
Abstract
We describe race-free properties of a hardware descrip-

tion language called GEZEL. The language describes net-
works of cycle-true finite-state-machines with datapaths
(FSMDs). We derive a set of four rules under which a net-
work of such FSMDs satisfies the Kahn principle. When
applying those rules, GEZEL programs will be determinate
and a designer will thus obtain race-free hardware. We
define extended FSMD networks as FSMD networks for
which some components are user-defined and not specified
as FSMDs. An important result is that the determinate
properties of the FSMD network are also valid for the
extended FSMD network provided that the user-defined
components are determinate. Most hardware description
languages do not have this determinacy. Their simulation
semantics are dependent on simulator implementation, and
on a run-time race resolution mechanism. We therefore
position GEZEL as a model of computation that RTL
designers should have in mind while creating RTL models.
In fact, we can generate SystemC and other HDL code from
GEZEL models, thereby guaranteeing the determinacy in
the generated HDL code.

1 Motivation
Simply stated, the Kahn principle tells that under certain

process semantics a determinate set of components can be
composed into a determinate system [1]. There are several
process semantics for which this principle is valid, as
shown in Figure 1. They include Kahn Process Networks,
Input-Output Automata, FSMD, and others. Kahn Process
Networks are well-known forms of dataflow-like networks.
Input-Output Automata are a semantic model for concur-
rent, distributed discrete-event systems [2]. In this paper,
we present an FSMD modeling language called GEZEL
that satisfies the same Kahn principle.

We use GEZEL for hardware design. By creating com-
ponents with determinate behavior, we are able to assemble
them into a determinate system. The most obvious causes
of non-determinism in hardware design are races. In tradi-
tional HDLs (VHDL, Verilog or SystemC), race conditions
occur when a single global variable is concurrently
assigned by different processes. The value stored in the glo-
bal variable is indeterminate. This will show up as 'X' in a
good simulator, but often the result is simply simulator

dependent. Non-determinism by itself can be useful as a
specification mechanism at higher abstraction level [3]. But
in HDL-based design, non-determinism sneaks in as a side
effect: a designer can create race conditions without being
aware of it [4]. This poses a challenge to the implementa-
tion, verification and comprehension of the RTL code.
Therefore, we feel that irrespective of the language of
choice for RTL coding (SystemC, Verilog or VHDL), the
desired model of computation for such coding should be
networks of processes which satisfy the Kahn principle.

2 Hardware Modeling in GEZEL
The GEZEL language implements instances of an FSMD

network. A small example of the GEZEL language, using
two FSMD, is given in Listing 1.

One FSMD is called counter, and is an accumulating
counter that can either increment, decrement or remain con-
stant. The other FSMD is called updown, and controls the
counter by observing the counter value and commanding it
to increment or decrement. Each FSMD module consists of
a datapath and a controller. A datapath is defined by means
of a number of datapath instructions, which execute when
selected by the controller. The complete model is synchro-
nous and works under control of a single, unspecified clock.
When the example in Listing 1 executes, the behavior for
the first 7 clock cycles is as shown in Table 1. A compari-
son of Listing 1 with SystemC, as well as a detailed
description of the GEZEL language (GEZEL Language
Reference Manual) are available online [5].

Kahn Principle p1
p2

p3S

p1, p2, p3 are determinate
=> S determinate

Kahn Process Networks [Kahn 1974]
pi = sequential process, = fifo

Input-Output Automata [Lynch 1989]
pi = IO Automaton, = event

FSMD (this paper)
pi = FSMD, = synchronous signal. . .

Figure 1: The Kahn principle is applicable to
multiple process semantics, including FSMD.

Extended Abstract:
A Race-free Hardware Modeling Language

Patrick Schaumont (UCLA)
schaum@ee.ucla.edu

Sandeep Shukla (Virginia Tech)
shukla@vt.edu

Ingrid Verbauwhede (UCLA/KUL)
ingrid@ee.ucla.edu

3 Rules for Determinate Behavior
An FSMD in GEZEL can be formulated as an Input-Out-

put Automaton. One particular property of IOAs that is of
interest for our FSMD is the proof of Stark on determinate
IOAs [2]. Stark’s proof involves showing that the Kahn
principle for IOA implies single-valued port histories. That
is, for each possible history of input port values, only a sin-
gle history of output port values is possible. For a GEZEL
FSMD, single-valued port histories can be obtained by
veryfying four properties in the GEZEL description. The
four properties can be enumerated as follows.
1. Single Assignment: Each signal or register in a
GEZEL description may be assigned only once per clock
cycle. For example, instructions up and dn in Listing 1 are
not allowed to execute simultaneously.
2. No Undefined Operands: All expressions that execute
during a clock cycle must be determined. ‘Dangling’ sig-
nals and inputs are not allowed.
3. No Combinatorial Loops: Circular dependencies
between signals are illegal. Such dependencies can intro-
duce artifical state, thus resulting in multiple possible port
histories.
4. No Undefined Outputs: All outputs of an FSMD must
be defined at each clock cycle.

Given a description made by a designer in GEZEL, we
can evaluate the four properties above and conclude wether
the FSMD will be determinate. This test is implemented in
the GEZEL tools to guide a designer in writing race-free
code.

4 Related Work
Bluespec organizes state variables inside of modules and

then employs a rule-based coding style for the behavior of
the module. Concurrent execution of rules is allowed pro-
vided that the result is equivalent to sequential execution of
single rules [6]. An alternate approach to create race-free
hardware is to start from a higher-level formalism that guar-
antees determinism, and create a compiler to synthesize
hardware. This has been shown for example for Esterel [7].
5 Conclusions

We have presented a race-free hardware modeling lan-
guage. This language creates networks of FSMDs. Building
on the Kahn Principle and the semantics of Input-Output
Automata, we have defined four rules that will help the
designer in the modeling of determinate hardware using
FSMD. GEZEL is developed with an open-source policy,
and the webpage in [5] may be consulted to download a
simulator for GEZEL designs, several cosimulators for
GEZEL-based hardware-software codesign, and a GEZEL-
to-VHDL code generator.
6 Acknowledgements

The authors acknowledge the support of NSF Grant CCR
0310527 (PS,IV), NSF Grant CCR 0237947 (SS), and SRC
Grant 2003-HJ-1116 (PS,IV).
7 References
[1] G. Kahn, “The semantics of a simple language for parallel pro-

gramming,” Information Processing 74, 1974.
[2] N. Lynch, E. Stark, “A proof of the Kahn principle for input/output

automata,” Information and Computation archive, 82(1):81—92,
1989.

[3] S. Edwards, L. Lavagno, E. Lee, A. Sangiovanni-Vincentelli,
“Design of Embedded Systems: Formal Models, Validation, and
Synthesis,” Proceedings of the IEEE, 85(3):366—390, 1997.

[4] OSCI, “Non-determinism in SystemC”, Ch. 5.6 in “Functional
Specification for SystemC 2.0”, v. 2.0-Q, http://www.systemc.org

[5] GEZEL Homepage, http://www.ee.ucla.edu/~schaum/gezel.
[6] Arvind, R. Nikhil, D. Rosenband, N. Dave, “High-level Synthesis:

An Essential Ingredient for Designing Complex ASICs,” Proc.
ICCAD, November 2004.

[7] S. Edwards, “High-level Synthesis from the Synchronous Lan-
guage Esterel,” Proc. of the International Workshop of Logic and
Synthesis (IWLS), New Orleans, Louisiana, June, 2002.

LISTING 1. Two communicating FSMD in GEZEL
1. dp counter(in ud : ns(2); out a : ns(3)) {
2. reg c : ns(7);
3. sig nc : ns(7);
4. reg u : ns(2);
5. sfg io { u = ud; a = nc; }
6. sfg up { c = nc; nc = c + 1; }
7. sfg dn { c = nc; nc = c - 1; }
8. }
9. fsm fsm_updown(counter) {
10. initial s0;
11. state s1;
12. @s0 if (u[0]) then (dn,io) -> s1;
13. else (up,io) -> s0;
14. @s1 if (u[1]) then (up,io) -> s0;
15. else (dn,io) -> s1;
16. }
17. dp updown(out ud : ns(2); in a : ns(3)) {
18. sfg run { ud = (a==3) ? 1 : ((a==0) ? 2:0);}
19. }
20. fsm fsm_updown(updown) {
21. initial s0;
22. @s0 (run) -> s0;
23. }
24. system S {
25. counter(u, a);
26. updown (u, a);
27. }

Table 1: Behavior of counter in Listing 1.
clock
edge

FSM sfg executing register
c u

1 s0->s0 up,io 0->1 0
2 s0->s0 up,io 1->2 0
3 s0->s0 up,io 2->3 0->1
4 s0->s1 dn,io 3->2 1->0
5 s1->s1 dn,io 2->1 0
6 s1->s1 dn,io 1->0 0->2
7 s1->s0 up,io 0->1 2->0
8 (again like edge 2)

