
A Scalable and High Performance Elliptic Curve Processor with
Resistance to Timing Attacks

Alireza Hodjat1, David D. Hwang1, Ingrid Verbauwhede1,2

1 University of California, Los Angeles
2 Katholieke Universiteit Leuven

{ahodjat, dhwang, ingrid} @ ee.ucla.edu

Abstract

This paper presents a high performance and
scalable elliptic curve processor which is designed to
be resistant against timing attacks. The point
multiplication algorithm (double-add-subtract) is
modified so that the processor performs the same
operations for every 3 bits of the scalar k independent
of the bit pattern of the 3 bits. Therefore, it is not
possible to extract the key pattern using a timing
attack. The data flow graph of the modified algorithm
is derived and the underlying Galois Field operators
are scheduled so that the point multiplication delay is
minimized. The architecture of this processor is based
on the Galois Field of GF(2n) and the bit-serial field
multiplier and squarer are designed. The processor is
configurable for any value of n and the delay of point
multiplication is [18(n+3) + (n+3)/2 + 1]×(n/3) clock
cycles. For the case of GF(2163) the point
multiplication delay is 165888 clock cycles.

Keywords
Elliptic Curve Cryptography, side-channel attacks,
Galois fields, hardware architecture, security.

1. Introduction
Elliptic curve cryptography (ECC) is a promising

form of public key cryptography for next-generation
embedded applications. Because the elliptic key
discrete logarithm problem has no known solution that
can be computed in sub-exponential time, an ECC
system can provide security equivalent to an RSA
system while using much smaller parameters (i.e. bit
size). Due to these smaller parameters, ECC systems
are particularly attractive for deployment in deeply
embedded systems with limited resources.

However, it is critical to note that security in an
embedded context requires a cryptosystem to be both
efficient in resources as well as keenly aware of side-

channel attacks. A cryptosystem which is not resource-
efficient is impractical for use in a resource-constrained
device. Likewise, a system that is not side-channel
aware may result in an easily compromised device.

In past years, there have been a number of papers on
ECC implementations designed for resistance to side-
channel attacks (SCAs). Side-channel attacks on ECC
systems are often focused on exploiting the difference
in power signatures between the point double and point
addition operations. In using a simple double-add
scalar multiplication algorithm, for instance, the private
key can readily be determined by analyzing in time the
power signatures of additions and doubles. Coron [2]
demonstrates that differential power analysis can be
applied to ECC systems, and shows initial techniques
to thwart DPA. Reference [3] provides an algorithm
based on Montgomery’s method which requires a point
double and point addition to occur at each scalar
multiplication step, regardless of the key bit. In [4], the
authors first analyze the work of [2] and [3] and then
demonstrate that a hybrid technique of both is actually
the most secure. Oswald and Aigner [5] have shown
that adding randomization to the scalar multiplication
algorithm to blind the input parameters of the
multiplication is a means to provide SCA resistance.
The work of [6] provides two techniques to thwart
attacks: the first causes point doublings and additions
to be indistinguishable; the second performs non-
deterministic point exponentiation. An SCA-resistant
method using encoding to ensure point doublings and
additions occur in a uniform pattern is shown in [7].

This paper presents a scalable ECC hardware
implementation that provides resistance to certain types
of timing-based side-channel attacks. A modified point
multiplication algorithm is presented which is used to
conceal the difference between the point
addition/subtraction and point double operations. The
implementation in this paper is different from prior art
because we will focus on hiding the information of the
private key in the highest level of the point

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

multiplication algorithm by following a similar
dataflow graph (same operations in the same number of
steps) for every three bits of the secret-key. Moreover,
through our proposed algorithm schedules, the datapath
operators are running for every step of the algorithm
regardless of the bit-pattern of the private key.

The rest of this paper is organized as follows. In
section two the elliptic curve cryptosystem is
introduced. Section three presents the modified point
multiplication algorithm that is used to gain resistance
against timing attacks. Moreover, the performance
optimizations and the underlying operator schedules to
implement the modified point multiplication algorithm
are presented. Section four presents the hardware
architecture of the ECC processor that is implemented
using the result of section three. Section five provides
the performance results and conclusion is in section six.

2. Elliptic Curve Cryptosystem
IEEE public-key standard specification (IEEE

P1363) [8] defines the Elliptic Curve Cryptography
algorithm. The main operation in a typical elliptic
curve cryptosystem is called the point-multiplication
which refers to calculating k.P where k is an integer
and P is a point on the specific elliptic curve. The
theory of ECC is based on the mathematical mapping
of an elliptic curve on a Galois Field. The elements of
the Galois Field that satisfy the elliptic curve equation
form a group with a specific addition operation. With
this definition, k.P is equivalent to adding P to itself k
times by the group operation. Calculating 2.P is
referred to as double operation and the inverse of the
addition operation is called subtraction. All three
operations, doubling, addition, and subtraction are used
in the point multiplication algorithm.

Figure 1 shows the point multiplication algorithm
[8] that is based on the signed digit representation of
integer k and is considered to be a faster point
multiplication algorithm compared to the algorithm
based on the regular binary representation [9]. This
algorithm uses the elliptic curve group operations
(double, addition, and subtract) based on the
underlying Galois Field. The details of these operations
are presented in the next section. The projective
coordinates (X, Y, Z) are used for the representation of
the points on the elliptic curve in order to avoid the
inversion operation in the underlying Galois Field [8].

3. Modified point multiplication algorithm
3.1. Resistance against timing attack

As shown in Figure 1, depending on the bit pattern of
integer k, a combination of group operations are used.
A timing attack is possible because of the data

dependent if-conditions, shown in steps 3.2. and 3.3.
[2]. This security hole makes it possible to extract the
bit pattern of the scalar k (key) using timing attack.
Clearly the time that it takes to perform a single
doubling or a doubling followed by an
addition/subtraction is different and therefore, at each
step it is easy to see if the current bit of k is 0 or 1.

In order to hide the key pattern information, we
propose to consider more than one bit of k (and h) at a
time. Figure 2 shows all the possibilities of
double/addition/subtraction for all the different
combinations of the three bits of k and h. By assuming
that the result of the previous calculation is S, then the
new value is calculated using the value of S and the
initial point P.

The interesting outcome is that all 27 different
combinations can be calculated by doing three doubles
in a row (8S) and then applying one addition or
subtraction with a value mP (where m = 0, 1, 2, ..7).
Since P is a known point on the elliptic curve before
the point multiplication algorithm starts, all the values
mP are known values and can be pre-calculated and
stored in the memory. This means that independent of

Figure 1: Point multiplication algorithm [8]

Figure 2: Point multiplication per 3 bits of scalar k

1 . 2 (2 (2 S)) = 8 S + 0 P
2 . 2 (2 (2 S + P)) = 8 S + 4 P
3 . 2 (2 (2 S – P)) = 8 S – 4 P
4 . 2 (2 (2 S) + P) = 8 S + 2 P
5 . 2 (2 (2 S + P) + P) = 8 S + 6 P
6 . 2 (2 (2 S – P) + P) = 8 S – 2 P
7 . 2 (2 (2 S) – P) = 8 S – 2 P
8 . 2 (2 (2 S + P) – P) = 8 S + 2 P
9 . 2 (2 (2 S – P) – P) = 8 S – 6 P
1 0 . 2 (2 (2 S)) + P = 8 S + P
1 1 . 2 (2 (2 S + P)) + P = 8 S + 5 P
1 2 . 2 (2 (2 S – P)) + P = 8 S + 3 P
1 3 . 2 (2 (2 S) + P) + P = 8 S + 3 P
1 4 . 2 (2 (2 S + P) + P) + P = 8 S + 7 P
1 5 . 2 (2 (2 S – P) + P) + P = 8 S – P
1 6 . 2 (2 (2 S) – P) + P = 8 S – P
1 7 . 2 (2 (2 S + P) – P) + P = 8 S + 3 P
1 8 . 2 (2 (2 S – P) – P) + P = 8 S – 5 P
1 9 . 2 (2 (2 S)) – P = 8 S – P
2 0 . 2 (2 (2 S + P)) – P = 8 S + 3 P
2 1 . 2 (2 (2 S – P)) – P = 8 S – 5 P
2 2 . 2 (2 (2 S) + P) – P = 8 S + P
2 3 . 2 (2 (2 S + P) + P) – P = 8 S + 5 P
2 4 . 2 (2 (2 S – P) + P) – P = 8 S – 3 P
2 5 . 2 (2 (2 S) – P) – P = 8 S – 3 P
2 6 . 2 (2 (2 S + P) – P) – P = 8 S + P
2 7 . 2 (2 (2 S – P) – P) – P = 8 S – 7 P

Input: An integer k and an elliptic curve point P = (X, Y, Z).
Output: The elliptic curve point S = k.P = (X*, Y*, Z*).
1. Set S = P
2. Let kl kl–1...k1 k0 and hl hl–1 ...h1 h0 be the binary

representations of k and h=3k, respectively.
3. For i from l – 1 downto 1 do

3.1 Set S = 2S
(X*, Y*, Z*) = Double [(X*, Y*, Z*)].

3.2 If hi = 1 and ki = 0 then set S = S + P
(X*, Y*, Z*) = Add [(X*, Y*, Z*), (X, Y, Z)].

3.3 If hi = 0 and ki = 1 then set S = S - P
(X*, Y*, Z*) = Subtract [(X*, Y*, Z*), (X, Y, Z)].

Example: k = 13
k = 001101, h = 100111 -> S = 2 { 2 [2 (2P) – P] } + P

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Figure 3: Modified point multiplication algorithm

the bit pattern of scalars k (and h), 8S ± mP is
performed for every three bits of the key. Notice that
for the case of 8S, a dummy addition (8S + 0P) can be
performed in order to keep the datapath busy and in the
end the result is exchanged with the value of 8S which
is already calculated. The modified algorithm is shown
in Figure 3.

3.2. Performance optimization
Considering three bits of the integer k at a time not

only helps to hide the key pattern from the attacker, but
also will provide delay optimization in the overall point
multiplication algorithm. The speed optimization is that
there will be only one addition/subtraction for every
three bits of integer k while the original algorithm
requires one to three repeated additions/subtractions
depending of the bit pattern of k and h. For example
Figure 2 shows that in line 14, the original algorithm
requires three doublings and three additions while the
modified approach performs three doublings and only
one addition. Therefore, the total point multiplication
delay is minimized with the trade-off of having more
memory to store the values P, 2P, ..., 7P.

A similar method was also presented in [10] at the
algorithm level (not implementation) for the point
multiplication algorithm based on the binary
representation. However, in this paper we use the
algorithm based on the signed digit representation and
the hardware architecture of the proposed modified
algorithm is presented. Moreover, we will explore
further delay optimizations when performing 8S ± mP
as will be presented in the next section.

3.3. Point Double/Add/Subtract schedules
Figure 4 shows the details of the double and

add/subtract operations based on the projective
coordinate representation of the points of the elliptic
curve [8], [11]. These operations are defined for the
curve of y2 + xy = x3 + a x2 + b over GF(2n). The ECC
operations are performed using multiplication,
squaring, and addition in the underlying Galois Field

GF(2n). To implement the high speed ECC operators
based on the algorithms of Figure 4, the dataflow
graphs of these operations and data dependencies
between different variables and underlying Galois Field
operators must be derived.

In order to minimize the overall delay of 8S ± mP
operation, the following two characteristics can be
used.
• First of all, we can use multiple functional units (GF

multiplier, squarer or adder) in parallel. For this
purpose we should implement high speed and low
cost (in terms of area) Galois field operators. In our
case we have chosen the bit-serial implementation of
the GF multiplier and squarer operations. This is
because the bit-serial multiplier and squarer consume
much less area than bit-parallel implementation and
at the same time can be clocked at much faster clock
frequencies due to the minimum combinatorial
critical path delay.

• Secondly, since we are calculating 8S in the first
phase we can combine the operation schedules of
three doubles in a row together and optimize the total
delay. Moreover, due to the fact that we can use
more than one GF multiplier and/or squarer, by
maintaining the data dependencies between different
operators in the schedule, we can move the GF
operator up or down in the schedule and therefore
find the optimal schedule and operator assignments
that can perform the 8S ± mP operation.
Figure 5 shows the optimized schedule of three

double operations (8S) that is derived using two
multipliers, one squarer and one adder. In this dataflow
graph, the box with sign × is the GF multiplier, the box
with sign 2 is the GF squarer, and the box with sign +
is the GF adder.

Figure 4: Double and Add/Subtract algorithms

2 (X 1 , Y 1 , Z 1) = (X 2 , Y 2 , Z 2) , w h e re
Z 2 = X 1 Z 1

2 ,
X 2 = (X 1 + c Z 1

2) 4 ,
U = Z 2 + X 1

2 + Y 1 Z 1 ,
Y 2 = X 1

4 Z 2 + U X 2 .

(a) D o u b le o p er a t io n

(X 0 , Y 0 , Z 0) + (X 1 , Y 1 , Z 1) = (X 2 , Y 2 , Z 2) , w h e re
U 0 = X 0 Z 1

2 ,
S 0 = Y 0 Z 1

3 ,
U 1 = X 1 Z 0

2 ,
W = U 0 + U 1 ,
S 1 = Y 1 Z 0

3 ,
R = S 0 + S 1 ,
L = Z 0 W
V = R X 1 + L Y 1 ,
Z 2 = L Z 1 ,
T = R + Z 2 ,
X 2 = a Z 2

2 + T R + W 3 ,
Y 2 = T X 2 + V L 2 .

(b) A d d /S u b tr a c t o p e ra t io n

Input: An integer k and an elliptic curve point P = (X, Y, Z).
Output: The elliptic curve point S = k.P = (X*, Y*, Z*).
1. Set S = P
2. Let kl kl–1...k1 k0 and hl hl–1 ...h1 h0 be the binary

representations of k and h=3k, respectively.
3. For i from (l – 1)/3 downto 1 do the following for every

three bits of k and h
3.1 S = (8 S ±mP)
where mP is either P, 2P, …, or 7P depending of the
bit pattern of k and h.
(P, 2P, …, and 7P are pre-calculated and stored)

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Figure 5: Optimized schedule for 3-Double operations

In Figure 5, the input point (S) is (X0, Y0, Z0) and the
output (8S) is (X4, Y4, Z4), and the three double
operations based on the data flow graph of Figure 4 are
scheduled in a sequence. As it will be shown in the next
section, the GF(2n) bit-serial multiplier and squarer
require (n+1) and (n+1)/2 clock cycles to generate
their outputs, respectively. This means that we can
perform two GF squarings in the time frame of a GF
multiplication. Therefore, for every time frame that is
numbered in Figure 5, two GF multiplications and two
GF squarings are performed using the two multipliers
and the single squarer. The GF adder takes only one
cycle and is performed in the end of each time frame.
By considering another single cycle to store the result
in the memory and load the new operands, there will be
total of (n+3) cycles required to perform each step.

Figure 6: Optimized schedule for add/subtract operations

Figure 6 shows the optimized schedule of the
add/subtract operation (8S ± mP). The inputs are of
Figure 5, 8S=(X4, Y4, Z4) and mP=(X1, Y1, Z1) which is
loaded from memory and the final result is (X5, Y5, Z5).
A control signal differentiates between add and
subtract operations by loading the appropriate
operands. This is because subtraction of (X4, Y4, Z4) -
(X1, Y1, Z1) is calculated by addition of (X4, Y4, Z4) +
(X1, X1 Z1 + Y1, Z1) [8].

Using the schedule of figure 5 the calculation of 8S
takes [9(n+3) + (n+3)/2] cycles which is 6(n+3)
cycles less than the original algorithm of Figure 4a.
Moreover the schedule of figure 6 takes 9(n+3) cycles
which is [7(n+3) + (n+3)/2] cycles less than the
original implementation of 8S ± mP using the algorithm
of figure 4b.

2

×

2

×

××

×

2

+

2

2

X 0 X 0 Y 0 Z 0 Z 0 C X 0

S 1

S 1

Z 2

Z 2

1 2

1 2

2

+

X 3

+

Y 2 Z 2

CS 22

×

2

×

××

×

2

+

+

2

2

X 2 X 2
X 2

S 2

Z 3
Z 3

1 2

1 2

2

+

Y 4

2

×

2

×

××

×

2

+

+

2

2

X 3
X 3

S 3

Z 4

Z 4

X 4

1 2

1 2

2

+

Y 3
Z 3

C

S 3

2

Z 1
2

T 1

T 1

T 1

T 1

T 1

T 1

Z 1

1

2

3

4

5

6

7

8

9

S = (X0, Y0, Z0)
2S = (X2, Y2, Z2) = 2(X0, Y0, Z0)
4S = (X3, Y3, Z3) = 2(X2, Y2, Z2)
8S = (X4, Y4, Z4) = 2(X3, Y3, Z3)
Each doubling is based on the dataflow graph of Figure 4a

Z5 X5 Y5

2

×

××

+

+

X1 Z4Z4

Y4

×

Z4

Y1

2

W

×

×

X4 Z1

×

Z1
2

T1

T3

T1

×

+

Z5

×

R

×

×

+

×

+

×

2

X1 +

T

×

V
a

Z5

W3

W3

RT

RT

X5

T4
T3

T2

T2

T3

×

Z1

12

1

12

21

2

12

12

12

2

T1

2
T1

T1

×
2

Z1X1

XZ1

Y1XZ1

Add/subtract

Add/subtract

10

11

12

13

14

15

16

17

18

8S = (X4, Y4, Z4)
mP= (X1, Y1, Z1)
8S ± mP = (X5, Y5, Z5).
Add/subtract is based on the equations of Figure 4b

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

3.4. Underlying Galois Field operations
This section presents the architecture of underlying

Galois Field operators. The configurable and scalable
architecture of general GF(2n) operators are used. The
multiplier and squarer are performed modulo an
irreducible polynomial (P) which is a programmable
parameter. The bit-serial implementations of these
operators are used. As an example, the architecture of a
4-bit multiplier is shown in Figure 7. Generally there
are total of n registers that contain the output R. It takes
one cycle to load the operands A and B followed by n
cycles of calculating the product and modulo reduction
[12]. Therefore, the result of multiplication is ready
after (n+1) cycles. Figure 8 shows the architecture of
the bit-serial multiplier (a 7-bit field is shown as an
example). Squaring is similar to the multiplication with
the difference being the two operands are the same.
Therefore, half of the bits of the input can be loaded
into the output registers and every new coefficient is
shifted over two positions [12]. Therefore, for an n bit
squarer, a total of (n+1)/2 cycles (half of the
multiplication) are required. Notice that the
architecture shown in Figure 8 is for the case when n is
odd. When n is even there is a slight difference in the
connection of the irreducible polynomial P and the
result registers. We have chosen the odd case because
for secure elliptic curve cryptography based on GF(2n),
n must be a prime number.

Figure 7: GF(2n) bit-serial multiplier

The GF adder chosen for our implementation is a
bit-parallel architecture in order to generate the result
in a single clock cycle. Notice that the addition in
GF(2n) is carry free. Therefore, addition is equivalent
to XORing the two bit-vectors of the input operand.

4. Processor architecture
Based on the modified point multiplication algorithm

and the optimized schedules of elliptic curve three
doubles and add/subtract operations that are presented
in section three, a scalable and high speed elliptic curve
cryptographic processor is implemented. The
underlying Galois Field operations that are presented in
the last section are used in the datapath. Based on the
schedules of Figures 5 and 6 the required
interconnection between storage elements and GF
operators are designed and the finite state machine that
follows the schedules is implemented.

Figure 9 shows the point multiplication datapath that
is designed to calculate 8S ± mP schedules. This
module includes a datapath that consists of the GF
operators with their interconnections, the storage unit
that keeps the intermediate variables (X, Y, Z, T1, T2,
T3, T4), and the FSM that creates the control signals to
perform the 8S ± mP operation schedule (Figures 5 and
6). Note that point mP with coordinate (X1, Y1 , Z1) is
an input to this module. The result of each doubling
and the final addition/subtraction are overwritten to the
initial register variable S. This means that the hardware
registers that store X0 , X2 , X3 , X4 , and X5 are the
same. This is also the case for Y and Z coordinates.
Moreover, four temporary variables called T1, T2, T3,
T4 are used to store the values in the whole schedule.

The point multiplication module of figure 9 is
controlled from the upper level module using the start
and done and plus_minus signals. Basically, the upper
level control provides the correct value of mP through
(X1, Y1, Z1) connections and also asserts the write value
for plus_minus signal and asserts the start signal of this
unit. Then this unit that already has the value of S in its
storage (variables X, Y, Z) starts to calculate 8S ± mP
and updates the variables X, Y, Z and asserts the done
signal indicating that the result for the three bits is
ready. This process is repeated for every three bits of k.

Figure 10 shows the block diagram of the whole
processor. The ECC storage unit stores the values mP.
The key scheduling unit calculates the value h = 3k and
generates the decision signal for the ECC storage unit
to choose the value mP for every three bits of k and h.
The top level controller issues the required controls for
the point multiplication datapath and the key
scheduling unit to synchronize the operation of all the
units in the processor.

R3 +

&

P3

B3

&

A3 A2 A1 A0

R2 +

&

P2

B2

&

R1 +

&

P1

B1

&

R0 +

&

P0

B0

&

R = (A × B) Mod P

R6 +

&

P0

A6 A5 A4 A3

R = (A × A) Mod P

&

P6

R4 +

&

P5

&

P4

R2 +

&

P3

&

P2

R0 +

&

P1

&

P0

A2 A1 A0

R5 +

&

P6

&

P5

R3 +

&

P4

&

P3

R1 +

&

P2

&

P1

Figure 8: GF(2n) bit-serial squarer

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Figure 10: Processor Architecture

5. Performance Results
The proposed elliptic curve crypto processor is

designed using VHDL and is simulated using
Modelsim. This processor is scalable and can be
generated for any field GF(2n) where n is the size of the
datapath. Every time frame of the schedules in Figures
5 and 6 takes (n+3) cycles. This means that the whole
8S ± mP schedule takes [18(n+3) + (n+3)/2 + 1]
cycles where 18(n+3) is for the 18 time frames and
(n+3)/2 is for the first square in figure 5 and the last
single cycle is to update the registers with the final
result. Since the 8S ± mP operation is repeated for
every three bits of scalar k and the maximum size of
scalar k is n bits long; therefore, the point
multiplication will take [18(n+3) + (n+3)/2 + 1]×(n/3)
clock cycles. For the case of GF(2163), which is
considered to be as secure as 1024-bit RSA, the 8S ±
mP operation takes total of 3072 cycles. Therefore, the
delay of point multiplication in GF(2163) is 165888
clock cycles.

6. Conclusion
A high performance and scalable elliptic curve

processor that provides resistance against timing
attacks is presented. The dataflow schedules for the
underlying operators of the modified point
multiplication algorithm are optimized for maximum
speed. The architecture of the proposed processor is
based on the Galois Field of GF(2n) and is configurable
for any value of n. The total delay of point
multiplication is [18(n+3) + (n+3)/2 + 1]×(n/3) clock
cycles. For the case of GF(2163) the point multiplication
delay is 165888 clock cycles.

7. Acknowledgement
This research has been supported by the Space and

Naval Warfare Systems Center - San Diego under
contract No. N66001-02-1-8938.

8. References
[1] Nils Gura, Arun Patel, Arvinderpal Wander, et al.

“Comparing Elliptic Curve Cryptography and RSA on
8-bit CPUs”, CHES 2004, pp 119-132.

[2] J-S. Coron, “Resistance against differential power
analysis for elliptic curve cryptosystems,” CHES 1999,
LNCS 1717, pp. 292-302, 1999.

[3] J. Lopez, R. Dahab, “Fast multiplication on elliptic
curves over GF(2m) without precomputation” CHES
1999, LNCS 1717, pp. 316-327, 1999.

[4] K. Okeya, K. Sakurai, “Power analysis breaks elliptic
curve cryptosystems even secure against the timing
attack,” Indocrypt2000, LNCS1977, pp. 178-190, 2000.

[4] E. Oswald, M. Aigner, “Randomized addition-
subtraction chains as a countermeasure against power
attacks,” CHES 2001, LNCS 2162, pp. 39-50, 2001.

[6] E. Trichina, A. Bellezza, “Implementation of elliptic
curve cryptography with built-in counter measures
against side channel attacks,” CHES 2003, LNCS 2523,
pp. 98-113, 2003.

[7] B. Moller, “Securing Elliptic Curve Point Multilication
against Side-Channel Attackes” Proc. Information
Security 2001, LNCS 2200, pp. 324-334, 2001.

[8] IEEE P1363/D13, Standard Specification for Public-key
Cryptography, November 1999.

[9] L. Batina, S. Berna, B. Preneel, J. Vandewalle,
“Hardware architectures for public-key cryptography,”
Elsevier Integration the VLSI Journal, vol. 34, pp. 1-64,
2003.

[10] D. Gordon,“A survey of fast exponentiation methods,”
Journal of Algorithms, vol.27, pp.129-146, 1998.

[11] E. Win, B. Preneel, “Elliptic curve public-Key
cryptosystems—an introduction,” LNCS 1528, pp. 131-
141, 1998.

[12] S. Janssens et al., “Hardware/software co-design of an
elliptic curve public-key cryptosystem,” Proc. SIPS, pp.
209-216, 2001.A.B. Smith, C.D. Jones, and E.F.
Roberts, “Article Title”, Journal, Publisher, Location,
Date, pp. 1-10.

P o lyn o m ia l (P)

K e y sc h e d u lin g U n it

k h

T o p le v e l C o n tro l le r
…

P o in t M u ltip lic a tio n D a ta p a th

P7P …

2P

E
C

C
Storage

X 1 Y 1 Z 1

FSM Squarer

Multiplier 1

Multiplier 2

T1 T2 T3

T4

X Y Z

A C

Start Done Plus_minus

X1

Y1

Z1

S

Add

XYZ1

T123

T4

A_C

XY_Z

Figure 9: Point multiplication Datapath

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

