
Microcoded Coprocessor for Embedded Secure Biometric
Authentication Systems

Shenglin Yang
UCLA Dept of EE

Los Angeles, CA 90095
+1-310-267-4940

shengliny@ee.ucla.edu

Patrick Schaumont
UCLA Dept of EE

Los Angeles, CA 90095
+1-310-267-4940

schaum@ee.ucla.edu

Ingrid Verbauwhede
UCLA Dept of EE

Los Angeles, CA 90095
+1-310-794-5209

ingrid@ee.ucla.edu

ABSTRACT
We design and implement a cryptographic biometric
authentication system using a microcoded architecture. The
secure properties of the biometric matching process are obtained
by means of a fuzzy vault scheme. The algorithm is implemented
in a reprogrammable, microcoded coprocessor called FV16. We
present the micro-architecture of FV16 as well as a dedicated
assembler for this architecture. Our coprocessor can be attached
to an ARM processor, and offers a 83-fold cycle count
improvement when the fuzzy vault algorithm is migrated from
embedded ARM software (13.8 million cycles) to the FV16
coprocessor (166 thousand cycles).

Categories and Subject Descriptors
B.1.5 [Microcode Applications]: Microcode Applications --
Special-purpose, Instruction set interpretation, Firmware support
of operating systems/instruction sets

General Terms
Design, Security, Algorithms, Performance.

Keywords
Microcoded coprocessor, Cryptographic biometrics, Fuzzy vault
scheme, Fingerprint verification.

1. INTRODUCTION
An authentication system based on biometric information offers
greater security, and is more convenient than the traditional
methods of personal verification. Along with the rapid growth of
this emerging technology, the system performance, including the

matching accuracy and speed, is continuously improved. In a
fingerprint-based biometric matching system, the comparison is
made between the features extracted from an input fingerprint
image and a reference template. Because of the uniqueness and
sensitivity of the reference template data, secure storage is a key
factor for the biometric system security. This is especially an
issue for embedded applications. Special precautions must
therefore be taken to protect the template from possible attacks.

A naive approach is to encrypt the template using a secret key
such as a PIN. When a matching operation needs to be performed,
the system decrypts the template using the PIN and then performs
the biometric matching. However, this defeats the purpose of
biometric devices: one tries to be independent of PIN codes
entered by the user. Moreover, some dedicated attacks still could
extract the secret key using a side-channel attack (SCA) [1], and
in turn the template. A clean solution to this problem is to store a
noninvertible transformed version, for instance a hash, of the
template on the embedded device, and to perform the comparison
in the transformed space. The main property of a cryptographic
random hash function is that it is a one-way function, so that the
output hash value will not give any information about the input
[2]. Therefore, any similarity in the input will not reflect in the
output hash value. For fingerprint verification, hashing is not
suitable because different fingerprint scans are not exactly the
same, which means that their output hash value will always be
different. To address this problem, we adopt the idea of a fuzzy
vault [3][4] to conduct the biometric authentication. In a fuzzy
vault scheme, a transformed version of the minutiae together with
a large set of noise data is stored. A suitable fuzzy vault matching
algorithm then is able to distinguish between noise and input data
points. In this work, we design and implement a fingerprint
verification system using this novel technique. In order to
construct the system efficiently and to make it reconfigurable, we
build a domain-specific microcoded coprocessor, which is
optimized for fuzzy vault algorithms. It can be used for a class of
applications that require a fuzzy vault scheme.
This paper is organized as follows. Section 2 introduces the
algorithm we adopt and the possible design approaches. Section 3
discusses the system implementation and design flow in details.
Section 4 shows results and Section 5 draws the conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19-21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

130

2. CRYPTOGRAPHIC BIOMETRICS
2.1 Application
A novel cryptographic technique called the fuzzy vault scheme
has been proposed recently [3], [4]. It integrates well-known
error-control coding methods and cryptographic techniques, and
can be used to combine biometric authentication and encryption.
The objective of this algorithm is to store biometrics data in a
‘vault’, a cryptographically safe store. The classic fingerprint
vault construction however is based on the assumption that the
fingerprint features to match are perfectly aligned – a condition
that is very difficult to achieve in practice. The algorithm we
adopt in our work addresses this alignment problem in a
systematic way to make a complete and adaptive authentication
system based on fuzzy vault [8].
As shown in Fig. 1, in order to address the security problem posed
by the leakage of the stored biometric information, instead of
templates, we store a machine-generated bit stream as the PIN on
the device and present it as the coefficients for a Galois Field
encoding polynomial in the enrollment phase. This polynomial is
used to encode the minutiae template, generating the lockset of
the fingerprint fuzzy vault. The next step is to add a large number
of noise points to conceal this lockset. The combination of the
lockset and the noise points forms the fuzzy vault. In the
fingerprint matching phase, fuzzy vault unlocking needs to be
performed to generate a code PIN’. Comparison of PIN and PIN’
will indicate whether the matching is successful or not [8].

Fig. 1 Biometric fuzzy vault algorithm

2.2 Design Approach
The characteristics of fuzzy vault matching are complex decision-
making as well as complex data processing. In addition, we target
an implementation on a portable, resource-constrained platform.
This means we need a specialized architecture, as given by one of
the options of Fig 2.
A software solution based on standard program components such
as a CPU can lack in execution speed, as well as in energy
consumption. A full-hardware design in FPGA or ASIC, on the
other hand, will achieve the required performance at the expense
of flexibility and design cost. This leads to a specialized
programmable solution, such as a DSP or an Application Specific
Instruction Processor (ASIP). In our approach, we adopt a

Fig. 2. Design approaches for embedded systems
microcoded coprocessor architecture, where we have full control
for over all the function blocks in the datapath, the
communication network, and the controller. Instead of
constructing the system based on a predefined processor core, we
begin from the application specifications and define our own
datapth, from which a specific microcoded coprocessor called
FV16 is developed. In this work, FV16 is developed in three
steps: (1) Identify recurring and intensively used operations, for
which special hardware modules are constructed; (2) Platform
design: create interconnect, storage and control architecture to
integrate datapath elements. Together with this architecture,
define an instruction set, which is an abstracted version of the
design; (3) Decompose the C program into assembly instructions.
Generate microcode using a customized assembler.

3. IMPLEMENTATION
3.1 Architecture
The architecture of our coprocessor, FV16, is shown in Fig 3. In
the fuzzy-vault algorithm, all operations execute in the ()162GF
field. Thus all the fingerprint minutiae feature elements are
represented by 16-bit integers. The fuzzy vault construction and
unlocking procedure can be fully described using 16-bit
arithmetic. The coprocessor is microcoded, with a separate data
path and controller. This benefits the design by introducing more
programmability. As shown in the figure, our system includes an
ALU, a register file (RF), a data RAM, as well as a data address

Fig. 3. Architecture for the FV16 coprocessor

Minutiae
Template

Fuzzy Vault

Encode (GF)

Add Noise

Matching

PIN

PIN’
Minutiae

Input

PIN’=PIN ?p(x)

Lock set

Enrollment Phase

Matching Phase

Embedded
Application

CPU ASIP ASIC

Standard
Instruction Set
Architecture

Custom
Instruction Set
Architecture

Custom
Micro-

architecture

Custom
Circuit

Micro-coded
Design

DSP

Specialized
Instruction Set
Architecture

RF ALU RAM

IO

ARM MEM

Ad/Data Bus

DAG RNG TRI

MICROCODE ROM

PC
 Z

IR

D
E

C
O

D
ER

Controller

GFM

131

generator (DAG). The ALU computation unit can perform most
of the regular operations, such as addition, subtraction, bit
shifting, and bit-wise logic operations. The register file contains
16 registers and each of them is 16-bit. A program counter (PC),
an instruction register (IR), and a 1-bit condition register (Z) are
included in the control unit. Since the PC is a 16-bit register, 64K
bytes of program memory can be addressed. The Z register is
used to store the result of the last compare operation. If the result
was one, the Z register contains a "1"; otherwise it is "0". During
execution, the FV16 coprocessor first fetches an instruction from
program memory into the instruction register (IR) and sends it to
the decoder. The decoded instruction is then executed. If the
instruction performs a comparison operation, the condition
register Z needs to be updated. For conditional branch
instructions, the execution depends on the logic level of Z, which
will combine with the inputs from IR to determine the proper
sequence of control vectors. Therefore, each instruction requires
at least three cycles to complete: fetching, decoding and
executing. In order to speed up the system, a three-stage pipeline
architecture is implemented. This allows a new instruction every
clock cycle. For multiple-cycle instructions, such as RAM access
and Galois Field multiplier, the assembler will add “NOP”
instructions to avoid pipeline stalls. This simplifies the pipeline
controller design.
In a high-level language programming environment, the address
generation is done by the compiler, which performs variable
allocations, and which converts all index expressions into integer-
arithmetic operations. In the FV16 coprocessor, we implement a
dedicated hardware data address generator (DAG), similar to DSP
processors. Accepting a base address, this address generation unit
can provides an address increase, address reset, or any particular
address depending on the request. The use of such hardware
address generation improves the execution performance, and
eases the programming of the coprocessor.

3.2 Special Functional Block Models
Besides the blocks we discussed before, from the architecture
diagram in Fig.3, there still are several function units left. These
blocks are designed as special function modules to make the
coprocessor more efficient in terms of speed. The special blocks
are identified by means of algorithm analysis, where we find
some functions are used extensively. The underlying framework
of our system is Galois Field ()162GF arithmetic and a Galois
Field multiplier is included as special computation unit. During
the vault construction, a large number of randomly distributed
noise points are needed to protect the biometric information. Also
in the unlock procedure, the unlocking matrix includes random
elements. Therefore a pseudo-random number generator is
included to generate the noise required by the algorithm. In
addition, a triangle block is needed for calculating the physical
distance between two elements. Next we will explain these blocks
individually.

3.2.1 Galois Field Multiplier
All the calculations in the fuzzy vault algorithm are based on

()162GF arithmetic. A Galois Field adder and a Galois Field
multiplier are required. While the GF adder is implemented using
logic XOR, the implementation of GF multiplication is more

complicated. As shown in Fig.4, we use a bit-serial Galois Field
architecture. First the shift register is initialized with all-zero
state. For each clock cycle the partial product vector is added to
the actual state. After 16 cycles the product is available. This
entire unit we implemented as a single functional block, called the
Galois Field Multiplier block (GFM). Besides using GFM, we
considered two alternative implementations for Galois Field
multiplication. One is to write the multiplication algorithm in C
for a general purpose ARM processor and another one is
programming it in assembly instructions for the FV16
coprocessor’s ALU. The cycle numbers required by these three
different methods are shown in Fig. 6 (GFM) in log scale. Taking
advantage of the FV16 coprocessor with the GFM special block,
the total execution cycles needed for the Galois Field multiplier is
85K. In contrast, it takes 1.02M on the same coprocessor without
GFM block and 7.79M for C software running on the ARM. Thus,
an improvement of 90 times in cycle count can be obtained using
the GFM functional unit inside of FV16.

Fig. 4. Block diagram for bit-serial GF multiplier

3.2.2 Pseudo-random Number Generator
In order to provide the random elements for the vault construction
and unlocking procedures, we adopt a 16-bit Linear Feedback
Shift Register (LSFR) pseudo-random number generator in our
design. The primitive polynomial used for minimal hardware is:

123516 ++++ xxxx . Every clock cycle, the shift registers
generate a 16bit random value. For comparison, we also
implement the pseudo-random number generator in assembly
code without the special hardware and in C targeting ARM,
separately. The assembly code implements a LSFR in software
and the C program uses the rand() function. Fig. 6 shows the
performance results (RNG), indicating that the RNG block makes
the system more than 3 times faster than the coprocessor-based
design without RNG special module, and 580 times faster than the
software only implementation on the ARM processor.

3.2.3 Triangle Block
At the beginning of the unlock procedure, the input value needs to
be compared with the values in the fuzzy vault to find out the
closest elements for constructing the unlock set. This comparison

Read oprands from input ports start

X Y

x0 x1 x15 x14

y0 y15 y14 y13

output

P0 P15 P14 P13

16 cycles

132

needs to find out the physical distance between two feature points
instead of a simple comparison between two numbers. According
to the minutiae feature extraction procedure [8], the elements in
the lock set and the unlock set are constructed by a pair of
minutiae coordinates (r,θ). Thus the distance between two
elements is:

Since the FV16 coprocessor has only one ALU unit, trying to
implement this distance function using basic instructions will take
a large number of cycles. In order to speed up the system, we
design a function block especially for this calculation, whose
function diagram is shown in Fig. 5. Fig. 6 presents the
performance improvement by implementing the triangle
computation block (TRI). The system requires 10 times less clock
cycles compared to those without TRI block, and 100 times less
clock cycles compared to C program running on an ARM
processor.

Fig. 5. Diagram for the triangle block

Fig. 6. Performance comparison of different design methods

3.3 Programmer’s Model
Based on the architecture discussed before, we construct a
programmer’s model to execute all the function blocks. Each
instruction is 16-bit, which in most cases is divided into three
fields: the operations, the address of the source register and the
address of the destination register. The operation is encoded in the
first 8-bit field. Table 1 presents the instructions and their
corresponding operation codes. Some special data moving
instructions and branch instructions belong to special types. Their
operation codes are not encoded as 8bits, and we will discuss it in
detail below. All the instructions can be classified as one of the
following five types:

Table 1. Instructions and corresponding operation code

8bit opcode Instruction 8bit opcode Instruction

0x01 ADD 0x10 DIS

0x02 SUB 0x13 DAG

0x04 XOR 0x16 MOV

0x05 LSHIFT 0x20 GETDATA

0x06 RSHIFT 0x21 WRAM

0x07 INC 0x22 RRAM

0x09 OR 0x23 DEC

0x0e MULGF 0x24 COMP

0x0f RNG 0x28 AND

3.3.1 Addressing Modes
There are three addressing modes for the registers of FV16
coprocessor. One is register direct addressing, which move data
from one register to another. The second mode is the immediate
data addressing, in which the data is contained in the instruction.
Another mode is inherent addressing, where the instructions
always use the same source or destination.

3.3.2 Data Transfer Operations
The coprocessor uses an internal 8K×16bit RAM block, which
can be accessed with dedicated instructions. These instructions
read from and write to the memory, and take care of address
generation:

Mnemonics Operation Opcode

MOV Rn,Rm Rn Rm 0x16RnRm
MOVDi d d Ri 0b00011iiidddddddd

GETDATA Rn input Rn 0x200Rn
RRAM Rn,Rm read Rn of RAM into Rm 0x22RnRm
WRAM Rn,Rm Write Rn of RAM into Rm 0x21RnRm

DAG Rn,Rm Depending on Rn,
Data address Rm 0x13RnRm

3.3.3 ALU and Comparison Operations
ALU has various operations to perform the regular calculations:

Mnemonics Operation Opcode

ADD Rn,Rm Rn+Rm Rm 0x01RnRm

SUB Rn,Rm Rn-Rm Rm 0x02RnRm

() ()22211
2

2211 sinsincoscos θθθθ ×−×+×−× rrrr

assignment

LUTs

assignment

input_2

ϑ1 ϑ2r1 r2

cosϑ1 sinϑ1

× ×

+

× ×
sinϑ2cosϑ2

input_1

output

r1×cosϑ1
r1×sinϑ1

r2×cosϑ2
r2×sinϑ2

(r1×cosϑ1 - r2×cosϑ2)2 (r1×sinϑ1 - r2×sinϑ2)2

assignment

LUTs

assignment

input_2

ϑ1 ϑ2r1 r2

cosϑ1 sinϑ1

× ×

+

× ×
sinϑ2cosϑ2

input_1

output

r1×cosϑ1
r1×sinϑ1

r2×cosϑ2
r2×sinϑ2

(r1×cosϑ1 - r2×cosϑ2)2 (r1×sinϑ1 - r2×sinϑ2)2

0

2

4

6

Design Methods
C Program on ARM

FV16 w/o special blocks
FV16 w/ special blocks

GFM RNG TRI

C
lo

ck
 C

yc
le

s
(lo

g1
0)

0

2

4

6

133

CMP Rn,Rm cmp Rn&Rm, affect Z 0x24RnRm

XOR Rn,Rm Rn^Rm Rm 0x04RnRm

LSHIFT Rn,Rm Rn<<8 Rm 0x05RnRm

RSHIFT Rn,Rm Rn>>8 Rm 0x06RnRm

INC Rn Rn + 1 Rn 0x07RnRn

DEC Rn Rn – 1 Rn 0x23RnRn

OR Rn,Rm Rn | Rm Rm 0x09RnRm

AND Rn,Rm Rn & Rm Rm 0x28RnRm

3.3.4 Branch Instructions
Since loops are used extensively in the fuzzy vault scheme,
branch instructions, including non-conditional jump and
conditional jump, are designed to support decision-making and
control flow.

Mnemonics Operation Opcode

GOTO k goto address k in program 0b010kkkkkkkkkkkkk

CGOTO k on condition S, go to k 0b011kkkkkkkkkkkkk

3.3.5 Special Block Instructions
Besides the instructions described above, we also design several
instructions corresponding to the three specialized function
modules:

Mnemonics Operation Opcode

RNG Rn rand() Rn 0x0f0Rn
DIS Rn,Rm dis(Rn,Rm) Rm 0x10RnRm

MULGF Rn,Rm Rn * Rm Rm 0x0eRnRm

3.4 Design Flow
In the previous sections we discussed the architecture of the
microcoded coprocessor FV16, as well as the programmer’s
model for writing assembly instructions. In this section, we
present the system design flow, which is shown in Fig. 7. Given
the application specifications, the designer will partition the C-
specification in driver software running on the embedded ARM
and a specialized coprocessor. Both the coprocessor architecture
and the software running on it need to be designed. A specialized
language, GEZEL [9], is used to construct the datapath for the
coprocessor. At the same time, the C program for the algorithm,
which needs to run on the coprocessor, is converted to assembly
code following the programmer’s model. Then the microcode is
generated by the assembler and stored in the program ROM,
which is part of the microcoded coprocessor. All three
components, the C program for the driver, the GEZEL code for
the coprocessor datapath and the microcode running on the
coprocessor are co-simulated in GEZEL. GEZEL is an open
design environment for domain-specific micro-architecture linked
with the ARM instruction-set simulator [9]. As an example, Fig. 8
shows the GEZEL design for the Galois Field multiplier used in
the FV16 coprocessor.
In order to compile the assembly instructions for the FV16
microcoded coprocessor architecture, we build a dedicated
assembler based on a public available universal retargetable
assembler framework from Tomasz Sztekja [10]. This is a
powerful assembler and linker package, which is written fully in

Java. It is very flexible and can support almost any architecture.
More important, it is open source for users to port to their own
processors.

Fig. 7. Design flow for programming on the FV16 microcoded
coprocessor

(a)

(b)

Fig. 8. GEZEL code for Galois Field multiplier: (a) Datapath;
(b) Finite State Machine

Driver Software

Coprocessor Partitioning

C Program

Application

Coprocessor Program in C
code

GEZEL code
for coprocessor

Program in
Assembly

Simulation in the GEZEL environment

Assembler

Datapath Design

Control
Flow Design

GEZEL code for
datapath

Microcode

Driver Software

Coprocessor Partitioning

C Program

Application

Coprocessor Program in C
code

GEZEL code
for coprocessor

Program in
Assembly

Simulation in the GEZEL environment

Assembler

Datapath Design

Control
Flow Design

GEZEL code for
datapath

Microcode

// bit-serial GF(s^16) multiplier
dp gfmul(in i1, i2 : ns(16);

out mul: ns(16);
in mul_st: ns(1);
out mul_done : ns(1)) {

reg acc, sr2, fpr, r1 : ns(16);
reg mul_st_cmd : ns(1);
reg reg_i1, reg_i2 : ns(16);
sfg ini {
fpr = 0b0000000000101101;
reg_i1 = 0;
reg_i2 = 0;
acc = 0;
mul_st_cmd = mul_st;

}

sfg assign_ab {
r1 = i1;

sr2 = i2;
acc = 0;

}
sfg calc {

sr2 = (sr2 << 1);
acc = (acc << 1) ^ (r1 & (tc(1))

sr2[15]) ^ (fpr & (tc(1)) acc[15]);
}

sfg omul {
mul = acc;
mul_done = 1;

}

sfg noout {
mul = 0;
mul_done = 0;

}
}

// bit-serial GF(s^16) multiplier
dp gfmul(in i1, i2 : ns(16);

out mul: ns(16);
in mul_st: ns(1);
out mul_done : ns(1)) {

reg acc, sr2, fpr, r1 : ns(16);
reg mul_st_cmd : ns(1);
reg reg_i1, reg_i2 : ns(16);
sfg ini {
fpr = 0b0000000000101101;
reg_i1 = 0;
reg_i2 = 0;
acc = 0;
mul_st_cmd = mul_st;

}

sfg assign_ab {
r1 = i1;

sr2 = i2;
acc = 0;

}
sfg calc {

sr2 = (sr2 << 1);
acc = (acc << 1) ^ (r1 & (tc(1))

sr2[15]) ^ (fpr & (tc(1)) acc[15]);
}

sfg omul {
mul = acc;
mul_done = 1;

}

sfg noout {
mul = 0;
mul_done = 0;

}
}

fsm gfmul_ctl(gfmul) {
state s1, s2, s3, s4, s5,

s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18;
initial s0;
@s0 (ini, noout) -> s1;
@s1 if (mul_st_cmd) then (assign_ab, noout) -> s2;

else (ini, noout) -> s1;
@s2 (calc, noout) -> s3;
@s3 (calc, noout) -> s4;
@s4 (calc, noout) -> s5;
@s5 (calc, noout) -> s6;
@s6 (calc, noout) -> s7;
@s7 (calc, noout) -> s8;
@s8 (calc, noout) -> s9;
@s9 (calc, noout) -> s10;
@s10 (calc, noout) -> s11;
@s11 (calc, noout) -> s12;
@s12 (calc, noout) -> s13;
@s13 (calc, noout) -> s14;
@s14 (calc, noout) -> s15;
@s15 (calc, noout) -> s16;
@s16 (calc, noout) -> s17;
@s17 (calc, noout) -> s18;
@s18 (ini, omul) -> s1;

}

fsm gfmul_ctl(gfmul) {
state s1, s2, s3, s4, s5,

s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18;
initial s0;
@s0 (ini, noout) -> s1;
@s1 if (mul_st_cmd) then (assign_ab, noout) -> s2;

else (ini, noout) -> s1;
@s2 (calc, noout) -> s3;
@s3 (calc, noout) -> s4;
@s4 (calc, noout) -> s5;
@s5 (calc, noout) -> s6;
@s6 (calc, noout) -> s7;
@s7 (calc, noout) -> s8;
@s8 (calc, noout) -> s9;
@s9 (calc, noout) -> s10;
@s10 (calc, noout) -> s11;
@s11 (calc, noout) -> s12;
@s12 (calc, noout) -> s13;
@s13 (calc, noout) -> s14;
@s14 (calc, noout) -> s15;
@s15 (calc, noout) -> s16;
@s16 (calc, noout) -> s17;
@s17 (calc, noout) -> s18;
@s18 (ini, omul) -> s1;

}

134

4. RESULTS
Following the design flow, we implement the fingerprint
verification algorithm based on the fuzzy vault scheme on the
application specific microcoded coprocessor FV16. Using the
cycle true simulation of the GEZEL, we find out the cycle number
for completing the whole procedure is 166K cycles. As a
comparison, we also write the embedded software in C and cross-
compile it into an executable to be simulated on an ARM
instruction-set simulator (ISS). The simulation shows that it takes
over 13.8M cycles to finish the algorithm. In terms of source code
size, 1400 lines of GEZEL code are used for the datapath
description for FV16 coprocessor, and 1024 lines of assembly
code are used to implement the algorithm.
After performance evaluation, the secure vault fingerprint
verification system based on the FV16 coprocessor can be
converted into synthesizable VHDL and run on a reconfigurable
FPGA platform. The Synplicity tool Synplify Pro is used to
perform the synthesis using Xilinx Virtex2 XC2V1000 as the
target platform. The system results are shown in Table 2:

Table 2. Results of FV16 coprocessor

Parameters Result Parameters Result

GEZEL code for
coprocessor

1400
lines Total LUTs 2960

Microcode 1024
lines

Block RAMs 16

Total cycle 166K Critical Path 22.231 ns

5. CONCLUSIONS
We design an application specific microcoded coprocessor called
FV16, based on which a HW/SW co-design for a secure biometric
authentication system is constructed. An instruction set, as well as
the programmer’s model, is constructed for writing assembly
programs targeting on this architecture. In this work we propose a
complete design flow to show how the design tasks are integrated.
From the design flow it is clear how other applications can be
mapped onto this microcoded coprocessor. Also the results show
that using our coprocessor makes the design over 83 times more
efficient compared to software only implementations.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the funding of NSF
account no CCR-0310527 and UC MICRO.

7. REFERENCES
[1] Tiri, K., and Verbauwhede, I, A Logic Level Design

Methodology for a Secure DPA Resistant ASIC or FPGA
Implementation, Design, Automation and Test in Europe
Conference, pp. 246-251, February 2004.

[2] Anderson, R. J., Security Engineering, A Guide to Building
Dependable Distributed Systems, John Wiley & Sons, 2001.

[3] Juels, A. and Sudan, M., A fuzzy vault scheme, Proceedings
2002 IEEE International Symposium on Information Theory,
pp.408. Piscataway, NJ.

[4] Juels, A. and Wattenberg, M., A fuzzy commitment scheme,
6th ACM Conference on Computer and Communications
Security, 1999, pp.28-36, New York, NY.

[5] Keutzer, K., Malik, S., and Newton, A.R., From ASIC to
ASIP: the next design discontinuity, 2002 IEEE International
Conference on Computer Design, 2002, pp.84-90. Los
Alamitos, CA.

[6] www.tensilica.com
[7] Clancy, T.C., Kiyavash, N., and Lin, D.J., Secure smartcard-

based fingerprint authentication, ACM Workshop on
Biometrics: Methods and Applications, Nov. 2003, pp. 45-
52, Berkeley, CA.

[8] Yang, S. and Verbauwhede, I., Automatic Secure Fingerprint
Verification System Based on Fuzzy Vault Scheme, 2005
IEEE International Conference on Acoustics, Speech, and
Signal Processing, pp609-612, March 2005, Philadelphia,
PA.

[9] Schaumont, P. and Verbauwhede, I., Domain-specific tools
and methods for application in security processor design,
Kluwer Journal for Design Automation of Embedded
Systems, pp. 365-383, November 2002.

[10] Tomasz Sztejka, Universal Retargetable Assembler,
http://www.dornet.pl/~sztejka/sztejkat/Retargetable_assembl
er.html.

135

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

