
Secure and Low-cost RFID Authentication Protocols

1 1,2Yong Ki Lee and Ingrid Verbauwhede
1 University of California, Los Angeles

2 Katholieke Universiteit Leuven
{jfirst, ingrid} @ ee.ucla.edu

Abstract

In this paper we propose two RFID (Radio Frequency

Identification) authentication protocols for secure and low-
cost RFID systems. The first protocol SRAC (Semi-
Randomized Access Control) is designed using only a hash
function as security primitives in tags. In spite of very
restricted functionality, SRAC resolves not only security
properties, such as the tracking problem, the forward
secrecy and the denial of service attack, but also
operational properties such as the scalability and the
uniqueness of MetaIDs. The second protocol A-SRAC
(Advanced SRAC) resolves the replay attack in the cost of
a random number generator in tags. Moreover, our schemes
have significantly reduced the amount of tag transmissions
which is the most energy consuming task.

1 Introduction

The RFID technology has been one of the hottest issues
in the wireless communication area. One of the reasons
many developers are researching this topic is that the RFID
is supposed to replace the bar code systems. This
expectation has been accelerated since the adoption of
EPCglobal Gen2 [8]. However, the application area is not
restricted to product supply chains but covers livestock
tracking, airline baggage, road toll management, hotel
room access and so on. In order to be popular in
commercial markets, the RFID system should overcome the
restriction of cheap RFID tags. The limited price means
limited functionalities and resources in tags. Because of the
limitation, using asymmetric or symmetric key encryption
algorithm or making memory secure in tags is improper
[1]. To solve security problems related with low-cost RFID
systems, many authentication protocols were proposed.
However, those protocols could not satisfy the RFID
security requirements and/or operational requirements.
According to the best of our knowledge, there is no
published authentication protocol that deals effectively on
security and operational requirements.

In this paper we review and classify previously proposed
protocols and their drawbacks, and propose new protocols

which satisfy not only several major security properties
such as the tracking problem, the forward secrecy, the
denial of service attack and the replay attack, but also
operational properties such as the scalability and the
uniqueness of MetaIDs.

The remainder of this paper is organized as follows.
Section 2 explains the desired properties in RFID systems.
Section 3 introduces related works and points out the
problems they have. In section 4 and 5, we propose new
RFID authentication protocols and analyze several
operational and security properties, and conclude this paper
in section 6.

2 Desired Properties in RFID System

Even though the resources allowed in RFID tags are very
restricted, RFID systems are supposed to satisfy some
operational and security requirements. The following sub-
sections explain those requirements.

2.1 Operational requirement

Considering that most applications of RFID systems
require a lot of tags to be used, the scalability is a required
property. For example, in order to apply RFID systems to a
large library, more than 1 million RFID tags should be
applicable. Another operational requirement is the
uniqueness of MetaIDs. Many published protocols [2, 3, 4,
6] make MetaIDs using a hash function. One problem is
that we cannot assure the uniqueness of hash outputs. In
order to avoid the conflictions of hash outputs, we need to
have enough length of hash outputs. Otherwise the
confliction of MetaIDs can cause serious problems in the
system. In another word, if we can make sure the
uniqueness of MetaIDs, we can reduce the size of MetaIDs,
which means the reduction of transmission and memory.

2.2 Security requirement

The most important security problems are the cloning
and tracking problems. However, there are more security
properties which are useful in RFID systems. We consider

 1

the other properties when we analyze our proposing
protocols.

Without sharing the common secret information among
all the readers and the tags, making the response pseudo-
random causes some drawbacks. [2, 6] described protocols
which resolve tracking problems, but the systems are not
scalable since the server needs to perform hashes for all the
tags’ ID every time of authentication protocols. One
approach to resolve the un-scalability of randomized access
control is proposed in [4]. This scheme used a cryptanalytic
method. However, this method also causes some other
problems. Since this protocol uses time-memory trade-off
method [5], in order to reduce the searching time they have
to increase the amount of memory in the server. Another
problem is that the searching algorithm is probabilistic, i.e.
there is some probability to fail in searching for a tag’s ID.
Even though they are saying the failure probability is small,
it can cause a crucial problem in certain applications.

First of all, to prevent the cloning problem in low cost
tags, it is indispensable to store some secret information in
tags which cannot be made arbitrarily by attackers. And the
secret information should be used in authentication
between a tag and a reader. There are two ways to store
secret information in tags. The first way is to store common
secret information among all the readers and the tags. In
this way, as long as the information is secure, this method
makes the systems very secure and efficient. However, if a
single tag is compromised, attackers may clone other tags
or may control all the tags using the secret information.
The other way is to store secret information which is
pertinent to only a specific tag. In this case, even if some
secret information is compromised, the information will be
irrelevant to the other tags so that they still remain secure. Protocols proposed in [3, 7] resolve the tracking problem

by sharing the common secret information among all the
readers and the tags. Even though these schemes are
scalable and resolve the tracking problem, they have a
crucial problem. By capturing and compromising only one
tag, attackers can reveal the secret information. Once the
secret information is revealed, the tags which share the
secret information will be under attack and attackers may
clone some other tags. Moreover, the protocol in [7] uses a
symmetric key encryption algorithm which is unsuitable in
low-cost RFID systems.

Another security property is to resolve the tracking
problem. If the responses of a tag are constant or
predictable by attackers, the tag can be tracked. To prevent
the tracking problem, the responses of tags must appear
random to the attackers.

3 Related Works

The authentications are done in two ways. By
authenticating a reader to a tag, a tag is to be ready to open
its information to a reader, and by authenticating a tag to a
reader, the system prohibits the usage of fake tags. We can
divide published authentication protocols into two types.
The first type is the fixed access control in which a tag
replies a reader with a fixed message. The second type is
the randomized access control in which a tag replies to a
reader with a pseudo-random message which varies each
time of the responses.

4 SRAC (Semi-Randomized Access Control)

Therefore, we need protocols which are designed
considering both problems, i.e. the operational and security
requirements. According to the best of our knowledge,
there is no published protocol which resolves effectively
both problems. In this section, we propose SRAC (Semi-
Randomized Access Control) which is designed
considering both requirements. The fixed access control is the simplest type so that tags

can be implemented in a cheap price. However, this kind of
protocols is under the tracking problem. [2] proposed a
fixed access control using a hash based access control,
where tags reply with MetaIDs, which are the hash outputs
of their real IDs. Even though attackers cannot figure out
the real ID, the constant responses of tags cause the
tracking problem.

4.1 Protocol Description

We suppose that the server and the reader have sufficient
resources to use strong symmetric or asymmetric key
algorithms so that the communications between them are
secure. Therefore, we care only about the communications
between the reader and tags and we assume that the
messages arrived to the reader are securely passed to the
server. In the following protocols, we do not distinguish
between the reader and the server. However, the
computational load can be split into two parts or can be
done only at the server depending on applications. Figure 1
and Table 1 illustrate SRAC. In this scheme, each tag
contains its own key which is irrelevant to the other tags.

A solution to prevent the tracking problem is the
randomized access control. In order to randomize
messages, a reader and a tag need to share some secret
information which is unknown to attackers so that only the
entities which have the secret information can interpret the
randomized messages. Again, the randomized access
control can be divided into two types depending on
whether all the readers and the tags share the same secret
information.

 2

Uniqueness of MetaIDs
Our proposed protocol resolves this problem by

checking whether an updating MetaID is to be unique in
step ③. In this protocol the server only needs to regenerate
a random number RS again until a new MetaID becomes
unique. As long as the confliction probability of MetaIDs is
not too high, the overhead will be reasonable. Since the
uniqueness is confirmed, we do not need a large size of
MetaIDs to evade the conflictions of MetaIDs. Therefore,
we can significantly reduce the number of bits used in
MetaIDs, which means less energy to transmit and less
memory to store a MetaID.

Figure 1 SRAC protocol

For example, SHA-1 digests an input into 160 bits. In
this case, even if we consider a large number of tag IDs,
say , the approximate confliction probability is

, which is negligible. However, the larger size
of MetaIDs means more energy in transmission, which is
one of the most energy consuming tasks of tags. If we can
assure that the MetaIDs do not conflict, we can reduce the
size of MetaIDs as long as the probability that a random
number matches with any MetaID is not too high. If the
size of a MetaID is 40 bits and the number of tags is

, we can reduce 75% of the transmission energy
of MetaIDs, where the probability that a random number
matches with any MetaID is , which is
acceptable depending on applications.

① Reader sends Query to Tag.

② Tag sends MetaID () to Reader/Server.)(KeyH=

③ Server looks up Key using MetaID, generates a random
number , and checks whether is unique
among the other MetaIDs. If it is not unique, Server
regenerates until becomes unique.

SR)(SRKeyH ⊕

SR)(SRKeyH ⊕

Server updates as follows. Key

If MetaID =)(CurrKeyH

CurrrevP KeyKey ← ,)(SCurrCurr RKeyHKey ⊕←

If MetaID =)(revPKeyH

)(SrevPCurr RKeyHKey ⊕←

revPKeyKey ←

Server sends and to Tag through
Reader.

SR)||(SRKeyH

④ Tag checks whether is correct.)||(SRKeyH

 If it is correct, Tag updates .)(SRKeyHKey ⊕←

620 102 ≈
42140 102 −− ≈

620 102 ≈

620 102 −− ≈

Resources required for authentication
For each time of authentication, the required

cryptographic computations in tags are only three hashes,
and the amount of transmission of a tag is the size of the
hash output. Since our scheme confirms the uniqueness of
MetaIDs, we can reduce the size of the hash outputs. There
are two ways to reduce the hash outputs. We may use a
hash function to produce small outputs or perform modulo
operations to reduce the hash outputs. Therefore, our
scheme can be implemented very efficiently in computation
and transmission.

Table 1 SRAC Protocol Flow

The reason we inserted into a hash function is that
the tag needs to check the integrity of . The server
authenticates tags by checking whether the received
MetaID is on the server’s database, and tags authenticate
the server by checking . In order to be resilient
against the denial of service attack, the key update of the
server must be more sophisticated than tags. The server
keeps two keys, the current key () and the pervious
key (). The reason is on the following sub-section.

SR

SR
Cloning Problem

The secrete information stored on each tag is pertinent to
each tag. Even if some tags are compromised, the other
tags are irrelevant to the compromised information.
Therefore, attacker cannot make any other fake tag except
for the compromised tags.

)||(SRKeyH

CurrKey
Tracking Problem

revPKey
Tracking problem can occur when responses of a tag are

constant. The proposed scheme resolves this problem by
changing tags’ secret information whenever the
authentication is successful. Even though our proposed
protocols do not resolve perfectly the tracking problem, the
protocol handles the problem effectively. The fact is that a
method which resolves perfectly both problems, the
cloning and tracking problems, is unknown without having
unreasonable operational overhead or using symmetric or

4.2 Operational and Security Properties

Scalability
In the proposed protocol, the server can search out a

tag’s Key using MetaID (). Since the database of
the server can be indexed using MetaIDs, the searching is
efficient and thus the system is scalable.

)(KeyH=

 3

asymmetric encryption algorithm, or without causing some
other crucial problems.

Forward Secrecy
In this protocol, the revealed secret information of tags

cannot affect the past secrecy. Even if all the
communications between a reader and a tag were
eavesdropped and recorded, using the current secret
information, i.e. Key, attackers cannot infer the past secret
information. This is because a reader and a tag update their
secret information using a hash function each time of the
protocols. Therefore, as long as a hash function is not
invertible, the past secret information is secure.

Denial of Service Attack
If the server updates keys in the same way as tags, the

protocol is under the denial of service attack. Suppose the
server keeps only the current key per tag. Then, the attack
is possible as follows. An attacker generates a jamming
signal at step ③ so that the tag cannot receive the message
from the reader and does not update its secret information
while the server updates the tag’s secret information. After
this attack, the secret information will be inconsistent
between the reader and the tag. Therefore, the later
protocols will fail.

To resolve this problem, the server only needs to store
the previous secret information for each tag. If the server
fails in searching for a MetaID, the server can search out
through the previous MetaIDs. Since only one more
MetaID for each tag is stored in the server, we can
effectively prevent the denial of service attack.

5 A-SRAC (Advanced Semi-Randomized
Access Control)

One problem of SRAC (Advanced Semi-Randomized

Access Control) is that it is under the replay attack.
Attackers can masquerade as either a reader or a tag by
replaying the past messages. The first case is to

masquerade as a tag. Note that the server stores two
MetaIDs, i.e. the current one and the previous one, per tag
and if it is matched with either of two, the server will
authenticate a tag. Attackers may eavesdrop and reuse the
recently used MetaID and will succeed to be authenticated.
This scenario can cause crucial problems at some
applications. For example, suppose this protocol is
implemented for a door access control. Just eavesdropping
authentication protocols, attackers can disguise an
authorized tag. Masquerading as a reader is also done by
eavesdropping the reader’s message, which is
straightforward.

In this section we propose A-SRAC (Advanced Semi-
Randomized Access Control), which prevents the replay
attack in the cost of a random generator implantation and
more message transmission in tags. The overhead of the
server and the reader is negligible considering their
sufficient resources.

5.1 Protocol Description

To prevent the replay attack, we use a challenge and
response method for both directions. Figure 2 and Table 3
illustrate the protocol flow of A-SRAC, which is designed
to prevent the replay attack.

Figure 2 A-SRAC protocol

Randomized Access Control Our proposed Schemes
(Semi-Randomized Access Control)Access

 Controls
 Properties

Fixed Access
Control [2] Without sharing common

secret information [2,6]
With sharing common

secret information [3,7] SRAC A-SRAC

Scalability Scalable Un-scalable Scalable Scalable Scalable

Cloning Problem Strong Strong Vulnerable Strong Strong

Tracking Problem Vulnerable Strong (1) (2) (3) (3)Strong Strong Strong

Replay Attack(4) Vulnerable Vulnerable Vulnerable Vulnerable Strong

* (2) The scheme will be vulnerable after compromising a single tag.
* (3) The schemes are not strong as much as (1), but stronger than the others.
* (4) If the reader-to-tag or the tag-to-reader authentication is vulnerable, we marked ”Vulnerable”.

Table 2. Comparison of some properties among our schemes and others

 4

① Reader sends Query and a random number to Tag. 1SR

② Tag sends MetaID (), and to
Reader/Server.

TR)||(1SRKeyH)(KeyH=

③ Server looks up Key using MetaID, generates a random
number 2S , and checks whether is unique
among the other MetaIDs. If it is not unique, Server
regenerates until becomes unique.

R)(2SRKeyH ⊕

2SR)(2SRKeyH ⊕

Server checks whether is correct.)||(1SRKeyH

Server updates as follows. Key

If MetaID =)(CurrKeyH

CurrrevP KeyKey ← ,)(2SCurrCurr RKeyHKey ⊕←

If MetaID =)(revPKeyH

)(2SrevPCurr RKeyHKey ⊕←
 revPKeyKey ←

Server sends and to Tag through
Reader.

2SR)||||(2 TS RRKeyH

④ Tag checks whether is correct.)||||(2 TS RRKeyH

 If it is correct, Tag updates .)(2SRKeyHKey ⊕←

Table 3 A-SRAC Protocol Flow

The server authenticates tags by checking whether the
received MetaID is on the server’s database and
checking , and tags authenticate the server by
checking . Except for random numbers
which are used as challengers, A-SRAC is similar to
SRAC.

)||(1SRKeyH
)||||(2 TS RRKeyH

5.2 Operational and Security Properties

Basically all the operational and security properties of
SRAC are inherited to A-SRAC except for the tags’
required resources whose analysis is straightforward. The
additional security property is the resistance against the
replay attack. Since a reader and a tag both confirm the
received message using hash outputs which contain
internally generated random numbers, attackers cannot
reuse the past messages.

Table 2 represents the comparison of some important
properties among our schemes and others.

6 Conclusion

In this paper we proposed two RFID authentication
protocols, SRAC and A-SRAC. The proposed schemes can
be implemented efficiently, since SRAC uses only a hash
function and A-SRAC uses a hash function and a random
generator for security primitives. SRAC and A-SRAC both
resolve the problems of the scalability and the uniqueness

of MetaIDs and also resolve the tracking problem, the
forward secrecy and the denial of service attack. A-SRAC
prevents the replay attack which can be a crucial problem
depending on applications such as a door access control.
Moreover, since our schemes ensure the uniqueness of
MetaIDs, the transmission message in tags is reduced. In
the case of SRAC, we can reduce 75% of the transmission
of tags. Therefore, SRAC and A-SRAC will be good
solutions for low-cost RFID systems that require good
operational and security properties.

Acknowledgement
This research has been supported by UC Micro and NSF

(Grant SRC-2003-HJ-1116). We appreciate valuable
discussion with Stefaan Seys.

References
 [1] Sanjay E. Sarma, Stephen A. Weis, and Daniel W.

Engels, “RFID Systems, Security & Privacy
Implications”, Auto-ID center white paper, Feb 2003.
http://www.autoidlabs.org.

 [2] Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest,
and Daniel W. Engels, “Security and Privacy Aspects
of Low-Cost Radio Frequency Identification
Systems,” in The First International Conference on
Security in Pervasive Computing (SPC 2003), March
2003.

[3] Xingxin(Grace) Gao, Zhe(Alex) Xiang, Hao Wang,
Jun Shen, Jian Huang and Song Song, “An Approach
to Security and Privacy of RFID System for Supply
Chain,” Proceedings of the IEEE International
Conference on E-Commerce Technology for Dynamic
E-Business (CEC-East’04), 2004.

[4] Gildas Avoine and Philippe Oechslin, “A Scalable and
Provably Secure Hash-Based RFID Protocol,” The
2nd IEEE International Workshop on Pervasive
Computing and Communication Security ٛ Persec
2005, March 2005.

[5] Philippe Oechslin, “Making a Faster Cryptanalytic
Time-Memory Trade-Off,” In Advances in
Cryptology - CRYPTO ’03, 2003.

[6] Miyako Ohkubo, Koutarou Suzuki and Shingo
Kinoshita, “Cryptographic Approach to “Privacy-
Friendly” Tags,” RFID Privacy Workshop @ MIT,
2003.

[7] Martin Feldhofer, “An Authentication Protocol in a
Security Layer for RFID Smart Tags,” IEEE
MELECON 2004, May 2004.

 [8] EPCglobal, “Specification for RFID Air Interface,”
http://www.epcglobalinc.org

 5

http://www.epcglobalinc.orguhfrfidprotocolv109/

	Scalability
	Uniqueness of MetaIDs
	Resources required for authentication
	Cloning Problem
	Tracking Problem
	Forward Secrecy
	Denial of Service Attack

