary

D I

ARM

test-and-set
lock

Thread-queue
Manager

Fig.1: Multi-processor architecture with hardware thread-
queue manager and test-and-set lock

A cycle-accurate simulation platform [10] has been
implemented to simulate the whole SMP system and return
cycle-accurate performance. The processor core is modeled
by SimIt-ARM[4], an instruction set simulator of the
StrongARM micro-architecture. The other hardware
modules, including the thread-queue manager, the test-and-
set lock and the memory interface, are modeled and
integrated by GEZEL[5], which is a cycle-accurate
software/hardware co-simulation environment.

Table 1: Interfaces and models used in the multi-
processor simulation platform

GEZEL [5]

SimIt-ARM ISS [4]

Multi-Processor version of
QuickThreads [6][10]

(2KB of code)

C/C++

HW modules,
system

integration

ARM processor
Hardware
Modules

Multi-threading
library

Applications
Software
Interfaces

GEZEL [5]

SimIt-ARM ISS [4]

Multi-Processor version of
QuickThreads [6][10]

(2KB of code)

C/C++

HW modules,
system

integration

ARM processor
Hardware
Modules

Multi-threading
library

Applications
Software
Interfaces

Tools and models
Interfaces and

system modules
Tools and models

Interfaces and
system modules

IV. Cooperative Multi-threading Programming
Model

We have implemented a multi-processor version of the
QuickThreads cooperative multi-threading library [6]. This
programming model has two important advantages. First, it
is light-weight. The complete multi-threading library

1648

including boot code fits in under 2Kbytes, which makes it
appropriate for resource-limited embedded systems. The
second advantage is that it can be implemented by using a
standard software tool-chain, which is familiar to software
programmers. The multi-threaded program is written in C
and compiled using an arm-linux gcc 3.2.2 cross compiler,
and thread-management is supported by a software library.

A. Booting Sequence

While standard C is used to program the multi-processor,
there are at any moment as many threads of control in the
program as there are active processors. When the multi-
processor starts, the boot code may allow only a single
processor to enter main(). This is solved, as illustrated in
Fig.2, by means of a boot lock Lb. When the processors
execute the boot code, they will compete for this lock. The
processor that grabs the lock executes the standard C
library initialization code resulting in a call to main(). For
the other processors, a custom stack frame is created by the
boot code and the function slave_main() is called
instead, with a processor id as argument. The C
programmer thus sees a unique entry point for each
processor in the application program. Once the application
program is running, additional user threads can be created
by means of cooperative multi-threading.

ARM

boot lock Lb

libc
custom

stack frame
initialize

takenmissed

compete
int main() {
// processor 0

}

int slave_main(int id){
// processor 1..3

}

user_program.cARM ARM ARM

proc 0 proc 1 proc 2 proc 3

Fig.2: Booting process of a multi-processor system

B. Cooperative Multi-threading

Test-and-set lock. The synchronization of the multi-
processor system is supported by a hardware test-and-set
lock (Fig.3). Two atomic operations, tsread() and
tswrite(V), are implemented using the lock. The first
operation sets the lock to TRUE and returns the previous
value. The second operation writes value V to the lock. The
semaphores and mutexes can be implemented by using
these two operations by means of spin-lock [7]. When a
processor wants to acquire the hardware lock, it will
repeatedly check tsread() until it returns FALSE. The
lock can be released by calling tswrite(FALSE).

As illustrated in Fig.3, additional test-and-set locks can be
implemented in software on top of the hardware lock. In
that case, the hardware lock is used to protect a memory
location that holds the value of a software lock. This way,
the amount of dedicated hardware for synchronization is
kept minimal.

hardware lock Lhw

memory

L1

memory interface

tsread(L1) {
while (tsread(Lhw)) /* wait */;
retval = L1; L1 = true;
tswrite(Lhw, false);
return retval;

}

tswrite(L1, v) {
while (tsread(Lhw)) /* wait */;
L1 = v;
tswrite(Lhw, false);

}

test-and-set lock

Fig.3: Test-and-set lock and tsread()/tswrite()

Thread queue. Context information of threads is stored in
a circular queue (Fig.4). The context information contains a
thread stack and a stack pointer. All processors use the
thread queue for context switches. The queue is protected
by a test-and-set lock Lq to ensure the thread queue can be
modified by a single processor at a time. Threads can be
constructed and entered the thread queue with create().

When a processor calls start(), it will switch from the
main thread to the first thread in the queue. The yield()
function puts the thread back into the thread queue, and the
abort() function can terminate a thread.

sp4

stack
4

sp5

stack
5

sp6

stack
6

user thread queue Q

proc0

thread
lock Lq

proc1 proc2 proc3

main thread stack pointers

sp1sp0 sp3sp2

void my_thread() {
// user thread
while (1)

yield();
abort();

}

int main() {
create(my_thread);
start();

}

slave_main {..}

user_program.c

Fig.4: Thread programming model and thread queue

In the software thread library, the thread queue is located in
the main memory. Therefore each context switch requires
access to the main memory for context information.
Accessing main memory, which is usually implemented as
an off-chip memory, impairs the system performance due to
long memory-access latencies. A hardware thread-queue

1649

manager, which will be further discussed in Section V, is
added to speed up the context switch by keeping stack
pointers within a chip.

C. An Example: Accumulating Numbers

Here we use a simple example to illustrate the multi-
threaded programming interface for task level
parallellization on C programming. We wish to accumulate
a list of one million numbers stored in off-chip memory.
Listing 1 shows a version of the code that uses 4 threads.
Each thread accumulates 250K numbers with
accumulate (lines 2—10). Thread completion is signaled
with a lock-protected counter (lines 7—9). In the main
function, the four threads are created (lines 13—16) and
executed through completion (lines 18—19 and 26—27).
The execution cycles of this example on a single-processor
and a quad-processor system are 8.0M and 2.1M
respectively. It clearly shows that the task-level
parallelization really takes advantages of the parallel
computation capability provided by a multi-processor
system.

LISTING 1. Accumulating Numbers Example
1. int thread_done = 0;
2. void accumulate(long long *r) {
3. long long acc = 0;
4. for (int i=0; i < 250000; i++)
5. acc += numbers[i + 250000*thread_id()];
6. *r = acc;
7. while (tsread(DONE_LOCK));
8. thread_done++;
9. tswrite(DONE_LOCK,0);
10. }
11. int main(int argc, char **argv) {
12. long long result[4];
13. create(accumulate, &(result[0]));
14. create(accumulate, &(result[1]));
15. create(accumulate, &(result[2]));
16. create(accumulate, &(result[3]));
17.
18. while (thread_done < 4)
19. start();
20. for (int i=1; i<4; i++)
21. result[i] += result[i-1];
22. exit(0);
23. }
24. void slave_main(int procid) {
25.
26. while (thread_done < 4)
27. start();
28.
29. exit(0);
30. }

V. Hardware Support Thread Queue Management

Fig.5 illustrates the architecture of a thread-queue manager.
It is composed of a register file and a controller. The
manager is connected to the central bus. Because it is a
circular queue, two indexes, q_head and q_tail, need to be
maintained. When a thread is created or yielded, the stack
pointer of the thread will be stored into the thread-queue
manager. When a processor is idle or needs to context
switch to a different thread, it will ask the thread-queue

manager for the stack pointer of the next thread. The access
to the thread-queue manager is merged with the thread
library, thus the atomicity is ensured by the test-and-set
lock. The controller only needs to store/load the stack
pointer to/from the register file, maintain the q_head/q_tail
of the stack pointer queue, and implement the bus protocol.
This results in low hardware cost and complexity for the
thread-queue manager.

Reg0

q_head q_tail

Thread Manager
Controller

Bus

Reg1 Reg2 Reg(n-1) Reg(n)

Fig.5: Thread-queue manager

VI. Data-flow Image Encoder

A data-flow image encoder is used as the application driver.
Data-flow model is commonly used in digital signal
processing applications. It is similar to a
producer/consumer model. The system is composed of
actors, where each of them represents a functional block of
the system and can be executed concurrently. After
processing the input data, actors produce output data, which
will be input into the subsequent actors. Fig.6 shows an
image encoder which is implemented as a data-flow system.
The circles represent the actors, and the bars represent the
intermediate queues which are used for passing data
between actors. When mapping onto a multi-processor
system, each actor is implemented as a thread and can be
executed by any processor cores in the system. Intermediate
queues are located in the main memory of a multi-processor
system. Thus every access to the queues is translated as
traffic on the bus to access the external memory. There are
a total of 26 actors in the system.

Actor Queue

Fig.6: Data-flow image encoder

1650

VII. Results

Fig.7 shows the performance of different multi-processor
systems. The results are based on cycle-accurate
simulations. The increasing number of processors in a
system will enhance the overall performance. For systems
with pure software thread-management, the dual-processor
and the tri-processor systems are 29% and 28% faster than
the single-processor system respectively. However, more
synchronization traffic is induced when the number of
processors is increased. Also, contention for the central bus
impairs the overall system performance. The quad-
processor system is only 16% faster than the single-
processor system. It is even slower than the dual- and tri-
processor system.

The hardware thread-queue manager maintains the stack
pointer information on chip, thus processors do not need to
access the external memory for stack pointers during
context switches. Compared to the pure software thread
library, multi-processor systems with hardware thread-
queue manager give 3.7% to 9.5% performance
enhancement.

E
xe

cu
ti

o
n

 c
yc

le
s

(M
ill

io
n

s)

With HW thread Manager

Pure SW

Number of Processors

0

40

80

120

160

200

1 2 3 4

3.7%

7.6% 9.5%

8.8%

 Fig.7: Performance of multi-processor systems

VIII. Conclusion

This paper proposed a cooperative multi-threading library
and programming model on an embedded multi-processor
system. The programming model is based on a light-weight
cooperative multi-threading library, which fits in 2KB of
object codes. A low complexity hardware thread-queue
manager is added to reduce the stack pointer accesses to the
external memory during context switches. Demonstrated by
cycle-accurate simulation results, the hardware thread-
queue manager offers 3.7% to 9.5% performance
enhancement.

We are currently working on more hardware extensions to
support multi-threading on embedded multi-processors. We
are also implementing an energy-efficient multi-processor
platform, which adapts energy scaling to achieve energy
reduction. Next to a data-flow model, other multi-threading
models are being evaluated as well.

Acknowledgement

The authors gratefully acknowledge the support of NSF
(Grant CCR 0310527) and SRC (Grant SRC-2003-HJ-
1116).

References

[1] A. Jerraya, W. Wolf, “Multi-processor Systems-on-Chips,”
Morgan Kaufmann, Sept 2004, ISBN 0-12-385251-X.

[2] L.Hammond, B.A.Nayfeh, K.Olukotun, “A Single-Chip
Multiprocessor,” Proc. of IEEE, pp.79-85, Sept. 1997.

[3] D.E. Culler, J.P. Singh, A. Gupta, “Parallel Computer
Architectures: A Hardware/Software Approach,” MKP
Publishers, 1999, ISBN 1-55860-343-3

[4] W. Qin, S. Malik. Flexible and Formal Modeling of
Microprocessors with Application to Retargetable
Simulation, 2003 Design Automation and Test in Europe,
pp.556-561, March 2003.

[5] P. Schaumont, I. Verbauwhede, "Interactive cosimulation
with partial evaluation," 2004 Design Automation and Test
in Europe, pp.642-647, February 2004.

[6] D. Keppel, “Tools and Techniques for Building Fast Portable
Threads Packages,” UWCSE 93-05-06, U. Washington,
1993.

[7] G. Andrews, “Concurrent programming - principles and
practice”, pp.102-105, Benjamin Cummings Publ. 1991.

[8] B. Nichols, D. Buttlar, J.P. Farrell, J. Farrell, “Pthreads
Programming: A POSIX Standard for Better
Multiprocessing,” O'Reilly Publisher, 1996, ISBN 1-56592-
115-1

[9] P.G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, G.
Nicolescu, “Parallel Programming Models for a Multi-
Processor SoC Platform Applied to High-Speed Traffic
Management,” CODES+ISSS, pp.48-53, Sept. 2004.

[10] P. Schaumont, B.C. Lai, W. Qin, I. Verbauwhede,
"Cooperative multi-threading on embedded multi-processor
architectures enables energy-scalable design,” Proc. 2005
Design Automation Conference, pp. 27-30, June 2005.

[11] J. Goodacre, A. Sloss, “Parallelism and the ARM Instruction
Set Architecture,” IEEE Computer, vol.38, no.7, pp.42-50,
July 2005.

1651

