
Cross Layer Design to Multi-thread a Data-Pipelining
Application on a Multi-processor on Chip

Bo-Cheng Charles Lai

EE Department

UCLA

CA 90095-1594

bclai@ee.ucla.edu

Patrick Schaumont

ECE Department

Virginia Tech.

VA 24061

schaum@vt.edu

Wei Qin

ECE Department

Boston University

MA 02215

wqin@bu.edu

Ingrid Verbauwhede

EE Dept. UCLA, CA

and

ESAT, K.U.Leuven, BE

Ingrid@ee.ucla.edu

ABSTRACT
Data-Pipelining is a widely used model to represent streaming
applications. Incremental decomposition and optimization of a
data-pipelining application onto a multi-processor platform spans
multiple design layers, including the application layer, the system
software layer, the architecture layer and the micro-architecture
layer. For best results, designers have to consider multiple design
layers (vertical exploration) and multiple architecture options
(horizontal exploration). By using a data-pipelining JPEG encoder
as the application driver, this paper presents a comprehensive
analysis of mapping a data-pipelined application through multiple
design layers, to a shared-memory SMP (Symmetric Multi-
Processing) system. It is shown that a single-layered optimization
ends up with a 110% worse design if the system effects from other
layers are not taken into account. Compared to the nominal case,
with appropriate mapping of the application, we achieve 47.5%
improvement for high performance design and 77.6% energy
reduction for energy efficient design under constant performance.

1. INTRODUCTION
Multi-processor systems offer superior performance as well as
better energy-efficiency than single-processor systems [1][2].
Future systems are foreseeable to consist of multiple processing
cores on a chip (MPSoC). In order to take advantages of the
parallel computation capability provided by a multiprocessor
system, applications are decomposed into multiple threads, which
can be executed concurrently by the processors in the system.

Data-pipelining[3] is a common model to represent data-
streaming applications, such as multimedia applications. It
consists of multiple actors, where each actor performs one sub-
task of the application. Actors are communicating through
intermediate storage elements, similar to the pipeline stages in
modern computer architectures. Multiple actors can be executed
concurrently whenever there is enough input data for actors. Thus
the data-pipelining model can be easily transformed into a multi-
threaded program by initiating each actor as a thread. However,
designing and mapping a data-pipelining-based application onto a
multi-processor system is not a trivial task. It all depends on how
well an application can be mapped through design-layers to the
underlying multi-processor architecture. In order to reach the
requirements such as high performance, real-time response and
energy efficiency, mapping an application on a multi-processor
system requires a tightly coupled design process between design-
layers, including application software, system software, to
hardware architecture (Fig.1). Most system optimizations do not
reside on a single design-layer but instead are addressed over

multiple layers. Therefore the design involves not only a solid
understanding of the application, but also a thorough analysis of
the system architecture over several design-layers.

����������	

�
�������

�

�������������
�

����

����	
��
�����	�
�
	����
������������

�
������
���
���������
����
������
�����

���
���
��

 ����	���!�����
���
�

Fig.1: A design pyramid of a multi-processor system

This paper demonstrates a comprehensive analysis of mapping
data-pipelining applications through multiple design layers, to a
shared-memory SMP (Symmetric Multi-Processing) system[5].
The SMP system consists of multiple processors which execute
the same instruction set. To achieve energy efficiency, processors
can run at scaled operating frequencies and supply voltages. A
data-pipelining-based JPEG encoder has been adapted as the
application driver. By using a cycle-accurate multi-layered design
environment[2], we demonstrate that a multi-layered vision is
required to benefit the most from a MPSoC. Design optimizations
focusing on a single design-layer might end-up as a 110% worse
design if the system effects from other layers are not been taken
into account. We also show that an appropriate mapping of the
application to achieve the design criteria, e.g. high performance or
energy-efficiency, can be found by looking at the design crossing
multiple design-layers concurrently.

The paper is organized as follows. Section 2 addresses the
previous work on data-pipelining models and cross-layered
designs of multi-processor systems. Section 3 discusses the data-
pipelining model used in this paper. By using the JPEG encoder
as the application driver, Section 4 demonstrates cross-layer
design examples of multi-processor systems. Section 5 will draw
the conclusions.

2. RELATED WORK
The data-pipelining model [3] is a commonly used parallel
programming model. The application is decomposed into
processes. Each process is a sub-function of the application, and
can potentially be executed concurrently. Processes are
communicating through intermediate storage elements. This is
similar to the dataflow computation model[6]. Thus it is very easy
to program a dataflow application into data-pipelining model. The

Communicating Sequential Processes (CSP)[7] based
programming model falls into a similar category. It exposes
multiple threads of control at the source language level.
Communication between processes is through fixed channels, and
synchronization is achieved through use of blocking sends and
receives.

Architectures have been specifically designed to implement these
models [8][9]. Caspi et. al.[10] proposed the SCORE (Stream
Computations Organized for Reconfigurable Execution)
architecture, which is designed for a streaming multi-threaded
model based on reconfigurable systems, such as FPGA (Field
Programmable Gate Array) or CPLD (Complex Programmable
Logic Device). This model-specific-hardware only supports
dataflow type of applications and lacks capability to well-perform
other types of models. However, modern multi-processor needs to
be general enough to perform different types of parallel
application models. Therefore the current MPSoC
implementations from main micro-processor vendors[11][12][13]
are based on SMP systems.

Many design frameworks have been proposed for SMP systems.
However, the cross-layered design concept is not well supported
in these frameworks. MPARM[14] returns cycle-accurate
performance and energy consumption of a multi-processor system.
It is based on SystemC which makes it possible to explore
different numbers of processor cores. Using RTEMS [15] as the
OS to handle multi-tasking makes it hard for designers to explore
their own scheduling strategies. StepNP™ [16] is a flexible
domain-specific multi-processor architecture platform. It allows
integration of a range of general-purpose to application-specific
processor models. It supports several parallel programming
models, however, it does not provide an environment to add
custom hardware modules in the simulation framework. ARTS[4]
is an abstract system level modeling framework to support the
MPSoC designers in modeling the different layers and
understanding their causalities. It embeds cross-layered design
concept in the design framework. However, ARTS focuses on
higher abstraction level and does not return cycle-accurate results.
The importance of cross-layer design and optimizations starts to
be recognized in other fields also. For instance, it is shown in [17]
for energy efficient wireless communication.

This paper is among the first to conduct comprehensive analysis
and demonstrate the cross-layered design for a MPSoC system.
By using a software and hardware co-design environment,
designers are able to explore the design space crossing multiple
layers. It has been demonstrated in the paper that the multi-
layered design is crucial in mapping a data-pipelining application
to the underlying multi-processor architecture.

3. DATA-PIPELINING APPLICATION
3.1 Data-Pipelining Model
The data-pipelining computation model used in this paper is
shown in Fig.2. There are three actors, A1, A2 and A3, which
perform different data processing tasks for the same application.
A1 and A2 are processing the data and “producing” the input data
for A3. A3 will be executed and “consume” data once there are
enough data in the intermediate queues Q1 and Q2. The
intermediate queues implement a simple FIFO (First-In-First-Out)
scheme.

A1

A2

A3

Q1

Q2
Fig.2: The data-flow computation model

3.2 Data-Pipelining JPEG Encoder
This paper uses a data-pipelining JPEG encoder as the application
driver. Fig.3 shows three different data-pipelining
implementations of the JPEG encoder. Each actor represents a
sub-function of the JPEG. The actors are communicating through
the intermediate queues which are located in the main memory of
the multiprocessor systems. In the data-pipelining JPEG encoder,
each actor is implemented as a thread and can be executed by any
processor in the system. Ideally, if the intermediate queues have
enough data to initiate the following “consumer” actors, all the
actors can be executed concurrently. Fig.3(a) shows a design
which makes every sub-function of the JPEG encoder as an actor.
In Fig.3(b) and Fig.3(c), some actors are merged together.
Therefore, in the application layer, Fig.3(a) has the highest
parallelism, which is supposed to have the best performance in a
multi-processor system. However, when we execute the JPEG on
a four processor system, Fig.3(b) turns out to perform the best.

Actor Queue

(c)

(b) 1 2

3

4

5

6

7

(a)

1 2 3

Fig.3: Data-pipelining JPEG encoder (a) or iginal (b) the first

actor agglomeration (c) the second actor agglomeration

0

20

40

60

80

100

120

140

C
yc
le
s

jpeg_a

jpeg_b
jpeg_c

(M
ill
io
ns
)

Fig.4: Execution cycles on a quad-processor system for the

JPEG encoder implemented as in Fig.3(a) ~(c)

The execution cycles are shown in Fig.4. We use jpeg_a, jpeg_b
and jpeg_c to represent the JPEG encoder implemented as in
Fig.3(a), Fig.3(b) and Fig.3(c) respectively. The jpeg_a and the
jpeg_c perform 110% and 29.8% respectively worse than jpeg_b.
Compared with jpeg_b, jpeg_a has higher parallelism in the
application layer. However, jpeg_a performs worse due to the
overhead introduced in the system software layer and the
hardware architecture layer. When an input queue does not have
enough data to feed the subsequent thread, the thread has to yield
and initiates a context switch to another idle thread. Too many
context switches will hurt the system performance. The effect
happens when we try to expose parallelism only at the application
layer and have too many actors for the JPEG encoder. Exposing
parallelism without looking at the other design layers hurts the
performance as is clear from this example. This paper uses a

multi-layered cycle-accurate SMP design environment [2]. The
design platform provides not only quick and cycle-accurate
simulation results, but also allows designers to explore design
options in multiple design-layers.

4. MULTI-LAYERED DESIGN EXAMPLE
Five optimizations (Table-1) have been applied, including
optimizations residing in a single design-layer as well as
optimizations crossing several design-layers. Please note that the
examples shown here are only for the demonstration of the
necessity of cross-layered design in a MPSoC system. The design
environment can be expanded with many other types of cross-
layer optimizations, because it is an open environment.

Example(1) – Actor agglomeration. The first optimization is to
evaluate and decide an appropriate partitioning configuration of a
data-pipelining application. As we can see from the example
shown in Section 3, exposing the most parallelism in application
layer does not always give the best performance. If required,
several actors are grouped into larger actors to reduce overhead
and improve performance. Fig.5 shows the execution cycle counts
of the JPEG encoder on systems with different numbers of
processors. Compared with jpeg_a, jpeg_b performs 27.5% to
52.6% better. The jpeg_c outperforms jpeg_a by 29.8% to 46%.

Table 1: Five design optimizations
 Optimizations Method Design-layer

1
Actor

agglomeration
Merge actors and reduce

context switches
Application layer

2
Proper number
of processors

Find out appropriate
number of processors

Architecture layer

3
Use on-chip

memory
Map thread stack to on-

chip memory

Crossing system
software layer to
architecture layer

4
Change

energy-scale
mode

Change power modes of
processors to achieve

energy-efficient execution

Crossing
application layer to
architecture layer

5
Custom the

thread
scheduling

Assign the bottleneck
actor to a faster processor

Crossing
application layer to
Architecture layer

Example(2) – Determine proper number of processors. The
second optimization is to find out the most appropriate number of
processors for an application. Of course, more processors provide
higher parallel computation capability. However, synchronization
is required between processors. More processors in a system
results in more synchronization traffic on the central bus
interconnect, which might turn out to be the bottleneck of the
system. If we compare jpeg_c running on different processor
schemes, a dual-processor system achieves the best performance
of 40.1% faster than a single-processor system. When running on
a tri-processor system, jpeg_c runs at 12.1% slower than a dual-
processor system. This is due to the extra overhead of
synchronization between processors which compromises the
parallel computation capability provided by more processor cores.

Example(3) – Use on-chip memory. Examples (1) and (2) have
focused only on a single design-layer. But multi-processor system
designs require concerns crossing several design-layers. Example
(3) tries to map thread stacks on an on-chip memory to save long
latencies of accessing off-chip memory. It crosses design-layers
from the system-software layer to the architecture layer. Designers
can allocate thread stacks to the on-chip memory block.
Therefore, accessing thread stacks will be translated as accessing

the on-chip memory, which has shorter latencies than an external
memory. Fig.5 shows that by mapping thread stacks of jpeg_b to
the on-chip memory (jpeg_b_ex3) can further enhance the
performance from 5.5% to 12.6%.
Example(4) – Change energy-scale mode. Energy efficiency is
one of the crucial factors to evaluate a modern multi-processor
system. It can be achieved by using energy-scaled designs. We
assume a processor has two power modes, high-power mode (fast
mode) and low-power mode (slow mode). Previous designs
(examples 1, 2 and 3) focus on optimizing system performance.
Here we try to achieve an energy-efficient design. Fig.6 shows
energy consumption and execution cycle counts of jpeg_b on
different energy configurations. The labels on x-axis represent the
energy configurations of a multi-processor system. For example,
2HL represents a dual-processor system with one processor in
high-power mode and the other one in low-power mode. It shows
that jpeg_b_3HHH achieves the fastest execution and jpeg_b_1L
has the lowest energy consumption. Designers can easily explore
the design space for energy-efficient designs.

Number of processors

jpeg_a jpeg_b jpeg_c

C
yc

le
s

(m
ill

io
n
)

0

20

40

60

80

100

120

140

1 2 3 4

jpeg_b_ex3

Fig.5: Execution cycles of the JPEG.

0

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Execution cycles
Energy consumption

1L 2L
L

3L
L
L

4L
L
L
L

2H
L

3H
L
L

4H
L
L
L

1H 2H
H

3H
H
L

4H
H
L
L

3H
H
H

4H
H
H
L

4H
H
H
H

E
ne

rg
y
(j
ou

le
)

E
xe

cu
tio

n
C
yc

le
s
(m

il
lio

n)

Fig.6: Energy consumption of jpeg_b for different energy-

scaled schemes

Example(5) – Custom the thread scheduling. The basic thread
library uses a simple FIFO (First-In-First-Out) scheduling scheme.
The first thread in the queue will be executed by one of the idle
processors. In the application dataflow shown in Fig.3(b), we can
see that actor 3 to 6 have to wait for actor 2 to be completed
before they can start execution. In an energy-scaled multi-
processor system, if actor 2 is executed by a slow processor (low-
power mode), it will take longer to complete actor 2, which delays
the execution of actor 3 to 6. Therefore, we would like to assign
actor 2 to a fast processor (high-power mode) if there is any
available. To achieve this, the system requires a crossing-layer
optimization. In the application layer, a designer has to find out
the bottleneck actor thread, which is actor 2 in this case. In the
system software layer and the architecture layer, this actor thread
should be specified and scheduled to be executed only by a fast
processor. Fig.7 shows the execution cycle counts after applying
the custom schedule, and the performance is enhanced up to
19.7%.

0
10
20
30
40
50
60
70
80
90

2HL 3HHL 3HLL 4HHHL 4HHLL 4HLLL

Processor configurations

E
xe
cu
tio
n
C
yc
le
s
(m
ill
io
n
)

jpeg_b
jpeg_b_ex5

Fig.7: Per formance for example(5)

Design space exploration. Fig.8 shows a sample scope of the
design space that can be covered with the SMP architecture. We
only choose a few design points to make the figure readable. We
use different labels to indicate different configurations. For
example, jpeg_c_ex3_2HL represents that the JPEG encoder
implemented as in Fig.3(c) after the optimization described in
example(3) is running on a dual-processor architecture with one
processor running at high-power(H) mode and the other one at
low-power(L) mode. Because jpeg_a performs too much worse
(30%~50%) than the other cases, we choose jpeg_c_1H as the
nominal case to compare with. It is represented by design point A.
Fig.8 allows a designer to choose an optimal system configuration
and optimizations based on the specification requirements. If a
design, for example, has a cycle budget of 100 million cycles,
then point H (jpeg_b_ex3_4LLLL) would be the most energy-
efficient. It achieves 77.6% energy reduction and only 3% slower
than the nominal design case at point A. Design point F
(jpeg_b_ex3_3HHH) achieves the fastest execution of 47.5%
faster than point A. Point C (jpeg_c_ex3_1L) consumes the
lowest energy of 84% less than point A. None of these cases can
be found by designing the system in a single design-layer.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300
Cycles (Millions)

E
n
er

g
y

(J
ou

le
)

Sample Design Constraint (100M cycles)

G

F

J

I
E

H B D

A

C

jpeg_c_1H
jpeg_c_3LLL
jpeg_c_ex3_1L
jpeg_b_ex3_2LL
jpeg_b_ex3_4HLLL
jpeg_b_ex3_3HHH
jpeg_b_ex3_4HHHH
jpeg_b_ex3_4LLLL
jpeg_b_ex3_ex5_4HLLL
jpeg_b_ex3_ex5_3HHL

A:
B:
C:
D:
E:
F:
G:
H:
I:
J:

jpeg_c_1H
jpeg_c_3LLL
jpeg_c_ex3_1L
jpeg_b_ex3_2LL
jpeg_b_ex3_4HLLL
jpeg_b_ex3_3HHH
jpeg_b_ex3_4HHHH
jpeg_b_ex3_4LLLL
jpeg_b_ex3_ex5_4HLLL
jpeg_b_ex3_ex5_3HHL

A:
B:
C:
D:
E:
F:
G:
H:
I:
J:

Fig.8: Sample scope of the design space covered with SMP-

JPEG architecture

5. CONCLUSIONS
Design of a multi-processor system includes a thorough analysis
and understanding of the system architecture crossing different
design-layers. Focusing on a single design-layer might end up as a
sub-optimal solution if system effects from other design-layers are
not taken into account. By using a JPEG encoder as the
application driver, this paper demonstrates examples of cross layer
designs for data-pipelining applications.

We use five examples to demonstrate that a multi-layered design
is required to get the maximum benefit from a multi-processor
system. There are some important lessons designers should learn
from these examples. First, a single-layered optimization might
end up as a worse design. As shown in example(1), jpeg_b
performs 27.5% to 52% better than jpeg_a, even though the
jpeg_a has higher parallelism in application layer. Extra context
switches and memory accesses in system software layer and
architecture layer have compromised the parallelism exposed in
application layer. Second, since design layers of a MPSoC are
tightly coupled, many optimizations do not reside in only a single
design layer. Instead it spans multiple layers and co-design

between layers is required to enable the optimizations. Examples
(3), (4), and (5) have demonstrated this point. Third, the
development tools can no longer focus on a single design layer.
Rather it should make design options transparent cross design
layers so that designers can understand the real impact of each
design options on the whole system, and make the right decision.
Fourth, although it requires cross-layered concerns, the
optimizations at higher design layers usually result in more
significant impact on the system. Evidence can be found by
comparing the performance enhancement of the examples.
Optimizations in examples (1) and (2) improve the overall
performance more than those in examples (3) and (5). Last but not
the least, cross-layered design of a MPSoC requires a fast and
accurate design framework, which not only simulate the system,
but also enables designers to apply(or remove) different
optimizations in different layers. The design environment used in
this paper provides an integrated co-design environment to enable
cycle-accurate multi-layered designs, and the capability to quickly
explore the design space of a multi-processor system.

6. ACKNOWLEDGEMENT
The authors gratefully acknowledge the support of NSF (Grant
CCR 0310527) and SRC (Grant SRC-2003-HJ-1116).

7. REFERENCES
[1] L.Hammond, et. al., “A Single-Chip Multiprocessor,” IEEE

Computer, Volume 30, No.9, pp.79-85, 1997.
[2] P. Schaumont, B.C. Lai, W. Qin, I. Verbauwhede, "Cooperative

multi- threading on embedded multi-processor architectures enables
energy-scalable design,” Proc. 2005 DAC, pp. 27-30, June 2005.

[3] Luís Moura e Silva, Rajkumar Buyya, “Parallel Programming
Models and Paradigms,” in R. Buyya (ed.), “ High Performance
Cluster Computing: Architectures and Systems: Volume 2", Prentice
Hall PTR, NJ, USA, 1999.

[4] S. Mahadevan, K. Virk, J. Madsen, “ARTS: A SystemC-based
Framework for Modelling Multiprocessor Systems-on-Chip,”
Design Automation of Embedded Systems, 2006

[5] D. Culler, J.P. Singh, A. Gupta, “Parallel Computer Architecture: A
Hardware/Software Approach,” Morgan Kaufmann, 1999, ISBN 1-
55860-343-3

[6] J.B.Dennis, “Data flow supercomputer,” Computer, Vol.13, pp.48-
56, Nov.1980.

[7] C.A.R.Hoare, “Communicating Sequential Processes,” International
Series in Computer Science, Prentice-Hall, 1985.

[8] B.S.Ang, Arvind, and D.Chiou, “StartT – The Next Generation:
Integrating Global Caches and Dataflow Architecture,” Technical
Report 354, Laboratory for Computer Science, MIT, Aug.1994.

[9] R.A.Iannucci, “Toward a dataflow / Von Neumann Hybrid
Architecture,” Proc. 15th Symp. Computer Architecture (ISCA-15),
pp.131-140, May 1990.

[10] E.Caspi, A.DeHon and J.Wawrzynek, “A Streaming Multi-threaded
Model,” Third Workshop on Media and Stream Processors, 2001.

[11] Intel Corp., http://www.intel.com
[12] Advanced Micro Devices, Inc, http://www.amd.com
[13] ARM Ltd, http://www.arm.com
[14] M.Loghi, M.Poncino, L.Benini, “Cycle-Accurate Power Analysis for

Mutliprocessor System-on-a-chip,” GVLSI, pp.401-406, Apr. 2004.
[15] RTEMS Home page, http://www.rtems.com/
[16] P. Paulin, et. al.,” Parallel programming models for a multi-

processor SoC platform applied to high-speed traffic management,”
CODES+ISSS’04, pp.48-53, Sept. 2004.

[17] W. Eberle, et. al., "From myth to methodology: Cross-layer Design
for Energy-Efficient Wireless Communication," DAC, 2005.

