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ABSTRACT 
Data-Pipelining is a widely used model to represent streaming 
applications. Incremental decomposition and optimization of a 
data-pipelining application onto a multi-processor platform spans 
multiple design layers, including the application layer, the system 
software layer, the architecture layer and the micro-architecture 
layer. For best results, designers have to consider multiple design 
layers (vertical exploration) and multiple architecture options 
(horizontal exploration). By using a data-pipelining JPEG encoder 
as the application driver, this paper presents a comprehensive 
analysis of mapping a data-pipelined application through multiple 
design layers, to a shared-memory SMP (Symmetric Multi-
Processing) system. It is shown that a single-layered optimization 
ends up with a 110% worse design if the system effects from other 
layers are not taken into account. Compared to the nominal case, 
with appropriate mapping of the application, we achieve 47.5% 
improvement for high performance design and 77.6% energy 
reduction for energy efficient design under constant performance.  

1. INTRODUCTION 
Multi-processor systems offer superior performance as well as 
better energy-efficiency than single-processor systems [1][2]. 
Future systems are foreseeable to consist of multiple processing 
cores on a chip (MPSoC). In order to take advantages of the 
parallel computation capability provided by a multiprocessor 
system, applications are decomposed into multiple threads, which 
can be executed concurrently by the processors in the system.  

Data-pipelining[3] is a common model to represent data-
streaming applications, such as multimedia applications. It 
consists of multiple actors, where each actor performs one sub-
task of the application. Actors are communicating through 
intermediate storage elements, similar to the pipeline stages in 
modern computer architectures. Multiple actors can be executed 
concurrently whenever there is enough input data for actors. Thus 
the data-pipelining model can be easily transformed into a multi-
threaded program by initiating each actor as a thread. However, 
designing and mapping a data-pipelining-based application onto a 
multi-processor system is not a trivial task. It all depends on how 
well an application can be mapped through design-layers to the 
underlying multi-processor architecture. In order to reach the 
requirements such as high performance, real-time response and 
energy efficiency, mapping an application on a multi-processor 
system requires a tightly coupled design process between design-
layers, including application software, system software, to 
hardware architecture (Fig.1). Most system optimizations do not 
reside on a single design-layer but instead are addressed over 

multiple layers. Therefore the design involves not only a solid 
understanding of the application, but also a thorough analysis of 
the system architecture over several design-layers. 
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Fig.1: A design pyramid of a multi-processor  system 

This paper demonstrates a comprehensive analysis of mapping 
data-pipelining applications through multiple design layers, to a 
shared-memory SMP (Symmetric Multi-Processing) system[5]. 
The SMP system consists of multiple processors which execute 
the same instruction set. To achieve energy efficiency, processors 
can run at scaled operating frequencies and supply voltages. A 
data-pipelining-based JPEG encoder has been adapted as the 
application driver. By using a cycle-accurate multi-layered design 
environment[2], we demonstrate that a multi-layered vision is 
required to benefit the most from a MPSoC. Design optimizations 
focusing on a single design-layer might end-up as a 110% worse 
design if the system effects from other layers are not been taken 
into account. We also show that an appropriate mapping of the 
application to achieve the design criteria, e.g. high performance or 
energy-efficiency, can be found by looking at the design crossing 
multiple design-layers concurrently.  

The paper is organized as follows. Section 2 addresses the 
previous work on data-pipelining models and cross-layered 
designs of multi-processor systems. Section 3 discusses the data-
pipelining model used in this paper. By using the JPEG encoder 
as the application driver, Section 4 demonstrates cross-layer 
design examples of multi-processor systems. Section 5 will draw 
the conclusions. 

2. RELATED WORK 
The data-pipelining model [3] is a commonly used parallel 
programming model. The application is decomposed into 
processes. Each process is a sub-function of the application, and 
can potentially be executed concurrently.  Processes are 
communicating through intermediate storage elements. This is 
similar to the dataflow computation model[6]. Thus it is very easy 
to program a dataflow application into data-pipelining model. The 



Communicating Sequential Processes (CSP)[7] based 
programming model falls into a similar category. It exposes 
multiple threads of control at the source language level. 
Communication between processes is through fixed channels, and 
synchronization is achieved through use of blocking sends and 
receives.  

Architectures have been specifically designed to implement these 
models [8][9]. Caspi et. al.[10] proposed the SCORE (Stream 
Computations Organized for Reconfigurable Execution) 
architecture, which is designed for a streaming multi-threaded 
model based on reconfigurable systems, such as FPGA (Field 
Programmable Gate Array) or CPLD (Complex Programmable 
Logic Device). This model-specific-hardware only supports 
dataflow type of applications and lacks capability to well-perform 
other types of models. However, modern multi-processor needs to 
be general enough to perform different types of parallel 
application models. Therefore the current MPSoC 
implementations from main micro-processor vendors[11][12][13] 
are based on SMP systems. 

Many design frameworks have been proposed for SMP systems.  
However, the cross-layered design concept is not well supported 
in these frameworks. MPARM[14] returns cycle-accurate 
performance and energy consumption of a multi-processor system. 
It is based on SystemC which makes it possible to explore 
different numbers of processor cores. Using RTEMS [15] as the 
OS to handle multi-tasking makes it hard for designers to explore 
their own scheduling strategies. StepNP™ [16] is a flexible 
domain-specific multi-processor architecture platform. It allows 
integration of a range of general-purpose to application-specific 
processor models. It supports several parallel programming 
models, however, it does not provide an environment to add 
custom hardware modules in the simulation framework. ARTS[4] 
is an abstract system level modeling framework to support the 
MPSoC designers in modeling the different layers and 
understanding their causalities. It embeds cross-layered design 
concept in the design framework. However, ARTS focuses on 
higher abstraction level and does not return cycle-accurate results. 
The importance of cross-layer design and optimizations starts to 
be recognized in other fields also. For instance, it is shown in [17] 
for energy efficient wireless communication.  

This paper is among the first to conduct comprehensive analysis 
and demonstrate the cross-layered design for a MPSoC system. 
By using a software and hardware co-design environment, 
designers are able to explore the design space crossing multiple 
layers. It has been demonstrated in the paper that the multi-
layered design is crucial in mapping a data-pipelining application 
to the underlying multi-processor architecture. 

3. DATA-PIPELINING APPLICATION 
3.1 Data-Pipelining Model 
The data-pipelining computation model used in this paper is 
shown in Fig.2. There are three actors, A1, A2 and A3, which 
perform different data processing tasks for the same application. 
A1 and A2 are processing the data and “producing”  the input data 
for A3. A3 will be executed and “consume” data once there are 
enough data in the intermediate queues Q1 and Q2. The 
intermediate queues implement a simple FIFO (First-In-First-Out) 
scheme.   

A1

A2

A3

Q1

Q2  
Fig.2: The data-flow computation model  

3.2 Data-Pipelining JPEG Encoder 
This paper uses a data-pipelining JPEG encoder as the application 
driver. Fig.3 shows three different data-pipelining 
implementations of the JPEG encoder. Each actor represents a 
sub-function of the JPEG. The actors are communicating through 
the intermediate queues which are located in the main memory of 
the multiprocessor systems. In the data-pipelining JPEG encoder, 
each actor is implemented as a thread and can be executed by any 
processor in the system. Ideally, if the intermediate queues have 
enough data to initiate the following “consumer”  actors, all the 
actors can be executed concurrently. Fig.3(a) shows a design 
which makes every sub-function of the JPEG encoder as an actor. 
In Fig.3(b) and Fig.3(c), some actors are merged together. 
Therefore, in the application layer, Fig.3(a) has the highest 
parallelism, which is supposed to have the best performance in a 
multi-processor system. However, when we execute the JPEG on 
a four processor system, Fig.3(b) turns out to perform the best.  

Actor Queue

(c)

(b) 1 2

3

4

5

6

7

(a)

1 2 3

 
Fig.3: Data-pipelining JPEG encoder (a) or iginal (b) the first 
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Fig.4: Execution cycles on a quad-processor  system for  the 

JPEG encoder implemented as in Fig.3(a) ~(c) 

The execution cycles are shown in Fig.4. We use jpeg_a, jpeg_b 
and jpeg_c to represent the JPEG encoder implemented as in 
Fig.3(a), Fig.3(b) and Fig.3(c) respectively. The jpeg_a and the 
jpeg_c perform 110% and 29.8% respectively worse than jpeg_b. 
Compared with jpeg_b, jpeg_a has higher parallelism in the 
application layer. However, jpeg_a performs worse due to the 
overhead introduced in the system software layer and the 
hardware architecture layer. When an input queue does not have 
enough data to feed the subsequent thread, the thread has to yield 
and initiates a context switch to another idle thread. Too many 
context switches will hurt the system performance. The effect 
happens when we try to expose parallelism only at the application 
layer and have too many actors for the JPEG encoder. Exposing 
parallelism without looking at the other design layers hurts the 
performance as is clear from this example. This paper uses a 



multi-layered cycle-accurate SMP design environment [2]. The 
design platform provides not only quick and cycle-accurate 
simulation results, but also allows designers to explore design 
options in multiple design-layers. 

4. MULTI-LAYERED DESIGN EXAMPLE  
Five optimizations (Table-1) have been applied, including 
optimizations residing in a single design-layer as well as 
optimizations crossing several design-layers. Please note that the 
examples shown here are only for the demonstration of the 
necessity of cross-layered design in a MPSoC system. The design 
environment can be expanded with many other types of cross-
layer optimizations, because it is an open environment. 

Example(1)  –  Actor  agglomeration. The first optimization is to 
evaluate and decide an appropriate partitioning configuration of a 
data-pipelining application. As we can see from the example 
shown in Section 3, exposing the most parallelism in application 
layer does not always give the best performance. If required, 
several actors are grouped into larger actors to reduce overhead 
and improve performance. Fig.5 shows the execution cycle counts 
of the JPEG encoder on systems with different numbers of 
processors. Compared with jpeg_a, jpeg_b performs 27.5% to 
52.6% better. The jpeg_c outperforms jpeg_a by 29.8% to 46%.  

Table 1: Five design optimizations 
 Optimizations Method Design-layer 

1 
Actor 

agglomeration 
Merge actors and reduce 

context switches 
Application layer 

2 
Proper number 
of processors 

Find out appropriate 
number of processors 

Architecture layer 

3 
Use on-chip 

memory 
Map thread stack to on-

chip memory  

Crossing system 
software layer to 
architecture layer 

4 
Change 

energy-scale 
mode 

Change power modes of 
processors to achieve 

energy-efficient execution 

Crossing 
application layer to 
architecture layer 

5 
Custom the 

thread 
scheduling 

Assign the bottleneck 
actor to a faster processor 

Crossing 
application layer to 
Architecture layer 

Example(2) – Determine proper  number of processors. The 
second optimization is to find out the most appropriate number of 
processors for an application. Of course, more processors provide 
higher parallel computation capability. However, synchronization 
is required between processors. More processors in a system 
results in more synchronization traffic on the central bus 
interconnect, which might turn out to be the bottleneck of the 
system. If we compare jpeg_c running on different processor 
schemes, a dual-processor system achieves the best performance 
of 40.1% faster than a single-processor system. When running on 
a tri-processor system, jpeg_c runs at 12.1% slower than a dual-
processor system. This is due to the extra overhead of 
synchronization between processors which compromises the 
parallel computation capability provided by more processor cores.  

Example(3) – Use on-chip memory. Examples (1) and (2) have 
focused only on a single design-layer. But multi-processor system 
designs require concerns crossing several design-layers. Example 
(3) tries to map thread stacks on an on-chip memory to save long 
latencies of accessing off-chip memory. It crosses design-layers 
from the system-software layer to the architecture layer. Designers 
can allocate thread stacks to the on-chip memory block. 
Therefore, accessing thread stacks will be translated as accessing 

the on-chip memory, which has shorter latencies than an external 
memory. Fig.5 shows that by mapping thread stacks of jpeg_b to 
the on-chip memory (jpeg_b_ex3) can further enhance the 
performance from 5.5% to 12.6%.  
Example(4) – Change energy-scale mode. Energy efficiency is 
one of the crucial factors to evaluate a modern multi-processor 
system. It can be achieved by using energy-scaled designs. We 
assume a processor has two power modes, high-power mode (fast 
mode) and low-power mode (slow mode). Previous designs 
(examples 1, 2 and 3) focus on optimizing system performance. 
Here we try to achieve an energy-efficient design. Fig.6 shows 
energy consumption and execution cycle counts of jpeg_b on 
different energy configurations. The labels on x-axis represent the 
energy configurations of a multi-processor system. For example, 
2HL represents a dual-processor system with one processor in 
high-power mode and the other one in low-power mode. It shows 
that jpeg_b_3HHH achieves the fastest execution and jpeg_b_1L 
has the lowest energy consumption. Designers can easily explore 
the design space for energy-efficient designs.  
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Fig.5: Execution cycles of the JPEG.  
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Fig.6: Energy consumption of jpeg_b for  different energy-

scaled schemes 

Example(5) – Custom the thread scheduling. The basic thread 
library uses a simple FIFO (First-In-First-Out) scheduling scheme. 
The first thread in the queue will be executed by one of the idle 
processors. In the application dataflow shown in Fig.3(b), we can 
see that actor 3 to 6 have to wait for actor 2 to be completed 
before they can start execution. In an energy-scaled multi-
processor system, if actor 2 is executed by a slow processor (low-
power mode), it will take longer to complete actor 2, which delays 
the execution of actor 3 to 6. Therefore, we would like to assign 
actor 2 to a fast processor (high-power mode) if there is any 
available. To achieve this, the system requires a crossing-layer 
optimization. In the application layer, a designer has to find out 
the bottleneck actor thread, which is actor 2 in this case. In the 
system software layer and the architecture layer, this actor thread 
should be specified and scheduled to be executed only by a fast 
processor. Fig.7 shows the execution cycle counts after applying 
the custom schedule, and the performance is enhanced up to 
19.7%.  
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Fig.7: Per formance for  example(5) 

Design space exploration. Fig.8 shows a sample scope of the 
design space that can be covered with the SMP architecture. We 
only choose a few design points to make the figure readable. We 
use different labels to indicate different configurations. For 
example, jpeg_c_ex3_2HL represents that the JPEG encoder 
implemented as in Fig.3(c) after the optimization described in 
example(3) is running on a dual-processor architecture with one 
processor running at high-power(H) mode and the other one at 
low-power(L) mode. Because jpeg_a performs too much worse 
(30%~50%) than the other cases, we choose jpeg_c_1H as the 
nominal case to compare with. It is represented by design point A. 
Fig.8 allows a designer to choose an optimal system configuration 
and optimizations based on the specification requirements. If a 
design, for example, has a cycle budget of 100 million cycles, 
then point H (jpeg_b_ex3_4LLLL) would be the most energy-
efficient. It achieves 77.6% energy reduction and only 3% slower 
than the nominal design case at point A. Design point F 
(jpeg_b_ex3_3HHH) achieves the fastest execution of 47.5% 
faster than point A. Point C (jpeg_c_ex3_1L) consumes the 
lowest energy of 84% less than point A. None of these cases can 
be found by designing the system in a single design-layer.  
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Fig.8: Sample scope of the design space covered with SMP-

JPEG architecture 

5. CONCLUSIONS  
Design of a multi-processor system includes a thorough analysis 
and understanding of the system architecture crossing different 
design-layers. Focusing on a single design-layer might end up as a 
sub-optimal solution if system effects from other design-layers are 
not taken into account. By using a JPEG encoder as the 
application driver, this paper demonstrates examples of cross layer 
designs for data-pipelining applications.  

We use five examples to demonstrate that a multi-layered design 
is required to get the maximum benefit from a multi-processor 
system. There are some important lessons designers should learn 
from these examples. First, a single-layered optimization might 
end up as a worse design. As shown in example(1), jpeg_b 
performs 27.5% to 52% better than jpeg_a, even though the 
jpeg_a has higher parallelism in application layer. Extra context 
switches and memory accesses in system software layer and 
architecture layer have compromised the parallelism exposed in 
application layer. Second, since design layers of a MPSoC are 
tightly coupled, many optimizations do not reside in only a single 
design layer. Instead it spans multiple layers and co-design 

between layers is required to enable the optimizations. Examples 
(3), (4), and (5) have demonstrated this point. Third, the 
development tools can no longer focus on a single design layer. 
Rather it should make design options transparent cross design 
layers so that designers can understand the real impact of each 
design options on the whole system, and make the right decision. 
Fourth, although it requires cross-layered concerns, the 
optimizations at higher design layers usually result in more 
significant impact on the system. Evidence can be found by 
comparing the performance enhancement of the examples. 
Optimizations in examples (1) and (2) improve the overall 
performance more than those in examples (3) and (5). Last but not 
the least, cross-layered design of a MPSoC requires a fast and 
accurate design framework, which not only simulate the system, 
but also enables designers to apply(or remove) different 
optimizations in different layers. The design environment used in 
this paper provides an integrated co-design environment to enable 
cycle-accurate multi-layered designs, and the capability to quickly 
explore the design space of a multi-processor system. 
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