
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005 1929

[12] B. Stine, D. Boning, and J. Chung, “Analysis and decomposition of
spatial variation in integrated circuit process and devices,” IEEE Trans.
Semicond. Manuf., vol. 10, no. 1, pp. 24–41, Feb. 1997.

[13] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in
IEEE Custom Integrated Circuits Conf., San Diego, CA, May 2001,
pp. 223–228.

[14] X. Lu, Z. Li, W. Qiu, D. M. H. Walker, and W. Shi, “PARADE: PARA-
metric delay evaluation under process variation,” in IEEE Int. Symp.
Quality Electronic Design, San Jose, CA, Mar. 2004, pp. 276–280.

[15] A. R. Alvarez, B. L. Abdi, D. L. Young, H. D. Weed, J. Teplik, and
E. R. Herald, “Applications of statistical design and response surface
methods to computed aided VLSI device design,” in ACM/IEEE Design
Automation Conf., Feb. 1988, vol. 7, no. 2, pp. 272–287.

[16] N. Megiddo, “Linear programming in linear time when the dimension is
fixed,” J. ACM, vol. 31, no. 1, pp. 114–127, Jan. 1984.

[17] W. Qiu and D. M. H. Walker, “An efficient algorithm for finding the K
longest testable paths through each gate in a combinational circuit,” in
IEEE Int. Test Conf., Charlotte, NC, Oct. 2003, pp. 592–601.

[18] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi, and
H. Balachandran, “K longest paths per gate (KLPG) test generation for
scan-based sequential circuits,” in IEEE Int. Test Conf, Charlotte, NC,
Oct. 2004, pp. 223–231.

Platform-Based Design for an
Embedded-Fingerprint-Authentication Device

Patrick Schaumont, David Hwang, and Ingrid Verbauwhede

Abstract—Fingerprint authentication, in an embedded and portable
context, requires complex signal, network, and security-protocol process-
ing in a resource-constrained implementation. We present a platform-
based design approach for this application, based on a hierarchy of virtual
machines (VM). The fingerprint authentication is programmed in Java, C,
and VHSIC hardware description language, and mapped onto a hierarchy
of three machines, consisting of an embedded Java VM, an Sparc-V8
core, and an field programmable gate array. We show how our approach
is able to cope with multiple concurrent design processes and multiple
application domains, including biometrics signal processing, as well as
security-protocol implementation. The platform-based design approach
also deals with reuse requirements for embedded software and hardware.
The formulation of a platform as a VM enables design exploration and
incremental design validation throughout the design traject, and results in
a specialized, but still programmable, platform. The Java bytecode of our
fingerprint authentication takes less than 10 kB.

Index Terms—Embedded systems, hardware–software codesign,
system-on-chip.

Manuscript received May 10, 2004; revised October 18, 2004 and January
20, 2005. This work was supported in part by the National Science Foundation
under Grant CCR 0310527, in part by the Semiconductor Research Cooper-
ation under Grant SRC-2003-HJ-1116, and in part by the John and Fannie
Hertz Foundation (DH). This paper was recommended by Associate Editor
A. Raghunathan.

P. Schaumont was with the Electrical Engineering Department, University of
California at Los Angeles, CA 90095-1594 USA. He is now with the Electrical
and Computer Engineering Department at Virginia Tech, Blacksburg, VA 24061
USA (e-mail: schaum@vt.edu).

D. Hwang was with the Electrical Engineering Department, University of
California at Los Angeles, CA 90095-1594 USA. He is now with KeyEye
Communications, Sacramento, CA 95827 USA (e-mail: dhwang@ee.ucla.edu).

I. Verbauwhede is with the Electrical Engineering Department, University of
California at Los Angeles, CA 90095-1594 USA, and also with the Electrical
Engineering Department, Katholieke Universiteit Leuven, B-3001, Belgium
(e-mail: ingrid@ee.ucla.edu).

Digital Object Identifier 10.1109/TCAD.2005.853709

Fig. 1. ThumbPod embedded-fingerprint-authentication device.

I. INTRODUCTION

Many novel applications in the embedded context have the com-
bined requirements of high complexity and high energy efficiency.
These applications are not easy to implement, because they need a
specialized architecture, as well as a software-centric design approach.
They can also cover multiple application domains. We present a
platform-based design strategy [1], [2] for such devices, based on our
recent design experience with an embedded-fingerprint-authentication
device. Multiple levels of platforms are obtained by a hierarchy of
virtual machines (VMs). Platform specialization is expressed as a
native interface design on these VMs.

A. ThumbPod Application

The embedded-fingerprint-authentication device is called Thumb-
Pod [3]. It has the form factor of a keychain, as shown in Fig. 1.
ThumbPod is a biometrically driven electronic key that establishes a
strong and secure bond between the owner of the key and the key
itself. In contrast, a classic key such as a metal car key is anonymous.
ThumbPod scans a person’s fingerprint, analyzes the spatial features of
the fingerprint, compares them to a prestored template, and generates a
positive or negative authentication. The prestored template makes the
ThumbPod a personal device; the template is captured and securely
stored in the device upon service enrollment.

The authentication result during normal service is used in the
context of a secure client–server protocol. The server is at a remote
location, for example at a bank institution, and relies on the client to
implement secure authentication. The secure protocol avoids the trans-
mission of raw biometric data by using a challenge/response mecha-
nism. The server sends a random challenge to the ThumbPod that can
only be answered by means of a successful fingerprint authentication.
If the authentication fails, the ThumbPod’s response is incorrect. Based
on this incorrect response, the server can detect the type of error
involved (false fingerprint, socket-connection error, false ThumbPod)
and take appropriate measures. Thus, by doing fingerprint processing
locally, within ThumbPod, we obtain increased protection of sensitive
information, at the cost of additional embedded computation.

The ThumbPod application exists at the crossing of two application
domains: biometrics signal processing and security-protocol design.
The application is implemented at multiple abstraction levels: the
security protocol is developed in Java, the fingerprint signal processing
is written in C, and the hardware platform is custom designed in
VHSIC hardware description language (VHDL). Using a hierarchy
of VMs, we will formulate the ThumbPod application as a case of
platform-based design.

B. Platform-Based Design With a VM

We start by making a short comparison between platforms and
VMs. In the context of platform-based design, Sangiovanni-Vincentelli

0278-0070/$20.00 © 2005 IEEE

1930 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

defines a platform as “an abstraction layer in the design flow that facil-
itates a number of possible refinements into a subsequent abstraction
layer (platform) in the design flow” [2]. A VM then, is defined by a VM
instruction set. Applications can be expressed as programs written in
this instruction set. According to the definition of a platform, a VM
by itself is not sufficient to classify it as a platform, because the fixed
instruction set represents a fixed, nonmodifiable abstraction layer in
the design flow. This changes when we also include the use of native
interfaces in the VM. A native interface [4] allows access to features
that are located outside of the VM. When the performance or the
features of a VM instruction set are inadequate for the application,
some form of specialization can be provided. This establishes the con-
cept of platform-based design using VMs.

There are two distinct cases when the use of native interfaces is
required.

1) The performance delivered by a VM might be inadequate. For
example, when the Java implementation of an AES encryption
routine is too slow, then a Java native method in C can provide
speedup.

2) A VM might be unable to implement a certain feature. For
example, ThumbPod contains a biometric fingerprint sensor, a
device specific to the application. The top-level system model
in Java requires a native method to abstract the interface of the
fingerprint sensor.

These two distinct cases correspond to top-down and bottom-up de-
velopment strategies. Both are equally important in a complete design
flow. Top-down strategies are common in software development and
system design. Top-down strategies analyze design requirements at
a higher abstraction level, and then refine those requirements into
implementations at a lower level. Bottom-up strategies are used in
hardware development and in the integration of intellectual property
(IP). Bottom-up strategies concentrate on the efficient and convenient
integration of design components.

C. Paper Overview

Section II gives a system design perspective on the ThumbPod
application, starting with the design requirements, and then elabo-
rating on the ThumbPod platform. This platform is implemented as
a hierarchy of VMs. This gives particular advantages for platform-
based design. Validation and refinement can proceed incrementally,
because each VM is an executable by itself. Section III discusses the
refinement process of the ThumbPod security protocol and biometrics
signal processing. We also provide details on the overhead resulting
from native interfaces, which is an important cost factor for this form
of platform-based design. Section IV collects the results of our design
strategy and Section V presents related work.

II. THUMBPOD EMBEDDED PLATFORM

The ThumbPod embedded platform contains several intermediate
design layers. A review of the design requirements will motivate
the usefulness of a platform-based design strategy. In particular, a
hierarchy of VMs enables incremental design refinements and their
validation at multiple levels of abstraction.

A. Design Requirements

Five design requirements are enumerated for ThumbPod.

1) ThumbPod is not a stand-alone entity, but rather operates as a
client in a client–server security protocol. Security applications
need a holistic approach that considers all the aspects of an
application at the same time. It is easy to see that authentication
is of little use, if it is not done in front of a third party that can

Fig. 2. VM hierarchy of ThumbPod.

trust the authentication result. This third- party uses a security
protocol to verify the credibility of the authentication process,
as well as the authentication result. For example, one needs to
verify if the ThumbPod device has not been tampered with. So
even if the ThumbPod will be a system for design purposes, it is
only a component for validation purposes.

2) ThumbPod needs to accommodate very heterogeneous IP. The
fingerprint sensor is a third-party module [5]. The fingerprint-
matching algorithms are not developed from scratch, but based
on existing reference software for workstation applications [6].
Both the sensor and the matching algorithms need to be inte-
grated in an embedded context. Thus, the ThumbPod architec-
ture needs to have the flexibility to integrate architectural and
functional IP at very different levels of abstraction.

3) ThumbPod needs to operate in a real-time energy-efficient em-
bedded context. Real time means executing a complete iteration
through the security protocol, including the fingerprint authenti-
cation, in less then 5 s. This roughly corresponds to the user-end
time for a credit-card transaction.

4) ThumbPod has a hard design schedule and a fixed design team.
The design is started 8 mo before the prototype deliverable is
due. Seven students and a professor join forces to come up with
a single result. Obviously, the only way this size of a team
can create a result within 8 mo is by consistently applying a
codesign-everything philosophy: codesign the security protocol
with embedded-fingerprint algorithms, and with the target archi-
tecture and custom hardware.

5) Security weaknesses are in the interfaces. Many security attacks
focus on these interfaces to trigger exception behavior and other
anomalies. The systematic VM with well-defined native inter-
faces facilitates a secure design approach.

B. ThumbPod Platform

Fig. 2 illustrates the machine stack of ThumbPod. The bottom layer
is an FPGA development board that integrates a fingerprint sensor and
a server connection using a serial-port connection. The middle layer
is a LEON2–Sparc core (http://www.gaisler.com), programmable in
C. It integrates memory-mapped coprocessor units. The top layer is
a Java VM (KVM, [7]). It integrates complex software IP, and at the
same time, it provides an easy top-level programming model for the
development of the ThumbPod security protocol. ThumbPod, thus,
was created using three different layers of design abstraction. The input
specification for this platform consists of Java, C, and VHDL code.
The three platforms are a hierarchy of VMs: the KVM runs on top
of LEON2, which runs on top an FPGA. Specialized IP is integrated
using native interfaces.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005 1931

TABLE I
THUMBPOD VM

Each of these layers has proper programming environments and ex-
ecution semantics, as illustrated in Table I. The Java VM in ThumbPod
comes in two embodiments. For initial development, we use the Java-2
Standard Edition (J2SE) environment. For embedded implementation
on LEON2, we switch to the Java-2 Micro Edition (J2ME) environ-
ment, which uses the KVM. We also use a cycle-true cosimulation
environment called GEZEL [8] to verify our coprocessor designs for
the LEON2.

III. THUMBPOD DESIGN REFINEMENT

The hierarchical VM concept of ThumbPod integrates two differ-
ent application domains: biometrics signal processing and security-
protocol design. Fig. 3 illustrates the decomposition of ThumbPod
over different VM levels and over the two subdomains.

The security domain implements the security protocol. Several steps
in this challenge/response protocol use advanced encryption standard
(AES) encryption, supported with an AES coprocessor. The use of
hardware encryption is done not only for performance, but also for
reasons of security. A hardware coprocessor can be implemented using
secure-logic circuit styles, preventing eavesdropping and side-channel
attacks [9]. The security protocol also needs a communication channel
to the server, implemented with a serial connection. The use of a serial
connection implies that a structured representation of secure-protocol
data must be developed.

The biometrics domain implements the entire fingerprint-processing
operation, from capturing the fingerprint up to matching the template.
The fingerprint sensor delivers a 128 × 128 grayscale image of pixels
representing a scanned fingerprint. Fingerprint-minutiae detection rou-
tines convert the image into a template. Fingerprint-matching routines
evaluate the likeliness of two templates. A template is a structured
representation of the fingerprint minutiae found in an image. Each
minutia is represented by a type and a pair of (x, y) coordinates.
The detection routines are computation intensive and require hardware
acceleration.

A. Security-Domain Refinements

Due to the multidomain nature of ThumbPod, there is no single
unique design flow leading from specification to implementation. In
fact, it is easier to think of the design process as a number of concurrent
“integration flows” that combine different elements of IP into the final
ThumbPod. This approach allows multiple design activities to proceed
in parallel.

The security protocol of ThumbPod is programmed in Java. The
secure challenge/response protocol is developed as a client/server
application, using socket communications. A cosimulation between
the client and server can be executed at several levels of abstraction, as
shown in Fig. 4. An initial model is created in the comfortable environ-
ment of a workstation (step 1). Next, an embedded Java VM (KVM) is
used to create an embedded version of the ThumbPod client (step 2).
The KVM can be compiled for the workstation, as well as for the
instruction-set simulator of the embedded core. But there is an impor-
tant difference between the two versions. Socket communications are
not supported on the embedded core, due to the lack of a full operating
system. For this reason there is a step 3, called “proxy integration.” The
client is separated into two parts. The ThumbPod client runs on top of
an instruction-set simulator and uses teletypewriter (TTY) communi-
cations [standard input–output (I/O) in C]. A second program, called
“proxy agent,” connects to the instruction-set simulator and translates
TTY communications to sockets. A fourth step moves the KVM onto
the actual LEON2 implementation on FPGA, while keeping the proxy
on the personal computer (PC) that connects to the FPGA board. TTY
communications are then implemented using a serial RS232.

The security protocol also uses an AES coprocessor. It has a refine-
ment process, as shown in Fig. 5. The AES coprocessor is originally
available as an IP datapath core in VHDL. To integrate the coprocessor
into KVM, the AES coprocessor is attached to LEON2 through a
memory-mapped interface. Next, a C driver function for this coproces-
sor is developed and wrapped into a native method of a Java class.

When the AES is implemented at the lower levels of the VM
hierarchy, a performance improvement can be expected due to the
increased execution efficiency of those lower levels. Crossing multiple
levels of VMs, however, introduces overhead. Table II quantifies this
overhead for the case of AES encryption. The table lists cycle counts
for encryption called from Java and executed in Java, in C, and in hard-
ware. The cosimulations are done using the LEON2–Sparc instruction-
set simulator [10] and the GEZEL hardware-design environment [8].
While hardware acceleration of AES offers two orders of magnitude
cycle-count improvement, it also introduces up to two orders of
magnitude overhead. For example, according to the column “AES in
GEZEL,” AES encryption executes in 11 clock cycles as a hardware
model. Calling the hardware coprocessor out of C requires 797 cycles.
The encapsulation of hardware AES in C thus introduces 786 cycles
of overhead per invocation of the AES encryption. Likewise, the Java
encapsulation takes 1780 cycles, resulting in 1769 cycles of overhead.
This native interface overhead is devoted solely to moving data across
the VM hierarchy.

B. Biometrics Domain Refinements

Another integration flow is that of the biometrics. This mixed
top-down, bottom-up flow is illustrated in Fig. 6. The fingerprint
algorithms are created starting from a reference implementation from
the National Institute of Standards and Technology (NIST) [6], and
mapped into the target architecture using a top-down design flow. The
fingerprint sensor, on the other hand, is a custom off-the-shelf device
from Authentec, Inc. It is integrated into the target architecture with a
bottom-up approach. The point of convergence between the two is the
embedded Java program that combines native methods into a single
application.

The fingerprint-analysis algorithms available from NIST are
minutiae-detection algorithms. They support analysis of a fingerprint’s
composition and return the locations of a fingerprint’s minutiae. They
are developed in floating point and their operation is memory in-
tensive. The initial design steps to refine these algorithms into the
ThumbPod platform are therefore, fixed-point refinement and memory

1932 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

Fig. 3. ThumbPod application spans two domains.

Fig. 4. Design flow for ThumbPod security protocol.

Fig. 5. AES coprocessor hardware–software integration.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005 1933

TABLE II
AES ENCRYPTION IN JAVA USING JAVA,

C, OR COPROCESSOR HARDWARE

optimization. We also developed a minutiae-matching algorithm to
complement the minutiae-detection algorithm. Fixed-point refinement
is done by rewriting the code to use only C integers. Memory opti-
mizations are performed using A Toolbox for Optimizing Memory I/O
Using geometrical Models (ATOMIUM) [11]. A stand-alone database
of fingerprints is used, and the matching algorithms are evaluated
on a workstation using file I/O. When an acceptable performance
is reached, the resulting algorithms are further optimized for perfor-
mance in a cosimulation environment consisting of the GEZEL and
LEON2 instruction-set simulator. Profiling of the fingerprint-detection
routines reveals that a major amount of computations originate from
discrete Fourier-transform (DFT) calculations in the fingerprint-image
preprocessing. Therefore, a memory-mapped DFT coprocessor is cus-
tom designed in GEZEL. This coprocessor is integrated into the system
using the same instruction and data buses as the AES coprocessor,
with a separate instruction set controlling each coprocessor. The
coprocessor is called from within the fingerprint-minutiae detection
routines. Yang et al. has shown that our fingerprint matching can be
done on a 50 MHz LEON2 with a running time of 4 s, 0.5% false-
reject rate, and 0.01% false-accept rate [12].

C. System Design-Flow Organization

Fig. 7 illustrates the mapping of the ThumbPod design flow to
teams. The project spans two phases: refinement and integration. In the
first phase of the project, each team works on one particular machine
level, in order to become familiar with the platform and to create an
appropriate design infrastructure. In the second phase of the project,
the different platforms are integrated together using native interface
mechanisms. The teams created at the start of the project are listed on
the left of Fig. 7.
1) System Protocol: A single-person team develops a challenge–

response protocol in Java on workstation (J2SE), using socket pro-
gramming. This version is migrated onto an embedded Java VM as the
project proceeds.
2) Minutiae Matching: A two-person team works exclusively

on minutiae-detection and -matching algorithms, as discussed in
Section III-B. This is, by far, the piece of IP that needs the most
refinement work.
3) Software Platform: A two-person team ports a reference imple-

mentation of the embedded Java VM, KVM, onto the LEON2 target
processor for this project. These persons also prepare a development
environment that supports Java and embedded-C compilations.
4) Hardware Platform: A two-person team implements the

LEON2 onto an FPGA board, creating additional interfaces to off-chip
random-access memory (RAM) and making sure that the embedded
processor boots correctly.

Once individual machine levels operate reliably, the second phase
of the project is initiated to integrate all components together. Proj-

ectwise, this means that the “platform” teams focus on building inter-
faces between each other and between other project teams, and that
gradually, more complicated machines are built. This second phase
is far more difficult than the first phase, because it requires extensive
and detailed communication between the different teams and design-
abstraction levels. Detailed project technical data that illustrate this
point may be consulted in [13].

IV. RESULTS

Fig. 8 illustrates the design complexity of ThumbPod. This chart
uses noncommented lines of source code (NLOC). Because these
numbers represent files that have been—at some point during the
ThumbPod project—manipulated individually at the source-code
level, they can serve as a relative measure of the design complexity.
This is the design complexity faced by the design team, rather than by
the individual designers.

About 31% of the code is application specific, and contains Java,
native functions in C, and coprocessor descriptions in GEZEL. The
fingerprint-minutiae detection and -matching C code, obtained out of
the refinement of the NIST code (Section III-B), is included within
the native functions in C. The rest of the code is platform-definition
code, and includes the LEON2 VHDL description and the KVM C
description. The only runtime-defined part is the top-level Java applet,
and it contains only a fraction of the complete design description.
Thus, derived and related applications on the ThumbPod platform
require only minimal modification and design time.

One of the strong points of using a hierarchy of VMs in a platform-
based design method is that a verification and validation framework is
available during the entire design flow. This framework is incremen-
tally constructed towards a virtual prototype of the actual embedded
system. Table III illustrates several intermediate simulation platforms.
A distinction is made between intramachine platforms, which contain
a single VM, and intermachine platforms, which contain a hierarchy
of VMs. These intermachine evaluation platforms are needed for sys-
tematic platform-based design. In a heterogeneous embedded system,
bugs can occur at multiple levels of software and hardware, and most
often at their interfaces. An intermachine platform allows the designer
to deal with this in an incremental way, thus eliminating problems at
one machine (or between two machines) before moving up or down to
the next VM layer.

Fig. 9 illustrates the prototype architecture of the final embedded
implementation. The KVM executes on top of an LEON2 Sparc
processor, which in turn is configured as a soft core in a Virtex
XC2V1000 FPGA, which also contains the two acceleration coproces-
sors: the AES and the DFT. The prototyping environment is an Insight
Electronics development board, which contains, besides the FPGA,
also a 32-MB DDR RAM. The interface to the server is provided
by RS232 communication, and fingerprints are captured by means
of an Authentec AF-S2 complimentary metal–oxide–semiconductor
(CMOS) sensor. We have demonstrated the system to be operational
under the requirements enumerated in Section II-A.

Table IV illustrates some of the design statistics of the final imple-
mentation. It is worth noting that the design size of higher abstraction
levels (the Java Applets) is considerably smaller than the design size
at lower abstraction levels. The upper programming layer indeed
reflects the native functions that are needed to exactly match the
application, thus allowing one to write smaller programs that execute
more efficiently.

V. RELATED WORK

In the introduction, we already mentioned platform-based design
[1], [2] as a framework to define system-level design, in the context of

1934 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

Fig. 6. Design flow for ThumbPod biometrics.

Fig. 7. Teams and project-development flow.

Fig. 8. Code complexity in ThumbPod.

integrated and embedded systems. In this paper, we have applied the
VMs as an embodiment of a platform. Platform variants are supported
by customizing the VM with native interfaces.

In recent years, VMs have permeated many aspects of computing
and design. For the application domain of wireless handheld appli-
cations, the KVM [7] executes Java bytecode programs in a memory
footprint of 160 to 512 kB. For even more constrained sensor node
networks, the Mate VM [14] executes in only 16 kB of read-only
memory and 1 kB of RAM. These VMs are used for a different
reason than platform virtualization. They are used because they offer
a compact and efficient representation of the application. Indeed, in
the sensor networks targeted by Mate, or the mobile-phone networks

TABLE III
INTERMACHINE AND INTRAMACHINE PLATFORMS

targeted by KVM, communication bandwidth and energy cost are
primary issues. Wireless reprogramming of an application should be
done with a minimum amount of code. For this purpose, the KVM
and Mate are instrumented with native interfaces and tailored towards
the target application and platform. In our method, we propose to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005 1935

Fig. 9. ThumbPod prototype architecture.

TABLE IV
OVERALL DESIGN STATISTICS

introduce these native interfaces systematically, as part of the design
refinement. Our considerations are similar, although not exactly the
same as with KVM and Mate. We are interested in using native
interfaces to reduce the variability in the application model. Less
variability implies a more specialized platform, which in turn offers
better energy efficiency.

A VM model can also be used for exploration purposes, as demon-
strated in the Cadence virtual component co-design (VCC) [15] en-
vironment, as well as in the modeling environment for software and
hardware (MESH) design methodology [16]. In these models, behavior
is expressed independently from the resources required to execute
that behavior. Resource consumption is expressed in terms of virtual
execution time, memory usage, and so on. With this model, system

exploration can be formalized as finding an optimal schedule of func-
tionality onto resources.

To summarize, we use the VM as a means to capture the design
activities at a particular abstraction level. This model offers the same
benefits as platform-based design, as it uncouples the design of
applications from those of the architecture. Using native interfaces,
we also have a systematic way of expressing platform specialization.

VI. CONCLUSION

We have presented a platform-based design approach using a hierar-
chy of VMs. For the design of a fingerprint-authentication system, we
illustrated that this is a viable way to cope with multiple application
domains, heterogeneous platforms, and integration of heterogeneous
intellectual property (IP). The concept can deal with software-design
requirements that cannot be met by top-down compiler technology.
Indeed, by using native interfaces, a VM can cope with bottom-up
and top-down design styles at the same time. This enables a tight
integration of the hardware- and software-development process. In
fact, throughout the development of the fingerprint-authentication sys-
tem, we applied a rigorous codesign process that lined up hardware-,
software-, and application-development teams around VM-based
cosimulations.

REFERENCES

[1] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: Orthogonalization of concerns and
platform-based design,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[2] A. Sangiovanni-Vincentelli. (2002, Feb. 5). Defining platform-based
design. EETimes [Online]. Available: http://www.eedesign.com/
showArticle.jhtml?articleID=16504380

[3] D. Hwang, P. Schaumont, Y. Fan, A. Hodjat, B. C. Lai, K. Sakiyama,
S. Yang, and I. Verbauwhede, “Design flow for HW/SW accelera-
tion transparency in the ThumbPod secure embedded system,” in Proc.
40th IEEE/ACM Design Automation Conf. (DAC), Anaheim, CA, 2003,
pp. 60–65.

[4] T. Lindholm and F. Yellin, The Java Virtual Machine Specification.
Reading, MA: Addison-Wesley, 1996.

[5] Authentec Inc. Product Specification for the AF-S2 Fingerprint Sensor.
[Online]. Available: http://www.authentec.com

1936 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

[6] M. Garris, C. Watson, R. McCabe, and C. Wilson, “User’s Guide to
NIST Fingerprint Image Software (NFIS),” Nat. Inst. Standards Technol.,
Gaithersburg, MD, Interagency Rep. 6813, 2001.

[7] Sun Microsystems. CLDC and the K Virtual Machine. [Online].
Available: http://Java.sun.com/products/cldc

[8] The GEZEL Design Environment, UCLA. [Online]. Available: http://
www.ee.ucla.edu/~schaum/gezel

[9] K. Tiri and I. Verbauwhede, “A logic level design methodology for
a secure DPA resistant ASIC or FPGA implementation,” in Proc.
Design Automation and Test Europe (DATE), Paris, France, 2004,
pp. 246–251.

[10] J. Gaisler, TSIM Simulator User’s Manual, Gaisler Research, Göteborg,
Sweden, 2005.

[11] ATOMIUM Tool Suite, IMEC, Belgium. [Online]. Available: http://www.
imec.be/design/atomium/

[12] S. Yang, K. Sakiyama, and I. Verbauwhede, “A compact and efficient fin-
gerprint verification system for secure embedded devices,” in Proc. 37th
IEEE Asilomar Conf. Signals, Systems, and Computers, Pacific Grove,
CA, 2003, pp. 2058–2062.

[13] P. Schaumont, K. Sakiyama, Y. Fan, D. Hwang, B. Lai, A. Hodjat,
S. Yang, and I. Verbauwhede, “Testing ThumbPod: Softcore bugs are
hard to find,” in Proc. IEEE Int. High Level Design Validation and Test
Workshop (HLDVT), San Francisco, CA, Nov. 2003, pp. 77–82.

[14] P. Levis and D. Culler, “Mate: A tiny virtual machine for sensor net-
works,” in Proc. Int. Conf. Architectural Support Programming Languages
and Operating Systems (ASPLOS-X), San Jose, CA, 2002, pp. 85–95.

[15] C. Passerone, L. Lavagno, M. Chiodo, and A. Sangiovanni-Vincentelli,
“Fast hardware/software co-simulation for virtual prototyping and trade-
off analysis,” in Proc. 34th Design Automation Conf., Los Angeles, CA,
2000, pp. 389–394.

[16] J. Paul and D. Thomas, “Codesign virtual machine approach to modeling
computer systems,” in Proc. Design Automation and Test Europe Conf.,
Paris, France, 2002, pp. 522–528.

An Efficient Coefficient-Partitioning Algorithm for
Realizing Low-Complexity Digital Filters

A. P. Vinod and Edmund M.-K. Lai

Abstract—Algorithms that minimize the complexity of multiplication in
digital filters focus on reducing the number of adders needed to implement
the coefficient multipliers. Previous works have not analyzed the complex-
ity of each adder, which is significant in low-complexity implementation.
A multiplication algorithm for low-complexity implementation of digital
filters with a minimum number of full adders (NFAs) and improved speed
is proposed here. The authors exploit the fact that when multiplication
is implemented using shifts and adds, the adder width can be minimized
by limiting the shifts of the operands to shorter lengths. The coefficient-
partitioning (CP) algorithm proposed here minimizes the shifts of the
operands of the adders by partitioning each coefficient into two subcom-
ponents. The authors show that by combining three methods, the CP
algorithm, an efficient coefficient coding scheme known as pseudo floating-
point (PFP) representation, and the well-known common subexpression
elimination (CSE), the NFAs required in each adder of the multiplier can
be reduced considerably. Design examples show that the method offers an
average FA reduction of 30% for finite-impulse response (FIR) filters and
20% for infinite-impulse response (IIR) filters over CSE methods.

Index Terms—Adder complexity, coefficient partitioning, common
subexpression elimination, finite-impulse response (FIR) filters, infinite-
impulse response (IIR) filters, pseudofloating-point representation.

Manuscript received March 1, 2004; revised August 5, 2004. This paper was
recommended by Associate Editor A. Raghunathan.

The authors are with the School of Computer Engineering, Nanyang Techno-
logical University, Singapore 639798 (e-mail: asvinod@ntu.edu.sg; asmklai@
ntu.edu.sg).

Digital Object Identifier 10.1109/TCAD.2005.852659

I. INTRODUCTION

Digital filtering finds extensive application in mobile communi-
cation systems to perform various functions such as channelization,
channel equalization, matched filtering, and pulse shaping. Low-
complexity and high-speed digital filtering for mobile computing and
communication applications generally require dedicated hardwired
implementations of the filters. Although programmable filters based
on digital signal processor cores offer the advantage of flexibility and
high sampling rates, they are not suitable for mobile applications that
demand high throughput and low-power consumption. Since the flexi-
bility of a multiplier is not necessary in such applications, application-
specific digital filters are frequently adopted to meet the constraints of
performance and power consumption. However, these filters employ
a large number of multipliers that lead to excessive area and power
consumption. Therefore, the problem of designing digital filters with
small area and low-power consumption has received a great deal of
attention in the last decade.

A. Related Work

The number of additions (subtractions) used to implement the
coefficient multiplications determines the complexity of digital filters.
Many approaches have been proposed in the literature for reducing
the number of adders (subtractors) in the multipliers of digital filters.
These approaches include coefficient coding using efficient arith-
metic schemes [1], [2], coefficient optimization techniques [3]–[5],
distributed arithmetic techniques [6], [7], read-only memory (ROM)-
based designs [8], [9], and common subexpression elimination (CSE)
techniques [10]–[18]. Among these approaches, the CSE techniques
in [10]–[18] produced the best hardware reduction since it deals
with multiple common multiplications (MCMs), i.e., multiplication
of one variable (input signal) with multiple constants (coefficients).
The CSE techniques focus on eliminating redundant computations
in multiplier blocks by employing the most common subexpressions
(CSs) consisting of two nonzero bits. In general, techniques [1]–[18]
discuss the complexity of multipliers in terms of the reduction of the
number of adders and the critical path. The methods in [1]–[18] have
not addressed the issue of minimizing the complexity of each adder of
the multiplier, which is significant in low-complexity and high-speed
implementations. The differential coefficient method (DCM) [19] uses
differential coefficients to multiply with inputs and compensates the
effect of differential coefficients by adding the stored partial product of
the previous computation. Since differential coefficients have shorter
word lengths, the resulting design and output can also use shorter word
lengths and thus reduce power consumption. However, this method
results in a lot of overheads, which is proportional to the product of
the order of difference and filter tap number. The main idea in [20] is
reordering computations and identifying common computations that
maximize computation sharing between different multipliers. How-
ever, the method in [20] offers only a slight improvement in reduction
of adders (11%) over the CSE method [11]. Moreover, this method
results in an increase in delay, corresponding to the delay of one adder
step on average.

In a recent work [21], the authors have analyzed the complexity of
implementation in terms of full adders (FAs) required for each multi-
plier of the filter. Two techniques for optimizing the CSE methods to
implement low-complexity finite-impulse response (FIR) filters have
been proposed in [21]. These techniques are based on the extension
of conventional two nonzero bit (2 bit) CSs in [10]–[18] to form
three nonzero bit and four nonzero bit super subexpressions (SSs;
called 3-bit and 4-bit SSs, respectively) by exploiting identical shifts

0278-0070/$20.00 © 2005 IEEE

