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ABSTRACT 
Multiprocessor systems offer superior performance and 
potentially better energy-reduction than single-processor systems. 
It all depends however, on how well the application can be 
mapped onto the architecture. Indeed, a careful tradeoff of energy 
and performance requires a thorough understanding of the energy 
consumption pattern of the application across the architecture. We 
develop a simulation platform, MultiPo-Sim, which returns the 
cycle-accurate performance and energy consumption of a 
multiprocessor system, for both hardware components and 
software primitives. On the hardware level, energy scaling 
techniques can be modeled and each processing core can operate 
at different energy modes. MultiPo-Sim achieves 331K cycles per 
second simulation speed for a four-processor system on a 3GHz, 
512MByte Fedora-2 PC. On the software level, data parallelizing 
and task parallelizing are two common models of multi-thread 
programming. By using MultiPo-Sim, we show that they show 
different energy and performance characteristics when mapping 
onto a multi-processor system. 

1. Introduction  
 Multiprocessor systems-on-chip (MPSOC) have been 

proposed as a way to achieve high performance as well as low 
energy consumption [1]. Multiple cores on the chip offer higher 
parallelism and thus potentially higher performance. In addition, 
by lowering the supply voltage and operating frequency for 
processor cores, the energy consumption of the system can be 
reduced significantly. The contributions of this paper are two fold. 
The first contribution is that we develop a cycle-accurate 
multiprocessor simulation platform, MultiPo-Sim, which enables 
the simulation of multi-threaded tasks on a multiprocessor system 
and returns both performance and energy consumption. The 
second contribution is to explore the energy and performance 
characteristics of the different models of multi-threaded tasks on a 
multiprocessor system. 
This paper is organized as follows. Section 2 gives the prior art 
about the estimation of energy consumption of processor-based 
systems. Section 3 discusses the data and task parallelizing 
models. Two applications are introduced to represent each model. 
Section 4 introduces the multiprocessor system and simulator 
used in this paper. Section 5 explains the power models used in 
the MultiPo-Sim. Section 6 shows the performance and energy 
consumption results. The conclusion will be drawn in section 7. 

2. Prior Art  
The estimation of energy-consumption and power modeling of 
processor-based systems have been widely studied. Cycle-
accurate simulators are used to develop the power estimation 
platforms so that both energy and performance can be 

evaluated[2][3]. However, most of them are focusing on the single 
processor systems rather than multiprocessor systems. M.Loghi 
et. al[4] proposed a cycle-accurate power analysis for a 
multiprocessor SoC. By using the cycle-accurate behavior, the 
authors combine the power and performance models of different 
components. However, their work can only breakdown the energy 
consumption for different hardware modules and does not support 
energy scaling for processing cores. The main contributions of the 
proposed multiprocessor simulator in this paper, the MultiPo-Sim, 
are simulation of energy scaling of individual processor cores in 
addition to the ability to trace the energy/performance of the 
software components.  

3. Multi-threading Models   
In order to take advantages of the computation power 

provided by the multiprocessor system, applications need to be 
parallelized. There are basically two schemes to parallelize the 
application, data parallelization and task parallelization.  
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Fig.1: (a) Data and (b) task parallelization 

We define the application flow as the flow of information from 
the input to the output of the system. Given an application flow 
from left to right, the process of the application can be partitioned 
in parallel with the application flow, which we call data-parallel 
processing (Fig.1(a)). Each partition is implemented as a task 
thread and can be executed by a processor core. The other way is 
to parallelize the process of the application according to the 
individual tasks in the application flow, which we call a task-
parallel processing (Fig.1(b)). These two parallel system 
architectures have different impact on the energy consumption as 
well as performance. We use two applications, a fingerprint 
minutiae detection and a high throughput image encoder, to 
demonstrate the characteristics of a data-parallel model and a 
task-parallel model respectively.  

The fingerprint minutiae detection algorithm is a fixed-point 
version of the NIST fingerprint software [11]. The multithreaded 
fingerprint minutiae detection program partitions the fingerprint 
image into four different sections. As shown in Fig.2(a), each 
image section has 144 by 144 pixels of the fingerprint image, and 
will be initiated as an individual thread. The second application is 
a high throughput image encoder which is implemented as a data-
flow system. Fig.2(b) illustrates an instance of a data-flow system. 
It consists of actors of different operations. The actors are 
communicating through the intermediate queues, and each actor is 



implemented as a thread. There are a total of 26 actors in the 
system.  
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Fig.2: (a) Multithreaded fingerprint minutiae detection  
(b) Data-flow image encoder application 

4. Multiprocessor Platform and MultiPo-Sim 
In this paper, we use a shared-memory multiprocessor 

architecture. Fig.3 shows an instance of the multiprocessor system 
with four ARM processors. Each processor core has a data and 
instruction cache. For each processor, there is a specific 
voltage/frequency(V/f) module which controls the operating clock 
frequency and the supply voltage to achieve energy scaling. 
Besides ARM processors, there are two other components in the 
system: a hardware test-and-set lock to support inter-process 
communication and synchronization, and a memory interface to 
access off-chip memory. The system uses a central bus as the 
medium to connect different hardware modules. Note that the bus 
interfaces, the memory interfaces and the test-and-set lock are 
always operating at nominal speed. 
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Fig.3: A shared memory energy-scaled multiprocessor system  
We develop a cycle-accurate simulation platform, called MultiPo-
Sim, which can analyze both the performance and energy 
consumption of a shared-memory multiprocessor architecture. 
MultiPo-Sim is developed by combining SimIt-ARM[8] and 
GEZEL[9]. GEZEL provides a common platform which can co-
simulate different numbers of processors, bus interconnect and 
other system modules. Each processor is modeled by one SimIt-
ARM ISS. The power models are attached to each hardware 
module. The energy consumption is estimated based on the cycle-
accurate behavior of each module. In addition, MultiPo-Sim can 
also trace the application to evaluate the cycle count and the 
energy consumption spent on a specific function of a program.  

5. Power Model  
We categorize the power model into three different hardware 

components: processor cores, caches, and synchronization 
modules. The power models are developed based on 0.18um 
CMOS technology. Note that MultiPo-Sim does not model the 

off-chip energy consumption, such as off-chip memory and 
interconnect.  

5.1 Processor Core (without Cache) 
Since we are modeling the energy consumption of a complete 

multiprocessor system, the breakdown of the energy consumption 
of each module is more important than profiling the detailed 
energy consumption of a single core. Therefore MultiPo-Sim 
chooses the average power consumption to estimate the energy 
consumption of the ARM processor core. We use a processor core 
from ARM Corp., ARM966E-S[10], which is similar to the ISS of 
MultiPo-Sim in both architecture and performance. We choose the 
performance characteristics of the processor core provided by 
ARM Corp., which shows the nominal operating frequency and 
the average power consumption of ARM966E-S core without 
cache are 200MHz and 0.70 mW/MHz respectively. 
In order to model the energy scaling capability of the processors, 
we use similar voltage/frequency scaling characteristics as the 
LART platform[5]. The energy-scaling ratio (V2f ratio) of the 
high frequency mode and low frequency mode is 18.5. These 
characteristics are mapped to the ARM cores used in MultiPo-Sim 
to support two steps of energy scaling.  

Table-1: Power characteristics of the processor cores 

This paper focuses on the dynamic energy consumption. We 
realize that the static energy will play an important role when the 
system size is growing larger and more advanced semiconductor 
technology is used. With an adequate power model, this can be 
integrated in MultiPo-Sim and is in our future research plan.  

5.2 Cache  
In both single processor and multiprocessor systems, caches 

usually consume a significant portion of the total energy [6]. Sim-
Panalyzer[12] is a energy estimation tool for the ARM 
architecture. The latest version of Sim-Panalyzer provides very 
detailed energy estimation models for caches, which we port to 
our platform. By using the cycle-accurate cache access behavior, 
such as the number of switchings on the cache line, from the 
processor as the inputs, the power model returns the energy 
consumption of the cache. 

5.3 Central Bus and Other Modules  
Central Bus.  Due to the moderate system clock frequency, the 
energy is mainly consumed by the switching activity on the bus 
wires. We therefore model the bus as a long wire on the chip, and 
use the Berkeley Predictive Technology Model (BPTM) [7] to 
model the wire capacitance of the bus interconnect. We 
approximate the length of the bus as the following: 

Bus Length = 2 * Sqrt( Atotal_core + Atotal_cache ) (1) 

Equation (1) reflects the length of the sum of the width and height  
of the chip die where Atotal_core and Atotal_cache are the area of the 
processor cores and the caches respectively. We assume the bus 

 Pouwelse[5] Energy-Scaled ARM Core 
in MultiPo-Sim 

Processor StrongARM StrongARM 

V/f high power (V/MHz) 1.65 / 251 1.65 / 200 

V/f low power (V/MHz) 0.79 / 59 0.79 / 47 

Frequency(f) ratio 4.25 4.25 

V2f ratio (high/low) 18.5 18.5 



uses inverter-based drivers and receivers, which will add a load of 
0.05pF to 0.1pF according to TSMC 0.18um technology. 
Test-and-set lock and Memory interface. Due to their low 
complexity, the energy consumption of these two components will 
be dominated by the large receiver- and driver buffers connected 
to the bus. Therefore we use the energy consumption of the buffer 
to represent the power model.  

6. Detailed Energy and Performance Analysis  
Fig.4 shows the execution cycles (lines) and energy 

consumption (bars) of the minutiae detection (mindtct) and the 
data-flow image encoder (dfimg). The basic trend shows that 
increasing the number of processor cores and using the high 
power mode will enhance the overall system performance. The 
energy consumption of different processor schemes basically 
shows a reverse trend as the execution cycles. Increasing the 
number of processor cores and using the high power mode will 
consume more energy. The energy scaling technique applied on 
the multiprocessor system reduces the total system energy 
consumption significantly.  
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Fig.4: Energy consumption and execution cycles on different 

processor schemes 
Fig.5 shows the normalized energy consumption breakdown for 
different components in the system. For the processor schemes 
with high power mode, the processor cores consume the most 
energy, 67% to 82% for mindtct and 82% to 93% for dfimg. The 
caches dominate the energy consumption in the schemes with low 
power mode, 66% to 75% for mindtct and 46% to 60% for dfimg. 
Compared to the cores and the caches, the central bus and the 
synchronization modules do not consume too much energy (0.8% 
to 8%). 
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Fig.5: Normalized energy consumption of different HW 

components for two different applications 
Processor cores are synchronized using a test-and-set 

function. Fig.6 shows the normalized energy of the 
synchronization operations. Note that, in this figure, the 
synchronization operation represents the energy spent on the 
inter-process communication for each module in the system, 
including processor cores, caches, bus interconnect, memory 
interface as well as the hardware test-and-set module. 

The task threads of data parallelized applications are almost 
independent from other task threads. Therefore, there is a low 
amount of synchronization in the system (0.4% to 12%). 
However, in data parallelized applications, the actors need to pass 
and receive the data to(from) other actors. The synchronization is 
happening frequently and consumes 51% to 69% of the total 
energy in dfimg application.  
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Fig.6: Normalized energy consumption of synchronization 
operation for two different applications 

7. Conclusion and Future Work 
MultiPo-Sim, a multiprocessor simulator, profiles both the 

performance and energy consumption of hardware modules as 
well as software functions. Given a data parallelized application, 
the task threads result in a low amount of synchronization in the 
system. The synchronization happens frequently for a task 
parallelized application, which results in a large portion of the 
total energy consumed by synchronization operations.  
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