
Energy and Performance Analysis of Mapping Parallel Multi-
threaded Tasks for An On-Chip Multi-Processor System

Bo-Cheng Charles Lai
EE Department

 UCLA
CA 90095-1594

bclai@ee.ucla.edu

Patrick Schaumont
ECE Department

Virginia Tech.
VA 24061

schaum@ee.ucla.edu

Wei Qin
ECE Department
Boston University

MA 02215
wqin@bu.edu

Ingrid Verbauwhede
EE Dept. UCLA, CA

and
ESAT, K.U.Leuven, BE

Ingrid@ee.ucla.edu

ABSTRACT
Multiprocessor systems offer superior performance and
potentially better energy-reduction than single-processor systems.
It all depends however, on how well the application can be
mapped onto the architecture. Indeed, a careful tradeoff of energy
and performance requires a thorough understanding of the energy
consumption pattern of the application across the architecture. We
develop a simulation platform, MultiPo-Sim, which returns the
cycle-accurate performance and energy consumption of a
multiprocessor system, for both hardware components and
software primitives. On the hardware level, energy scaling
techniques can be modeled and each processing core can operate
at different energy modes. MultiPo-Sim achieves 331K cycles per
second simulation speed for a four-processor system on a 3GHz,
512MByte Fedora-2 PC. On the software level, data parallelizing
and task parallelizing are two common models of multi-thread
programming. By using MultiPo-Sim, we show that they show
different energy and performance characteristics when mapping
onto a multi-processor system.

1. Introduction
 Multiprocessor systems-on-chip (MPSOC) have been

proposed as a way to achieve high performance as well as low
energy consumption [1]. Multiple cores on the chip offer higher
parallelism and thus potentially higher performance. In addition,
by lowering the supply voltage and operating frequency for
processor cores, the energy consumption of the system can be
reduced significantly. The contributions of this paper are two fold.
The first contribution is that we develop a cycle-accurate
multiprocessor simulation platform, MultiPo-Sim, which enables
the simulation of multi-threaded tasks on a multiprocessor system
and returns both performance and energy consumption. The
second contribution is to explore the energy and performance
characteristics of the different models of multi-threaded tasks on a
multiprocessor system.
This paper is organized as follows. Section 2 gives the prior art
about the estimation of energy consumption of processor-based
systems. Section 3 discusses the data and task parallelizing
models. Two applications are introduced to represent each model.
Section 4 introduces the multiprocessor system and simulator
used in this paper. Section 5 explains the power models used in
the MultiPo-Sim. Section 6 shows the performance and energy
consumption results. The conclusion will be drawn in section 7.

2. Prior Art
The estimation of energy-consumption and power modeling of
processor-based systems have been widely studied. Cycle-
accurate simulators are used to develop the power estimation
platforms so that both energy and performance can be

evaluated[2][3]. However, most of them are focusing on the single
processor systems rather than multiprocessor systems. M.Loghi
et. al[4] proposed a cycle-accurate power analysis for a
multiprocessor SoC. By using the cycle-accurate behavior, the
authors combine the power and performance models of different
components. However, their work can only breakdown the energy
consumption for different hardware modules and does not support
energy scaling for processing cores. The main contributions of the
proposed multiprocessor simulator in this paper, the MultiPo-Sim,
are simulation of energy scaling of individual processor cores in
addition to the ability to trace the energy/performance of the
software components.

3. Multi-threading Models
In order to take advantages of the computation power

provided by the multiprocessor system, applications need to be
parallelized. There are basically two schemes to parallelize the
application, data parallelization and task parallelization.

APPLICATION FLOW

APPLICATION FLOW

A task thread

(a)

(b)

Fig.1: (a) Data and (b) task parallelization

We define the application flow as the flow of information from
the input to the output of the system. Given an application flow
from left to right, the process of the application can be partitioned
in parallel with the application flow, which we call data-parallel
processing (Fig.1(a)). Each partition is implemented as a task
thread and can be executed by a processor core. The other way is
to parallelize the process of the application according to the
individual tasks in the application flow, which we call a task-
parallel processing (Fig.1(b)). These two parallel system
architectures have different impact on the energy consumption as
well as performance. We use two applications, a fingerprint
minutiae detection and a high throughput image encoder, to
demonstrate the characteristics of a data-parallel model and a
task-parallel model respectively.

The fingerprint minutiae detection algorithm is a fixed-point
version of the NIST fingerprint software [11]. The multithreaded
fingerprint minutiae detection program partitions the fingerprint
image into four different sections. As shown in Fig.2(a), each
image section has 144 by 144 pixels of the fingerprint image, and
will be initiated as an individual thread. The second application is
a high throughput image encoder which is implemented as a data-
flow system. Fig.2(b) illustrates an instance of a data-flow system.
It consists of actors of different operations. The actors are
communicating through the intermediate queues, and each actor is

implemented as a thread. There are a total of 26 actors in the
system.

144

th
re

ad
s

 Actor Queue
 (a) (b)

Fig.2: (a) Multithreaded fingerprint minutiae detection
(b) Data-flow image encoder application

4. Multiprocessor Platform and MultiPo-Sim
In this paper, we use a shared-memory multiprocessor

architecture. Fig.3 shows an instance of the multiprocessor system
with four ARM processors. Each processor core has a data and
instruction cache. For each processor, there is a specific
voltage/frequency(V/f) module which controls the operating clock
frequency and the supply voltage to achieve energy scaling.
Besides ARM processors, there are two other components in the
system: a hardware test-and-set lock to support inter-process
communication and synchronization, and a memory interface to
access off-chip memory. The system uses a central bus as the
medium to connect different hardware modules. Note that the bus
interfaces, the memory interfaces and the test-and-set lock are
always operating at nominal speed.

D I D I D I
ARM ARM ARM

V/f V/f V/f

system clk

n n n

BUS

memory interface

main memory

chip boundary

D I
ARM

V/f

test-and-set lock

n

Fig.3: A shared memory energy-scaled multiprocessor system
We develop a cycle-accurate simulation platform, called MultiPo-
Sim, which can analyze both the performance and energy
consumption of a shared-memory multiprocessor architecture.
MultiPo-Sim is developed by combining SimIt-ARM[8] and
GEZEL[9]. GEZEL provides a common platform which can co-
simulate different numbers of processors, bus interconnect and
other system modules. Each processor is modeled by one SimIt-
ARM ISS. The power models are attached to each hardware
module. The energy consumption is estimated based on the cycle-
accurate behavior of each module. In addition, MultiPo-Sim can
also trace the application to evaluate the cycle count and the
energy consumption spent on a specific function of a program.

5. Power Model
We categorize the power model into three different hardware

components: processor cores, caches, and synchronization
modules. The power models are developed based on 0.18um
CMOS technology. Note that MultiPo-Sim does not model the

off-chip energy consumption, such as off-chip memory and
interconnect.

5.1 Processor Core (without Cache)
Since we are modeling the energy consumption of a complete

multiprocessor system, the breakdown of the energy consumption
of each module is more important than profiling the detailed
energy consumption of a single core. Therefore MultiPo-Sim
chooses the average power consumption to estimate the energy
consumption of the ARM processor core. We use a processor core
from ARM Corp., ARM966E-S[10], which is similar to the ISS of
MultiPo-Sim in both architecture and performance. We choose the
performance characteristics of the processor core provided by
ARM Corp., which shows the nominal operating frequency and
the average power consumption of ARM966E-S core without
cache are 200MHz and 0.70 mW/MHz respectively.
In order to model the energy scaling capability of the processors,
we use similar voltage/frequency scaling characteristics as the
LART platform[5]. The energy-scaling ratio (V2f ratio) of the
high frequency mode and low frequency mode is 18.5. These
characteristics are mapped to the ARM cores used in MultiPo-Sim
to support two steps of energy scaling.

Table-1: Power characteristics of the processor cores

This paper focuses on the dynamic energy consumption. We
realize that the static energy will play an important role when the
system size is growing larger and more advanced semiconductor
technology is used. With an adequate power model, this can be
integrated in MultiPo-Sim and is in our future research plan.

5.2 Cache
In both single processor and multiprocessor systems, caches

usually consume a significant portion of the total energy [6]. Sim-
Panalyzer[12] is a energy estimation tool for the ARM
architecture. The latest version of Sim-Panalyzer provides very
detailed energy estimation models for caches, which we port to
our platform. By using the cycle-accurate cache access behavior,
such as the number of switchings on the cache line, from the
processor as the inputs, the power model returns the energy
consumption of the cache.

5.3 Central Bus and Other Modules
Central Bus. Due to the moderate system clock frequency, the
energy is mainly consumed by the switching activity on the bus
wires. We therefore model the bus as a long wire on the chip, and
use the Berkeley Predictive Technology Model (BPTM) [7] to
model the wire capacitance of the bus interconnect. We
approximate the length of the bus as the following:

Bus Length = 2 * Sqrt(Atotal_core + Atotal_cache) (1)

Equation (1) reflects the length of the sum of the width and height
of the chip die where Atotal_core and Atotal_cache are the area of the
processor cores and the caches respectively. We assume the bus

 Pouwelse[5] Energy-Scaled ARM Core
in MultiPo-Sim

Processor StrongARM StrongARM

V/f high power (V/MHz) 1.65 / 251 1.65 / 200

V/f low power (V/MHz) 0.79 / 59 0.79 / 47

Frequency(f) ratio 4.25 4.25

V2f ratio (high/low) 18.5 18.5

uses inverter-based drivers and receivers, which will add a load of
0.05pF to 0.1pF according to TSMC 0.18um technology.
Test-and-set lock and Memory interface. Due to their low
complexity, the energy consumption of these two components will
be dominated by the large receiver- and driver buffers connected
to the bus. Therefore we use the energy consumption of the buffer
to represent the power model.

6. Detailed Energy and Performance Analysis
Fig.4 shows the execution cycles (lines) and energy

consumption (bars) of the minutiae detection (mindtct) and the
data-flow image encoder (dfimg). The basic trend shows that
increasing the number of processor cores and using the high
power mode will enhance the overall system performance. The
energy consumption of different processor schemes basically
shows a reverse trend as the execution cycles. Increasing the
number of processor cores and using the high power mode will
consume more energy. The energy scaling technique applied on
the multiprocessor system reduces the total system energy
consumption significantly.

1L 2LL 4LLLL 2HL 1H 2HH 4HHHH

mindtct - energy
dfimg - energy
mindtct - cycles
dfimg - cycles

E
ne

rg
y

 (J
)

C
yc

le
s

 (M
ill

io
n)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0

200

400

600

800

1000

1200

Fig.4: Energy consumption and execution cycles on different

processor schemes
Fig.5 shows the normalized energy consumption breakdown for
different components in the system. For the processor schemes
with high power mode, the processor cores consume the most
energy, 67% to 82% for mindtct and 82% to 93% for dfimg. The
caches dominate the energy consumption in the schemes with low
power mode, 66% to 75% for mindtct and 46% to 60% for dfimg.
Compared to the cores and the caches, the central bus and the
synchronization modules do not consume too much energy (0.8%
to 8%).

0%

20%

40%

60%

80%

100%

Bus+sync
Caches
Core

Bus+sync
Caches
Core

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

 (a) mindtct (b) dfimg
Fig.5: Normalized energy consumption of different HW

components for two different applications
Processor cores are synchronized using a test-and-set

function. Fig.6 shows the normalized energy of the
synchronization operations. Note that, in this figure, the
synchronization operation represents the energy spent on the
inter-process communication for each module in the system,
including processor cores, caches, bus interconnect, memory
interface as well as the hardware test-and-set module.

The task threads of data parallelized applications are almost
independent from other task threads. Therefore, there is a low
amount of synchronization in the system (0.4% to 12%).
However, in data parallelized applications, the actors need to pass
and receive the data to(from) other actors. The synchronization is
happening frequently and consumes 51% to 69% of the total
energy in dfimg application.

Sync.

Other
0%

20%

40%

60%

80%

100%

Sync.

Other

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

Sync.

Other
0%

20%

40%

60%

80%

100%

Sync.

Other

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

1L
2LL

4LLLL
2HL

1H 4HHHH
2HH

0.00013J

0.00073J

0.00330J

0.00360J

0.00216J

0.01379J

0.07903J

0.00546J

0.00731J

0.01204J

0.10501J

0.08406J

0.14272J

0.39454J

Energy of
Sync.

 (a) mindtct (b) dfimg

Fig.6: Normalized energy consumption of synchronization
operation for two different applications

7. Conclusion and Future Work
MultiPo-Sim, a multiprocessor simulator, profiles both the

performance and energy consumption of hardware modules as
well as software functions. Given a data parallelized application,
the task threads result in a low amount of synchronization in the
system. The synchronization happens frequently for a task
parallelized application, which results in a large portion of the
total energy consumed by synchronization operations.

8. Acknowledgement
The authors gratefully acknowledge the support of NSF (Grant
CCR 0310527) and SRC (Grant SRC-2003-HJ-1116).

References
[1] L.Hammond, B.A.Nayfeh, K.Olukotun, “A Single-Chip

Multiprocessor,” Proc. of IEEE, pp.79-85, Sept. 1997.
[2] D.Brooks, et. al “Wattch: a framework for architectural-level

power analysis and optimizations,” ISCA, pp.83-94, 2000.
[3] Sim-Panalyzer Project, http://www.eecs.umich.edu/~panalyzer/
[4] M.Loghi, M.Poncino, L.Benini, “Cycle-Accurate Power Analysis for

Mutliprocessor System-on-a-chip,” GVLSI, pp.401-406, Apr. 2004.
[5] J. Pouwelse, K. Langedoen, H. Sips, “Application-directed voltage

scaling,” IEEE Trans. on VLSI Systems, 11(5):812—826.
[6] J. Montanaro, et al, “160-MHz, 32-b, 0.5-W CMOS RISC

Microprocessor” IEEE JSSC, pp1703-1714, 1996.
[7] Berkeley Predictive Technology Model (BPTM), http://www-

device.eecs.berkeley.edu/~ptm/
[8] SimIt-ARM, http://simit-arm.sourceforge.net/
[9] GEZEL Project, http://www.ee.ucla.edu/~schaum/gezel/
[10] ARM Corp, http://www.arm.com/
[11] S.Yang, K.Sakiyama, I.Verbauwhede, “A Compact and Efficient

Fingerprint Verification System for Secure Embedded Systems,” 37th
Asilomar Conference, Nov. 2003.

[12] Sim-Panalyzer Project, http://www.eecs.umich.edu/~panalyzer/

