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Abstract—This paper presents a microcode instruction set 
coprocessor which is designed to work with an 8-bit 8051 
microcontroller and implements a Hyperelliptic Curve 
Cryptosystem (HECC). The microcode coprocessor is capable 
of performing a range of Galois Field operations using a dual-
multiplier/dual-adder datapath and storing the intermediate 
results in the local storage unit of the coprocessor (RAM). This 
coprocessor is programmed using the software routines from 
the 8051 microcontroller which implements the HECC 
divisor’s doubling and addition operations. The Jacobian 
scalar multiplication was computed in a 656 msec (7.87 M 
cycles) at 12 MHz clock frequency.  

I. INTRODUCTION 
High speed implementation of Public Key Cryptography 

(PKC) is required for providing security in various 
communication systems. The best-known and most 
commonly used public-key cryptosystem is RSA [1]. 
However, it is not a feasible solution for low-power and low 
foot-print devices. Emerging areas such as RFID tags and 
sensor networks put new requirements on implementations 
of PKC algorithms with firm constraints in terms of number 
of gates, power, bandwidth, etc. A promising candidate 
appears to be a Hyper/Elliptic Curve Cryptosystem (H/ECC), 
but the previously mentioned requirements can probably be 
achieved only with the synergy of hardware and software. 
ECC has already proven its potential as it offers shorter 
certificates, lower power consumption and better 
performance on some platforms. In addition, ECC offers 
more “security per bit” than RSA, as no sub-exponential 
algorithm is known that solves the discrete logarithm 
problem in this group. However, HECC maintains all those 
advantages with even shorter bit-lengths. More precisely, the 
operand size for HECC is at least a factor of two smaller than 
the one of ECC, with the same level of security. This fact 
makes HECC a very good choice for platforms with limited 
resources. 

Algorithms for HECC and their implementations have 
been studied intensively in the past years. A significant 
amount of work has been performed on optimizing the 
formulae for the group operation [2, 4, 5, 7]. Explicit 

formulae for genus 2 curves are given by Lange [2] for 
arbitrary fields and for various types of coordinates. For 
embedded processors, a large amount of work is performed 
for the ARM platform [3, 9, 10]. Pelzl et al. [9] 
implemented the group operation of genus 2 and 3 for 
HECC on an ARM7 processor. They compared the results 
with ECC implementation (with corresponding security) and 
showed that HECC performance is comparable to the one of 
ECC. The performance for divisor scalar multiplication on 
the ARM microprocessor for genus 2 was further optimized 
in [10] and compared to genuses 3 and 4. Gura et al. [11] 
compared ECC and RSA on 8-bit CPUs and proved that 
Public-Key Cryptography is viable on small devices, with 
the results favoring ECC substantially. 

The first complete hardware implementation of HECC 
was given by Boston [6]. They used Cantor's algorithm [8] 
to implement HECC on the VirtexII FPGA. Wollinger et al. 
investigated HECC implementation on a VLSI coprocessor 
[12, 13]. In [14] three different architectures on a FPGA 
have been examined for a vast area of applications. Most of 
the published work dealt with binary fields. The only 
exception is work of Baktır et al. [3] which investigated 
implementation over an extension field of odd characteristic 
i.e. over Optimal Tower Fields (OTF) on an ARM7. 

This paper presents a microcode instruction set 
coprocessor which is designed to work with an 8-bit 8051 
microcontroller to implement a Hyperelliptic Curve 
Cryptosystem. More precisely, we have implemented the 
HECC divisor multiplication operation on the 8051 
microprocessor, which uses a hardware coprocessor to 
optimize the performance. This extra hardware is a 
coprocessor with dual-multiplier/dual-adder datapath, which 
allows for a speed-up of factor 228 when compared with the 
software-only solution.  We have re-written the formulae of 
Byramjee and Duquesne [7] to facilitate the divisor 
operations in this special case. In this way we achieved 
optimized divisor doubling and addition. Namely, we take 
advantage of a special dual-multiplier/dual-adder datapath, 
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which allowed us to explore the parallelism in field 
multiplications.  

The remainder of this paper is organized as follows. In 
section 2 some background information on HECC is given. 
Details of our implementation are specified in section 3. 
Section 4 gives details of a microcode instruction set 
coprocessor. Results are listed in section 5 and conclusions 
are given in section 6. 

II. HYPERELLIPRIC CURVE CRYPTOGRAPHY 
Hyperelliptic Curve Cryptography was proposed in 1988 

by Koblitz [15] as a generalization of Elliptic Curve 
Cryptography.  In particular, elliptic curves can be viewed 
as a special case of hyperelliptic curves i.e. an EC is an 
HEC with genus g=1. 

A. Hyperelliptic curves 
Here we consider a hyperelliptic curve C of genus g=2 

over GF(2m), which is defined by an equation of the form: 
 
C: y2  +  h(x)⋅y  =  f(x) in GF(2m) [x,y], 

 
where h(x) ∈ GF(2m) is a polynomial of degree at most g 
(deg(h)  ≤  g) and f(x) is a monic polynomial of degree 2g + 
1 (deg(f) = 2g + 1). There are some more conditions that 
have to be fulfilled. More details can be found in [16]. For 
genus 2 curves, in the general case the following equation is 
used: 
 
   y2  +  (h2x2+h1x+h0)⋅y  =  x5+f4x4+f3x3+f2x2+f1x+f0. 

 
For our implementation we used so-called type II 

curves [7], which are defined by h2 = 0, h1 ≠ 1. In particular, 
the authors of [7] recommend curves of the form: 

 
 y2 + x.y = x5+f3x3+x2+f0,  
 

since they combine simpler arithmetic with a good security 
level. More precisely, those curves allow for much faster 
divisor doubling while addition stays the same as for a 
general curve.  

Now we introduce a group structure for specific objects 
created on a hyperelliptic curve. A divisor D is a formal sum 
of points on the hyperelliptic curve C. Let Div denote the 
group of all divisors on C and Div0 the subgroup of Div of all 
divisors with degree zero. The Jacobian J of the curve C is 
defined as the quotient group J = Div0/P. Here P is the set of 
all principal divisors, where a divisor D is called principal if 
D = div(f), for some element f of the function field of C. In 
practice, the Mumford representation is typically used; in 
this representation each divisor is represented as a pair of 
polynomials [u,v]. Here, u is monic of degree 2, deg(v) < 
deg(u) and u | f-hv-v2 (so-called reduced divisors). For 

implementations of HECC, we need to implement the 
multiplication of elements of the Jacobian i.e. divisors with 
some scalar.  

B. HECC algorithms 
Following a top-down approach, the highest-level 

operation is the divisor scalar multiplication. It is 
implemented by the use of the so-called “non-adjacent form” 
i.e. as the NAF algorithm [17], which has the lowest weight 
among all other signed digit representations. The fact that the 
subtraction of divisors is as expensive as the divisor addition 
makes this representation beneficial. In this way the scalar 
multiplication is implemented as a sequence of divisor 
additions/subtractions and doublings. We use projective 
coordinates which allow us to complete all divisor operations 
without inversion. Only one inversion and four 
multiplications are required at the end to convert back from 
projective to affine coordinates. We have re-written the 
formulae from [7] for the doubling to achieve almost full 
parallelism for field multiplications. We also used the same 
approach to get the formulae for the addition in the case of 
mixed coordinates. The formulae for both, the parallelized 
doubling and addition are given in Tables I and II, 
respectively. 

III. COPROCESSOR ARCHITECTURE 

This section presents the architecture of the proposed 
crypto coprocessor. First the system architecture and the 
interface of the coprocessor with the 8-bit microcontroller 
are described. Then, different units of the crypto 
coprocessor which are the  coprocessor’s datapath, the 
storage unit, and the controller are presented. 

A. System Architecture  
Figure 1 shows the block diagram of the hardware 

architecture. There are four 8-bit ports that are used for 
communication between the 8051 microcontroller and the 
coprocessor. Two of them are for the input and output data 
and the other two are for coprocessor’s instruction and the 
address to access the local storage. Every data transfer to the 
local storage (RAM) is through the input_word and the 
output_word registers that are 84 bits wide which is the word 
length of the operation in the coprocessor’s datapath. 

The 8051 is an 8-bit microcontroller originally designed 
by Intel that consists of several components: a controller and 
instruction decoder, an ALU, 128 bytes of internal memory, 
up to 64 KB of external memory addressed by a 16-bit 
DPTR register, and up to 64 KB of external program 
memory or 4 KB of internal program memory (ROM). The 
8051 also has 28 bytes of special function registers (SFRs), 
which are used to store system values such as timers, serial 
port controls, input/output registers, etc. In our architecture 
using the Dalton 8051 core from UC Riverside [18], all four 
ports are available as “memory-mapped” interface to the 
microcode coprocessor. 
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TABLE I.  DIVISOR’S DOUBLING OPERATION USING DUAL 
MULTIPLICATION 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

Figure 1.  Microcode coprocessor connected to 8051 microcontroller 

TABLE II.  DIVISOR’S ADDITION OPERATION USING DUAL 
MULTIPLICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Coprocessor’s datapath 
Figure 2 shows the coprocessor’s datapath that is 

designed based on the dual-multiplier/dual-adder in GF(283). 
The main reason for this implementation is that the divisor’s 
operations in Tables I and II are scheduled so that two 
multiplications or additions can be performed concurrently in 
order to increase the overall performance. This means that 
the datapath has to be capable of performing every line of the 
schedules in Tables I and II. This can be done as the 
following. Before starting the GF(283) operations, the input 
operands are loaded into A, B, and D registers. After the 
completion of the multiplication or addition, the output 
results can be either sent out to the local storage or be moved 
from C registers to the input registers (A, B, D) for further 
processing. Therefore, a combination of the Galois Field 
operations which include multiple multiplication/addition 
over multiple input operands can be performed. This way 
every line of the divisor’s doubling and addition schedules 
can be implemented over the proposed datapath. Moreover, 
the bit-serial GF(283) multipliers that perform multiplication  
in 84 cycles and the bit-parallel GF(283) adders that perform 
addition in a single clock cycle are used.  

 
Local Storage 

 
32 of 84-bit  

Temporary Variables 
RAM  

(128 × 32-bit) 

Input_wordOutput_word 
32 32 

Top level Controller 

Addr 7rw rd 

Coprocessor Datapath 

8 
8 

8 8 

P3P0 P2 P1
Addr Instruction Data_out Data_in

8051 Microcontroller RAM 

84 84 

ROM

84 84 

 Step Calculations # mult 
1 Pre-computation and resultant r: 2M 
 t0 = Z2 t1 = U1

2  
 r = U0.Z a = Z + V1   
2 Compute almost inverse (useless):  
 inv0 = U1.Z inv1 = Z  
3 Compute k: 2M 
 k1 = f3.t0 + t1  b = V1.a + t0  
 k0 = U1.k1 + Z.b   
4 Compute s: 2M 
 t2 = k0.U1 s1 = k0.Z  
 s0 = k1.r + t2   
5 Compute l: 4M 
 t0 = t0.r t1 = s1.k0  
 r = t0.s1 t3 = U0.k0  
 l2 = s1.t2 l0 = s0.t3  
 l1 = (t2 + t3).(s0 + s1)   
 l1 = l1 + l2 + l0    
6 Compute U’: 1M 
 U0’= s0

2 + r U1’= t02  
7 Precomputation: 4M 
 a = s0.s1 + U1’ s1= s1

2  
 l2 = l2 + a b = U0’+ l1  
 Z’ = s1.r t2 = r.t1  
 t0 = U0’.l2 + l0. s1   
 t1 = U1’.l2 + s1.b   
8 Adjust: 1M 
 U1’= U1’.r U0’= U0’.r  
9 Compute V’: 1M 
 V1’= t0 + t2.V0 V1’ = t1 + t2.V1 + Z’  

Total  17M 
 

 Step Calculations # mult 
1 Pre-computation and resultant r: 3M 
 t1 = U11.Z2 + U21 t2 = U10.Z2 + U20  
 t0 = U11.t1 + t2 a = t12  
 r = t0.t2 +a.U10   

2 Compute almost inverse (useless):  
 t1 = inv1  t3 = inv0   

3 Compute almost s: 4M 
 t4 = V10.Z2 + V20 t5= V11.Z2 + V21  
 w2 = t0.t4 w3 = t1.t5  
 b = t0 + t1   
 b = b.(t4 + t5) a = w3.(1 + U11)  
 b = w2 + b s0 = w2 +U10.w3  
 s1 = a + b   

4 Pre-computations: 5M 
 R = Z2 .r s3 = s1.Z2  
 R_tilda = R.s3  s0 = s0.Z2  
 S = s0.s1 S3 = s3

2  
 S_tilda = s3.s1 S_2tilda = s0.s3  
 R_2tilda = R_tilda. S_tilda   

5 Compute l: 2M 
 l2 = S_tilda.U21 l0 = S.U20  
 l1 =(S_tilda + S).(U21 + U20)   
 l2 = l2 + S_2tilda  l1 = l0 + l1 + l2  

6 Compute U’: 9M 
 a = t1.r b = s1

2  
 c = s1.Z2 b = b.t1  
 a = R.(a + c) b = b.(t1 + U21)  
 d = t2.S_tilda + s0

2   
 U0’ = b + d + a   
 U1’ = S_tilda.t1+ R2   
 b = S3.(U0’ + l1)   
 l2 = l2 + U1’   
 t4 = U0’.l2 + S3.l0   
 Z’ = R_tilda.S3 t5 = U1’.l2 + b  
 U1’ = R_tilda.U1’ U0’ = R_tilda.U0’  

7 Compute V’: 1M 
 V0’= R_2tilda.V20 V1’= R_2tilda.V21+ Z’  
 V0’= t4 + V0’ V1’ = t5 + V1’  

Total  24M 
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C. Local storage unit 
The local storage unit consists of 128 memory locations 

of 32-bit width. In order to have easy addressing, every four 
locations are used to store each temporary variable of the 
GF(283) field. Therefore, there are total of 32 memory 
locations that can store the elements of GF(283). The input 
data is first loaded into addresses 0x00 to 0x10 and the 
doubling and addition result is overwritten to the same 
locations for every step of the scalar multiplication 
algorithm.  

In the end the same memory locations contain the final 
result which is sent back to the 8051 microcontroller after the 
projective-to-affine conversion is performed. The memory 
address bus is 7 bits wide to cover the 128 locations 
(variables) and the coprocessor controller asserts the required 
values for the memory read (rd) and write (wr) signal. Also 
notice that the input into and out of the local RAM has to go 
through the input_word and output_word registers. 

D. Coprocessor’s controller 
The controller takes care of reading the instructions and 

addressing different locations of the local storage. It also 
controls the datapath elements in order to implement the 
microcode instructions. 

IV. INSTRUCTION SET 
There are two basic type of instructions for the proposed 

coprocessor: single and microcode instructions, described as 
follows. 

A. Single instructions 
Table III shows the single instructions and their 

definitions. These instructions are used to transfer data 
between the coprocessor and 8051, load and store data to the 
RAM through the input_word and output_word registers, 
perform single operations using each of the adders and 
multipliers, moving the content of the registers in the 
coprocessor’s datapath.  

B. Microcode instructions 
The microcode instructions are the main instructions that 

are used to implement the divisor’s addition and doubling 
algorithms. These instructions implement a combination of 
Galois Field additions and multiplications with multiple 
input operands. Table IV lists these instructions, their 
definitions, and their microcode implementations. Any line 
of the divisor’s doubling or addition schedules in Tables I 
and II can be implemented by one of these microcode 
instructions. It should be noted that before calling these 
instructions, the input operands, (values of A1, B1, D1, A2, 
B2, and D2) are loaded from the RAM using the single 
instructions (Read_from_RAM, Outword_to_A1, 
Outword_to_B1, Outword_to_D1, Outword_to_A2, 
Outword_to_B2, and Outword_to_D2). On the other hand 

after running any of the above microcode instructions, the 
results (registers C1 &C2) are stored back into the RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The datapath of the coprocessor 

TABLE III.  COPROCESSOR’S SINGLE INSTRUCTIONS 

Instruction 
 

Definition 
 

Load_data_in Loads 8 bits of data from Data_in port to the 
Input_word register 

Get_data_out Returns 8 bits of data from Output_word 
register to the Data_out port 

Load_to_RAM Loads the Input_word register into RAM from 
addr to addr+2 

Read_from_RAM Returns content of RAM from addr to addr+2 
to the Output_word register 

Do_mult1 Runs the first multiplier (Mult1)            
 C1 = A1 * B1 

Do_add1 Runs the first adder (Add1)                    
C1 = A1 + B1 

Do_mult2 Runs the second multiplier (Mult2)         
C2 = A2 * B2 

Do_add2 Runs the second adder (Add2)    
C2 = A2 + B2 

Outword_to_A1 Moves the content of output_word  to A1  
Outword_to_B1 Moves the content of output_word  to B1  
Outword_to_D1 Moves the content of output_word  to D1  
C1_to_inword Moves the content of C1 to input_word 
Outword_to_A2 Moves the content of output_word  to A2  
Outword_to_B2 Moves the content of output_word  to B2  
Outword_to_D2 Moves the content of output_word  to D2  
C2_to_inword Moves the content of C2 to input_word  
C1_to_B1 Moves the content of C1 to B1 
D1_to_A1 Moves the content of D1 to A1 
C2_to_B2 Moves the content of C2 to B2 
D2_to_A2 Moves the content of D2 to A2 
C1_to_A2 Moves the content of C1 to A2 
C2_to_A1 Moves the content of C2 to A1 

Mult1 

B1 

A1 

C1 

84 

84 

84 

Add1 
84

Mult2 

A2 

B2 

C2 

84 

84 

84 

Add2 
84 

D1 

84 

D2 
84 

84 84 
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TABLE IV.  COPROCESSOR’S MICROCODE INSTRUCTIONS 

 

C. Programming from 8051 Micro-controller 
In order to program the microcode coprocessor using 

the 8051, the proper instructions (single or microcode) are 
assigned to the ports of the 8051 microcontroller. Figure 3 
shows an example that implements step 3 of the doubling 
algorithm (compute k) shown in Table I. Each line of the 
program in figure 3 puts the required binary opcode on the 
ports of 8051 (P0-P3). This is done by writing assembly 
software codes for the 8051 microcontroller. 

 

V. PERFORMANCE RESULTS 
The proposed HW/SW co-design of the HECC system 

was implemented and co-simulated using GEZEL [19]. 
GEZEL is a design environment for the exploration of 
domain-specific coprocessor and multiprocessor micro 

architectures, which can provide cycle-true HW/SW co-
simulation with various embedded core instruction set 
simulators. In our application, we used the Dalton 8051 ISS 
to perform cycle-accurate simulation. The microcode 
coprocessor is designed in GEZEL hardware description 
language which is a FSMD (finite state machine plus 
datapath) system model. The coprocessor is attached to the 
input/output ports of the 8051 ISS using the GEZEL design 
environment and timing and functional verification is 
performed.  In the end, the GEZEL code was automatically 
converted to RTL VHDL and synthesized for FPGA. 

The detailed timings of different parts of the HECC co-
design implementation are presented in Table V. The delay 
is given in terms of number of cycles and msec at the 12 
MHz clock frequency for 8051. Sizes of RAM and ROM are 
given in bytes.  Table VI compares the performance of the 
scalar multiplication of the presented HECC system with 
related work. Our 83-bit HECC system takes 7.8 M cycles of 
the 8051 micro-controller which results in the total delay of 
656 msec at a 12 MHz clock frequency. This implementation 
is more than 228 times faster than the pure software 
implementation of HECC on 8051 and is 7 times faster than 
160-bit ECC implementation on 8051 as is reported by [11]. 
Moreover, compared to 80-bit HECC implementation of 
ARM7, the number of clock cycles is a better metric because 
ARM7 is clocked at 80 MHz. In terms of number of clock 
cycles, our design is at the same order with [10] and around 
4 time faster that [3]. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Programming example for step 3 of Table I 

Instruction 
 

Definition 
 

Implementation 
 

Mult_Mult C1 = (A1 * B1)   
C2 = (A2 * B2) 

Domult1 & Domult2 
 

Add_Mult C1 = (A1 + B1)  
C2 = (A2 * B2) 

Doadd1  & Domult2 
 

Mult_Add C1 = (A1 * B1)  
C2 = (A2 + B2) 

Domult1 & Doadd2 
 

Add_Add C1 = (A1 + B1)  
C2 = (A2 + B2) 

Doadd1  &  Doadd2 
 

Twoadd_Mult C1 = (A1+B1) * (A2+B2)    Doadd1  &  Doadd2 
C1TOB1 & C2TOA1 
Domult1 

Twomult_Add C1 = (A1*B1) + (A2*B2)   Domult1 & Domult2 
C1TOB1 & C2TOA1 
Doadd1   

Mult_and_Add C1 = (A1*B1)+ D1     Domult1  
C1TOB1 & D1TOA1 
Doadd1   

Mult&add_Mult C1 = (A1*B1)+ D1 
C2 = (A2*B2) 

Domult1 & Domult2 
C1TOB1 & D1TOA1 
Doadd1   

Mult&add_add C1 = (A1*B1)+ D1 
C2 = (A2+B2) 

Domult1  
C1TOB1 & D1TOA1 
Doadd1  & Doadd2 

Two_Mult&add C1 = (A1*B1)+ D1 
C2 = (A2*B2)+ D2  

Domult1 & Domult2 
C1TOB1 & D1TOA1 
C2TOB2 & D2TOA2 
Doadd1  &  Doadd2 

Add_and_Mult C1 = (A1+B1)* D1     Doadd1   
C1TOB1 & D1TOA1 
Domult1  

Add&mult_Add C1 = (A1+B1)* D1 
C2 = (A2+B2) 

Doadd1  &  Doadd2 
C1TOB1 & D1TOA1 
Domult1  

Add&mult_mult C1 = (A1+B1)* D1 
C2 = (A2*B2) 

Doadd1   
C1TOB1 & D1TOA1 
Domult1 & Domult2 

Two_Add&mult C1 = (A1+B1)* D1 
C2 = (A2+B2)* D2 

Doadd1  &  Doadd2 
C1TOB1 & D1TOA1 
C2TOB2 & D2TOA2 
Domult1 & Domult2 

Instruction    Address 
P0 = Read_from_RAM  P3 = 0xF0  
P0 = Outword_to_A1 
P0 = Read_from_RAM  P3 = 0xB0  
P0 = Outword_to_B1 
P0 = Outword_to_D2 
P0 = Read_from_RAM  P3 = 0xB4  
P0 = Outword_to_D1 
P0 = Read_from_RAM  P3 = 0x88  
P0 = Outword_to_A2 
P0 = Read_from_RAM  P3 = 0xE0  
P0 = Outword_to_B2 
P0 = Two_Mult&add 
P0 = C1_to_inword 
P0 = Load_to_RAM   P3 = 0xBC 
P0 = C2_to_B2 
P0 = Read_from_RAM  P3 = 0x90  
P0 = Outword_to_A2 
P0 = Read_from_RAM  P3 = 0x80  
P0 = Outword_to_A1 
P0 = Read_from_RAM  P3 = 0xBC  
P0 = Outword_to_B1 
P0 = Twomult_Add 
P0 = C1_to_inword 
P0 = Load_to_RAM   P3 = 0xC0 
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TABLE V.  PERFOMANCE OF DIFFERENT OPERATIONS FOR HECC 

 

TABLE VI.  COMPARISON TO THE RELATED WORK 

VI. CONCLUSION 
This paper presented a microcode crypto coprocessor that 

is designed to accelerate the Hyperelliptic Curve scalar 
multiplication using the 8051 microcontroller. The 
microcode coprocessor is capable of performing the 
combination of GF(283) operations. The divisor’s addition 
and doubling operations are implemented using SW routines 
based on the coprocessor’s microcode instructions. The 
scalar multiplication is developed in C and compiled into 
8051 assembly instructions. The total delay of 656 msec (7.8 
Mcycles) was achieved for the 83-bit HECC scalar 
multiplication at 12 MHz. 
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 RAM  
For the 

8051 
[Bytes] 

ROM 
For the 

8051 
[Bytes] 

# of clock 
cycles 

[M 
cycles] 

 

Delay 
At 12 MHz 

[m sec] 

Input and 
Output Data 

Transfer 

149 1551 0.089 7.4 

Divisor’s 
Doubling 

 

149 2414 0.11 9.9 

Divisor’s 
Addition 

 

149 2844 0.13 11.1 

Projective to 
Affine 

transformation 

158 2111 0.20 17.2 

Scalar 
Multiplication 

 

196 6744 7.87 656 

Design PKC CPU Freq. 
[MHz] 

Delay 
[m sec] 

# of clock 
cycles 

M Cycles 
[3] 80-bit 

HECC 
ARM7 80 374 29.9 

[10] 83-bit 
HECC 

ARM7 80 71.56 5.72 

[11] 160-bit 
ECC 

8051 12 4580 54.9 

Software 
only 

83-bit 
HECC 

8051 12 149.8 
×103 

1798 

HW/SW 
Codesign 

83-bit 
HECC 

8051 
 

12 656 7.87 
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