
A Hyperelliptic Curve Crypto Coprocessor for an
8051 Microcontroller

Alireza Hodjat, David Hwang
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

ahodjat@ee.ucla.edu and dhwang@ee.ucla.edu

Lejla Batina, Ingrid Verbauwhede
COSIC Group

Katholieke Universiteit Leuven
Leuven, Belgium

lbatina@esat.kuleuven.ac.be and ingrid@ee.ucla.edu

Abstract—This paper presents a microcode instruction set
coprocessor which is designed to work with an 8-bit 8051
microcontroller and implements a Hyperelliptic Curve
Cryptosystem (HECC). The microcode coprocessor is capable
of performing a range of Galois Field operations using a dual-
multiplier/dual-adder datapath and storing the intermediate
results in the local storage unit of the coprocessor (RAM). This
coprocessor is programmed using the software routines from
the 8051 microcontroller which implements the HECC
divisor’s doubling and addition operations. The Jacobian
scalar multiplication was computed in a 656 msec (7.87 M
cycles) at 12 MHz clock frequency.

I. INTRODUCTION
High speed implementation of Public Key Cryptography

(PKC) is required for providing security in various
communication systems. The best-known and most
commonly used public-key cryptosystem is RSA [1].
However, it is not a feasible solution for low-power and low
foot-print devices. Emerging areas such as RFID tags and
sensor networks put new requirements on implementations
of PKC algorithms with firm constraints in terms of number
of gates, power, bandwidth, etc. A promising candidate
appears to be a Hyper/Elliptic Curve Cryptosystem (H/ECC),
but the previously mentioned requirements can probably be
achieved only with the synergy of hardware and software.
ECC has already proven its potential as it offers shorter
certificates, lower power consumption and better
performance on some platforms. In addition, ECC offers
more “security per bit” than RSA, as no sub-exponential
algorithm is known that solves the discrete logarithm
problem in this group. However, HECC maintains all those
advantages with even shorter bit-lengths. More precisely, the
operand size for HECC is at least a factor of two smaller than
the one of ECC, with the same level of security. This fact
makes HECC a very good choice for platforms with limited
resources.

Algorithms for HECC and their implementations have
been studied intensively in the past years. A significant
amount of work has been performed on optimizing the
formulae for the group operation [2, 4, 5, 7]. Explicit

formulae for genus 2 curves are given by Lange [2] for
arbitrary fields and for various types of coordinates. For
embedded processors, a large amount of work is performed
for the ARM platform [3, 9, 10]. Pelzl et al. [9]
implemented the group operation of genus 2 and 3 for
HECC on an ARM7 processor. They compared the results
with ECC implementation (with corresponding security) and
showed that HECC performance is comparable to the one of
ECC. The performance for divisor scalar multiplication on
the ARM microprocessor for genus 2 was further optimized
in [10] and compared to genuses 3 and 4. Gura et al. [11]
compared ECC and RSA on 8-bit CPUs and proved that
Public-Key Cryptography is viable on small devices, with
the results favoring ECC substantially.

The first complete hardware implementation of HECC
was given by Boston [6]. They used Cantor's algorithm [8]
to implement HECC on the VirtexII FPGA. Wollinger et al.
investigated HECC implementation on a VLSI coprocessor
[12, 13]. In [14] three different architectures on a FPGA
have been examined for a vast area of applications. Most of
the published work dealt with binary fields. The only
exception is work of Baktır et al. [3] which investigated
implementation over an extension field of odd characteristic
i.e. over Optimal Tower Fields (OTF) on an ARM7.

This paper presents a microcode instruction set
coprocessor which is designed to work with an 8-bit 8051
microcontroller to implement a Hyperelliptic Curve
Cryptosystem. More precisely, we have implemented the
HECC divisor multiplication operation on the 8051
microprocessor, which uses a hardware coprocessor to
optimize the performance. This extra hardware is a
coprocessor with dual-multiplier/dual-adder datapath, which
allows for a speed-up of factor 228 when compared with the
software-only solution. We have re-written the formulae of
Byramjee and Duquesne [7] to facilitate the divisor
operations in this special case. In this way we achieved
optimized divisor doubling and addition. Namely, we take
advantage of a special dual-multiplier/dual-adder datapath,

0-7803-9333-3/05/$20.00 ©2005 IEEE SIPS 200593

which allowed us to explore the parallelism in field
multiplications.

The remainder of this paper is organized as follows. In
section 2 some background information on HECC is given.
Details of our implementation are specified in section 3.
Section 4 gives details of a microcode instruction set
coprocessor. Results are listed in section 5 and conclusions
are given in section 6.

II. HYPERELLIPRIC CURVE CRYPTOGRAPHY
Hyperelliptic Curve Cryptography was proposed in 1988

by Koblitz [15] as a generalization of Elliptic Curve
Cryptography. In particular, elliptic curves can be viewed
as a special case of hyperelliptic curves i.e. an EC is an
HEC with genus g=1.

A. Hyperelliptic curves
Here we consider a hyperelliptic curve C of genus g=2

over GF(2m), which is defined by an equation of the form:

C: y2 + h(x)⋅y = f(x) in GF(2m) [x,y],

where h(x) ∈ GF(2m) is a polynomial of degree at most g
(deg(h) ≤ g) and f(x) is a monic polynomial of degree 2g +
1 (deg(f) = 2g + 1). There are some more conditions that
have to be fulfilled. More details can be found in [16]. For
genus 2 curves, in the general case the following equation is
used:

 y2 + (h2x2+h1x+h0)⋅y = x5+f4x4+f3x3+f2x2+f1x+f0.

For our implementation we used so-called type II

curves [7], which are defined by h2 = 0, h1 ≠ 1. In particular,
the authors of [7] recommend curves of the form:

 y2 + x.y = x5+f3x3+x2+f0,

since they combine simpler arithmetic with a good security
level. More precisely, those curves allow for much faster
divisor doubling while addition stays the same as for a
general curve.

Now we introduce a group structure for specific objects
created on a hyperelliptic curve. A divisor D is a formal sum
of points on the hyperelliptic curve C. Let Div denote the
group of all divisors on C and Div0 the subgroup of Div of all
divisors with degree zero. The Jacobian J of the curve C is
defined as the quotient group J = Div0/P. Here P is the set of
all principal divisors, where a divisor D is called principal if
D = div(f), for some element f of the function field of C. In
practice, the Mumford representation is typically used; in
this representation each divisor is represented as a pair of
polynomials [u,v]. Here, u is monic of degree 2, deg(v) <
deg(u) and u | f-hv-v2 (so-called reduced divisors). For

implementations of HECC, we need to implement the
multiplication of elements of the Jacobian i.e. divisors with
some scalar.

B. HECC algorithms
Following a top-down approach, the highest-level

operation is the divisor scalar multiplication. It is
implemented by the use of the so-called “non-adjacent form”
i.e. as the NAF algorithm [17], which has the lowest weight
among all other signed digit representations. The fact that the
subtraction of divisors is as expensive as the divisor addition
makes this representation beneficial. In this way the scalar
multiplication is implemented as a sequence of divisor
additions/subtractions and doublings. We use projective
coordinates which allow us to complete all divisor operations
without inversion. Only one inversion and four
multiplications are required at the end to convert back from
projective to affine coordinates. We have re-written the
formulae from [7] for the doubling to achieve almost full
parallelism for field multiplications. We also used the same
approach to get the formulae for the addition in the case of
mixed coordinates. The formulae for both, the parallelized
doubling and addition are given in Tables I and II,
respectively.

III. COPROCESSOR ARCHITECTURE

This section presents the architecture of the proposed
crypto coprocessor. First the system architecture and the
interface of the coprocessor with the 8-bit microcontroller
are described. Then, different units of the crypto
coprocessor which are the coprocessor’s datapath, the
storage unit, and the controller are presented.

A. System Architecture
Figure 1 shows the block diagram of the hardware

architecture. There are four 8-bit ports that are used for
communication between the 8051 microcontroller and the
coprocessor. Two of them are for the input and output data
and the other two are for coprocessor’s instruction and the
address to access the local storage. Every data transfer to the
local storage (RAM) is through the input_word and the
output_word registers that are 84 bits wide which is the word
length of the operation in the coprocessor’s datapath.

The 8051 is an 8-bit microcontroller originally designed
by Intel that consists of several components: a controller and
instruction decoder, an ALU, 128 bytes of internal memory,
up to 64 KB of external memory addressed by a 16-bit
DPTR register, and up to 64 KB of external program
memory or 4 KB of internal program memory (ROM). The
8051 also has 28 bytes of special function registers (SFRs),
which are used to store system values such as timers, serial
port controls, input/output registers, etc. In our architecture
using the Dalton 8051 core from UC Riverside [18], all four
ports are available as “memory-mapped” interface to the
microcode coprocessor.

94

TABLE I. DIVISOR’S DOUBLING OPERATION USING DUAL
MULTIPLICATION

Figure 1. Microcode coprocessor connected to 8051 microcontroller

TABLE II. DIVISOR’S ADDITION OPERATION USING DUAL
MULTIPLICATION

B. Coprocessor’s datapath
Figure 2 shows the coprocessor’s datapath that is

designed based on the dual-multiplier/dual-adder in GF(283).
The main reason for this implementation is that the divisor’s
operations in Tables I and II are scheduled so that two
multiplications or additions can be performed concurrently in
order to increase the overall performance. This means that
the datapath has to be capable of performing every line of the
schedules in Tables I and II. This can be done as the
following. Before starting the GF(283) operations, the input
operands are loaded into A, B, and D registers. After the
completion of the multiplication or addition, the output
results can be either sent out to the local storage or be moved
from C registers to the input registers (A, B, D) for further
processing. Therefore, a combination of the Galois Field
operations which include multiple multiplication/addition
over multiple input operands can be performed. This way
every line of the divisor’s doubling and addition schedules
can be implemented over the proposed datapath. Moreover,
the bit-serial GF(283) multipliers that perform multiplication
in 84 cycles and the bit-parallel GF(283) adders that perform
addition in a single clock cycle are used.

Local Storage

32 of 84-bit

Temporary Variables
RAM

(128 × 32-bit)

Input_wordOutput_word
32 32

Top level Controller

Addr 7rw rd

Coprocessor Datapath

8
8

8 8

P3P0 P2 P1
Addr Instruction Data_out Data_in

8051 Microcontroller RAM

84 84

ROM

84 84

 Step Calculations # mult
1 Pre-computation and resultant r: 2M
 t0 = Z2 t1 = U1

2
 r = U0.Z a = Z + V1
2 Compute almost inverse (useless):
 inv0 = U1.Z inv1 = Z
3 Compute k: 2M
 k1 = f3.t0 + t1 b = V1.a + t0
 k0 = U1.k1 + Z.b
4 Compute s: 2M
 t2 = k0.U1 s1 = k0.Z
 s0 = k1.r + t2
5 Compute l: 4M
 t0 = t0.r t1 = s1.k0
 r = t0.s1 t3 = U0.k0
 l2 = s1.t2 l0 = s0.t3
 l1 = (t2 + t3).(s0 + s1)
 l1 = l1 + l2 + l0
6 Compute U’: 1M
 U0’= s0

2 + r U1’= t02
7 Precomputation: 4M
 a = s0.s1 + U1’ s1= s1

2
 l2 = l2 + a b = U0’+ l1
 Z’ = s1.r t2 = r.t1
 t0 = U0’.l2 + l0. s1
 t1 = U1’.l2 + s1.b
8 Adjust: 1M
 U1’= U1’.r U0’= U0’.r
9 Compute V’: 1M
 V1’= t0 + t2.V0 V1’ = t1 + t2.V1 + Z’

Total 17M

 Step Calculations # mult
1 Pre-computation and resultant r: 3M
 t1 = U11.Z2 + U21 t2 = U10.Z2 + U20
 t0 = U11.t1 + t2 a = t12
 r = t0.t2 +a.U10

2 Compute almost inverse (useless):
 t1 = inv1 t3 = inv0

3 Compute almost s: 4M
 t4 = V10.Z2 + V20 t5= V11.Z2 + V21
 w2 = t0.t4 w3 = t1.t5
 b = t0 + t1
 b = b.(t4 + t5) a = w3.(1 + U11)
 b = w2 + b s0 = w2 +U10.w3
 s1 = a + b

4 Pre-computations: 5M
 R = Z2 .r s3 = s1.Z2
 R_tilda = R.s3 s0 = s0.Z2
 S = s0.s1 S3 = s3

2
 S_tilda = s3.s1 S_2tilda = s0.s3
 R_2tilda = R_tilda. S_tilda

5 Compute l: 2M
 l2 = S_tilda.U21 l0 = S.U20
 l1 =(S_tilda + S).(U21 + U20)
 l2 = l2 + S_2tilda l1 = l0 + l1 + l2

6 Compute U’: 9M
 a = t1.r b = s1

2
 c = s1.Z2 b = b.t1
 a = R.(a + c) b = b.(t1 + U21)
 d = t2.S_tilda + s0

2
 U0’ = b + d + a
 U1’ = S_tilda.t1+ R2
 b = S3.(U0’ + l1)
 l2 = l2 + U1’
 t4 = U0’.l2 + S3.l0
 Z’ = R_tilda.S3 t5 = U1’.l2 + b
 U1’ = R_tilda.U1’ U0’ = R_tilda.U0’

7 Compute V’: 1M
 V0’= R_2tilda.V20 V1’= R_2tilda.V21+ Z’
 V0’= t4 + V0’ V1’ = t5 + V1’

Total 24M

95

C. Local storage unit
The local storage unit consists of 128 memory locations

of 32-bit width. In order to have easy addressing, every four
locations are used to store each temporary variable of the
GF(283) field. Therefore, there are total of 32 memory
locations that can store the elements of GF(283). The input
data is first loaded into addresses 0x00 to 0x10 and the
doubling and addition result is overwritten to the same
locations for every step of the scalar multiplication
algorithm.

In the end the same memory locations contain the final
result which is sent back to the 8051 microcontroller after the
projective-to-affine conversion is performed. The memory
address bus is 7 bits wide to cover the 128 locations
(variables) and the coprocessor controller asserts the required
values for the memory read (rd) and write (wr) signal. Also
notice that the input into and out of the local RAM has to go
through the input_word and output_word registers.

D. Coprocessor’s controller
The controller takes care of reading the instructions and

addressing different locations of the local storage. It also
controls the datapath elements in order to implement the
microcode instructions.

IV. INSTRUCTION SET
There are two basic type of instructions for the proposed

coprocessor: single and microcode instructions, described as
follows.

A. Single instructions
Table III shows the single instructions and their

definitions. These instructions are used to transfer data
between the coprocessor and 8051, load and store data to the
RAM through the input_word and output_word registers,
perform single operations using each of the adders and
multipliers, moving the content of the registers in the
coprocessor’s datapath.

B. Microcode instructions
The microcode instructions are the main instructions that

are used to implement the divisor’s addition and doubling
algorithms. These instructions implement a combination of
Galois Field additions and multiplications with multiple
input operands. Table IV lists these instructions, their
definitions, and their microcode implementations. Any line
of the divisor’s doubling or addition schedules in Tables I
and II can be implemented by one of these microcode
instructions. It should be noted that before calling these
instructions, the input operands, (values of A1, B1, D1, A2,
B2, and D2) are loaded from the RAM using the single
instructions (Read_from_RAM, Outword_to_A1,
Outword_to_B1, Outword_to_D1, Outword_to_A2,
Outword_to_B2, and Outword_to_D2). On the other hand

after running any of the above microcode instructions, the
results (registers C1 &C2) are stored back into the RAM.

Figure 2. The datapath of the coprocessor

TABLE III. COPROCESSOR’S SINGLE INSTRUCTIONS

Instruction

Definition

Load_data_in Loads 8 bits of data from Data_in port to the
Input_word register

Get_data_out Returns 8 bits of data from Output_word
register to the Data_out port

Load_to_RAM Loads the Input_word register into RAM from
addr to addr+2

Read_from_RAM Returns content of RAM from addr to addr+2
to the Output_word register

Do_mult1 Runs the first multiplier (Mult1)
 C1 = A1 * B1

Do_add1 Runs the first adder (Add1)
C1 = A1 + B1

Do_mult2 Runs the second multiplier (Mult2)
C2 = A2 * B2

Do_add2 Runs the second adder (Add2)
C2 = A2 + B2

Outword_to_A1 Moves the content of output_word to A1
Outword_to_B1 Moves the content of output_word to B1
Outword_to_D1 Moves the content of output_word to D1
C1_to_inword Moves the content of C1 to input_word
Outword_to_A2 Moves the content of output_word to A2
Outword_to_B2 Moves the content of output_word to B2
Outword_to_D2 Moves the content of output_word to D2
C2_to_inword Moves the content of C2 to input_word
C1_to_B1 Moves the content of C1 to B1
D1_to_A1 Moves the content of D1 to A1
C2_to_B2 Moves the content of C2 to B2
D2_to_A2 Moves the content of D2 to A2
C1_to_A2 Moves the content of C1 to A2
C2_to_A1 Moves the content of C2 to A1

Mult1

B1

A1

C1

84

84

84

Add1
84

Mult2

A2

B2

C2

84

84

84

Add2
84

D1

84

D2
84

84 84

96

TABLE IV. COPROCESSOR’S MICROCODE INSTRUCTIONS

C. Programming from 8051 Micro-controller
In order to program the microcode coprocessor using

the 8051, the proper instructions (single or microcode) are
assigned to the ports of the 8051 microcontroller. Figure 3
shows an example that implements step 3 of the doubling
algorithm (compute k) shown in Table I. Each line of the
program in figure 3 puts the required binary opcode on the
ports of 8051 (P0-P3). This is done by writing assembly
software codes for the 8051 microcontroller.

V. PERFORMANCE RESULTS
The proposed HW/SW co-design of the HECC system

was implemented and co-simulated using GEZEL [19].
GEZEL is a design environment for the exploration of
domain-specific coprocessor and multiprocessor micro

architectures, which can provide cycle-true HW/SW co-
simulation with various embedded core instruction set
simulators. In our application, we used the Dalton 8051 ISS
to perform cycle-accurate simulation. The microcode
coprocessor is designed in GEZEL hardware description
language which is a FSMD (finite state machine plus
datapath) system model. The coprocessor is attached to the
input/output ports of the 8051 ISS using the GEZEL design
environment and timing and functional verification is
performed. In the end, the GEZEL code was automatically
converted to RTL VHDL and synthesized for FPGA.

The detailed timings of different parts of the HECC co-
design implementation are presented in Table V. The delay
is given in terms of number of cycles and msec at the 12
MHz clock frequency for 8051. Sizes of RAM and ROM are
given in bytes. Table VI compares the performance of the
scalar multiplication of the presented HECC system with
related work. Our 83-bit HECC system takes 7.8 M cycles of
the 8051 micro-controller which results in the total delay of
656 msec at a 12 MHz clock frequency. This implementation
is more than 228 times faster than the pure software
implementation of HECC on 8051 and is 7 times faster than
160-bit ECC implementation on 8051 as is reported by [11].
Moreover, compared to 80-bit HECC implementation of
ARM7, the number of clock cycles is a better metric because
ARM7 is clocked at 80 MHz. In terms of number of clock
cycles, our design is at the same order with [10] and around
4 time faster that [3].

Figure 3. Programming example for step 3 of Table I

Instruction

Definition

Implementation

Mult_Mult C1 = (A1 * B1)
C2 = (A2 * B2)

Domult1 & Domult2

Add_Mult C1 = (A1 + B1)
C2 = (A2 * B2)

Doadd1 & Domult2

Mult_Add C1 = (A1 * B1)
C2 = (A2 + B2)

Domult1 & Doadd2

Add_Add C1 = (A1 + B1)
C2 = (A2 + B2)

Doadd1 & Doadd2

Twoadd_Mult C1 = (A1+B1) * (A2+B2) Doadd1 & Doadd2
C1TOB1 & C2TOA1
Domult1

Twomult_Add C1 = (A1*B1) + (A2*B2) Domult1 & Domult2
C1TOB1 & C2TOA1
Doadd1

Mult_and_Add C1 = (A1*B1)+ D1 Domult1
C1TOB1 & D1TOA1
Doadd1

Mult&add_Mult C1 = (A1*B1)+ D1
C2 = (A2*B2)

Domult1 & Domult2
C1TOB1 & D1TOA1
Doadd1

Mult&add_add C1 = (A1*B1)+ D1
C2 = (A2+B2)

Domult1
C1TOB1 & D1TOA1
Doadd1 & Doadd2

Two_Mult&add C1 = (A1*B1)+ D1
C2 = (A2*B2)+ D2

Domult1 & Domult2
C1TOB1 & D1TOA1
C2TOB2 & D2TOA2
Doadd1 & Doadd2

Add_and_Mult C1 = (A1+B1)* D1 Doadd1
C1TOB1 & D1TOA1
Domult1

Add&mult_Add C1 = (A1+B1)* D1
C2 = (A2+B2)

Doadd1 & Doadd2
C1TOB1 & D1TOA1
Domult1

Add&mult_mult C1 = (A1+B1)* D1
C2 = (A2*B2)

Doadd1
C1TOB1 & D1TOA1
Domult1 & Domult2

Two_Add&mult C1 = (A1+B1)* D1
C2 = (A2+B2)* D2

Doadd1 & Doadd2
C1TOB1 & D1TOA1
C2TOB2 & D2TOA2
Domult1 & Domult2

Instruction Address
P0 = Read_from_RAM P3 = 0xF0
P0 = Outword_to_A1
P0 = Read_from_RAM P3 = 0xB0
P0 = Outword_to_B1
P0 = Outword_to_D2
P0 = Read_from_RAM P3 = 0xB4
P0 = Outword_to_D1
P0 = Read_from_RAM P3 = 0x88
P0 = Outword_to_A2
P0 = Read_from_RAM P3 = 0xE0
P0 = Outword_to_B2
P0 = Two_Mult&add
P0 = C1_to_inword
P0 = Load_to_RAM P3 = 0xBC
P0 = C2_to_B2
P0 = Read_from_RAM P3 = 0x90
P0 = Outword_to_A2
P0 = Read_from_RAM P3 = 0x80
P0 = Outword_to_A1
P0 = Read_from_RAM P3 = 0xBC
P0 = Outword_to_B1
P0 = Twomult_Add
P0 = C1_to_inword
P0 = Load_to_RAM P3 = 0xC0

97

TABLE V. PERFOMANCE OF DIFFERENT OPERATIONS FOR HECC

TABLE VI. COMPARISON TO THE RELATED WORK

VI. CONCLUSION
This paper presented a microcode crypto coprocessor that

is designed to accelerate the Hyperelliptic Curve scalar
multiplication using the 8051 microcontroller. The
microcode coprocessor is capable of performing the
combination of GF(283) operations. The divisor’s addition
and doubling operations are implemented using SW routines
based on the coprocessor’s microcode instructions. The
scalar multiplication is developed in C and compiled into
8051 assembly instructions. The total delay of 656 msec (7.8
Mcycles) was achieved for the 83-bit HECC scalar
multiplication at 12 MHz.

ACKNOWLEDGMENT
This research has been supported by the Space and Naval

Warfare Systems Center - San Diego under contract No.
N66001-02-1-8938 and the FWO projects (G.0141.03) and
(G.0450.04). Moreover, the authors thank Patrick Schaumont
for the support on GEZEL co-simulation environment.

REFERENCES
[1] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.
[2] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves.

Applicable Algebra in Engineering, Communication and Computing,
Vol. 15, Nr. 5, pages 295-328, Feb 2005.

[3] S. Baktır, J. Pelzl, T. Wollinger, B. Sunar, and C. Paar. Optimal tower
fields for hyperelliptic curve cryptosystems. In Proceedings of 38th
Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, USA, Nov. 2004.

[4] J. Pelzl, T. Wollinger, and C. Paar. High performance arithmetic for
hyperelliptic curve cryptosystems of genus two. In Proceedings of
ITCC, April 5-7, 2004, Las Vegas, Nevada, USA, 2004.

[5] T. Wollinger, Software and Hardware Implementation of
Hyperelliptic Curve Cryprosystem. PhD thesis, Ruhr-University
Bochum, Germany, 2004.

[6] N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus two
hyperelliptic curve coprocessor. In B. S. Kaliski Jr., Ç. K. Koç, and
C. Paar, editors, Proceedings of 4th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), number
2523 in Lecture Notes in Computer Science, pages 400--414.
Springer-Verlag, 2002.

[7] B. Byramjee and S. Duquesne. Classification of genus 2 curves over
nF2 and optimization of their arithmetic. Cryptology ePrint

Archive: Report 2004/107.
[8] D. Cantor. Computing the Jacobian of a Hyperelliptic Curve. Math. of

Computation, 48:95--101, 1987.
[9] J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve

cryptosystems: Closing the performance gap to elliptic curves. In C.
Walter, Ç. K. Koç, and C. Paar, editors, Proceedings of 5th
International Workshop on Cryptograpic Hardware and Embedded
Systems (CHES), number 2779 in LNCS, pages 351--365.
Springer-Verlag, 2003.

[10] J. Pelzl, T. Wollinger, and C. Paar, Special Hyperelliptic Curve
Cryptosystems of Genus Two: Efficient Arithmetic and Fast
Implementation, Chapter in Embedded Cryptographic Hardware:
Design and Security. Nova Science Publishers, 2004.

[11] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz.
Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. In
M. Joye and J. J. Quisquater, editors, Proceedings of 6th International
Workshop on Cryptographic Hardware and Embedded Systems
(CHES), LNCS 3156, pages 119--132, 2004.

[12] G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Finding
optimum parallel coprocessor design for genus 2 hyperelliptic curve
cryptosystems. In Proceedings of ITCC, April 5-7, 2004, Las Vegas,
Nevada, USA, 2004.

[13] G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Hyperelliptic
Curve Cryptosystem: What is the Best Parallel Hardware
Architecture?, chapter in Embedded Cryptographic Hardware: Design
and Security. Nova Science, 2004.

[14] H. Kim, T. Wollinger, Y. Choi, K. Chung, and C. Paar. Hyperelliptic
curve coprocessors on a FPGA. In Workshop on Information
Security Applications - WISA, Jeju Island, Korea, 2004.

[15] N. Koblitz. A family of Jacobians suitable for Discrete Log
Cryptosystems. In S. Goldwasser, editor, Advances in Cryptology:
Proceedings of CRYPTO'88, N. 403 in LNCS, pages 94--99.
Springer-Verlag, 1988.

[16] A. Menezes, Y.-H. Wu, and R. Zuccherato. An elementary
introduction to hyperelliptic curves, chapter Appendix, pp 155-178.
Springer-Verlag,1998. Koblitz: Algebraic Aspects of Cryptography.

[17] IEEE P1363/D13, Standard Specification for Public-key
Cryptography, November 1999.

[18] Dalton 8051, http://www.cs.ucr.edu/~dalton/8051/
[19] P. Schaumont, I. Verbauwhede, "Interactive cosimulation with partial

evaluation," 2004 DATE 2004, pp. 642-647, February 2004.

 RAM
For the

8051
[Bytes]

ROM
For the

8051
[Bytes]

of clock
cycles

[M
cycles]

Delay
At 12 MHz

[m sec]

Input and
Output Data

Transfer

149 1551 0.089 7.4

Divisor’s
Doubling

149 2414 0.11 9.9

Divisor’s
Addition

149 2844 0.13 11.1

Projective to
Affine

transformation

158 2111 0.20 17.2

Scalar
Multiplication

196 6744 7.87 656

Design PKC CPU Freq.
[MHz]

Delay
[m sec]

of clock
cycles

M Cycles
[3] 80-bit

HECC
ARM7 80 374 29.9

[10] 83-bit
HECC

ARM7 80 71.56 5.72

[11] 160-bit
ECC

8051 12 4580 54.9

Software
only

83-bit
HECC

8051 12 149.8
×103

1798

HW/SW
Codesign

83-bit
HECC

8051

12 656 7.87

98

	MAIN
	WELCOME
	ORGANIZING COMMITTEE
	FRONT MATTER
	SEARCH
	CD-ROM HELP
	ZOOM IN
	ZOOM OUT
	VIEW FULL PAGE
	GO TO PREVIOUS DOCUMENT
	SESSIONS
	AUTHORS INDEX

