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Abstract 
 

In this paper, we analyze the theoretical delay 
bound of the SHA-1 algorithm and propose 
architectures to achieve high throughput hardware 
implementations which approach this bound. 
According to the results of FPGA implementations, 
3,541 Mbps with a pipeline and 893 Mbps without a 
pipeline were achieved. Moreover, synthesis results 
using 0.18μm CMOS technology showed that 10.4 
Gbps with a pipeline and 3.1 Gbps without a pipeline 
can be achieved. These results are much faster than 
previously published results. The high throughputs are 
due to the unfolding transformation, which reduces the 
number of required cycles for one block hash. We 
reduced the required number of cycles to 12 cycles for 
a 512 bit block and showed that 12 cycles is the 
optimal in our design.  
 
1. Introduction 
 

Hash functions are primitive components in many 
cryptographic systems. The key features of hash 
functions are the one way function property, collision 
resistance and their high speed. Hash functions are 
commonly used in Digital Signature Algorithm [9] and 
message authentications. Considering that data sizes 
and communication speeds are dramatically increasing 
every year, low throughput of hash functions can be a 
bottle neck in the digital and/or communications 
systems. 

In this paper, we analyze the delay bound of SHA-1 
using the iteration bound [8], which defines the 
minimum delay in which an algorithm may run 
independent of implementation architectures. We 
propose architectures which are close to the bound. 
Our architectures achieve 3,541 Mbps with a four-step 
pipeline and 893 Mbps without a pipeline in FPGA 
implementations. The pipeline technique [3] is used to 
increase throughput and improve hardware reuse. The 
synthesis results using 0.18μm CMOS technology 

show that 10.4 Gbps with a pipeline and 3.1 Gbps 
without a pipeline can be achieved. We designed the 
architectures to achieve high throughput using the 
unfolding transformation, i.e. the reduction of the 
required number of cycles for a 512 bit message block. 
The highest throughput is achieved with the 12 cycle 
version in both FPGA implementations and CMOS 
synthesis. This optimum point is verified by 
mathematical analysis. This paper also shows the 
performances of design trade-off for how the 
reductions in the number of cycles affect the 
performance in SHA-1 implementations. Moreover, 
this theoretical analysis method can be used to estimate 
other hash algorithms.  

The remainder of the paper is structured as follows. 
In section 2, the background of SHA-1 is explained, 
and related works are presented in section 3. The 
theoretical delay bound of SHA-1 is analyzed in 
section 4, and our design architectures and their 
analyses are presented in section 5. The performance 
results and a comparison with some conventional 
implementations are given in section 6, and we 
conclude in section 7. 
 
2. SHA-1 Algorithm 
 

 
Figure 1.  SHA-1 gash operation architecture 



SHA-1 [1], which is one of the most popular hash 
algorithms, was issued by the National Institute of 
Standards and Technology (NIST) in 1995. SHA-1 
takes input data of length less than 264 bits and gives 
output of 160 bit length. After packing and padding an 
arbitrary length message into one or multiple 512 bit 
blocks, each block is processed separately. Each block 
message requires 4 rounds of hash operations, where 
each round is composed of 20 hash operations. The 
differences among the rounds are on a scrambling 
constant, , and a nonlinear operation, , where t  
represent the t -th hash operation. The architecture of 
one step hash operation is illustrated in Figure 1 and 
the mathematical expression is described in Figure 2.  
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Figure 2. Equation set for SHA-1 hash 
operation 

 
In Figure 1 and Figure 2,  and  represent 5 

and 30 circular left shifts respectively and  is a 32 
bit register value. The number of  registers can be 
either 80 or 16. If 80 registers are to be used, the  
values can be calculated before the hash operations, 
and if 16 registers are to be used, the  values are 
dynamically updated during the hash operations. In 
this paper, all the implementations and syntheses are 
done using 16 registers. 
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3. Related Works 
 

In [2] and [3], a four-step pipeline technique is used 
for high throughputs and hardware reuse. Since a 
scrambling constant and a nonlinear function are 
changed each round, the operation blocks of each 
round can be reused by a pipeline. In [3], a high 
throughput architecture is proposed which requires 40 
cycles for 80 hash operations. By reducing the required 
number of cycles by half, better throughput is achieved 
while lowering the energy consumption. In [2] and [3], 
the architectures are implemented in FPGA, and in [4], 
[5] and [6], the architectures are implemented in ASIC.  

Even though there are many published papers for 
high throughput SHA-1 implementations including the 
above references, there has been no publication saying 
about the delay bound of SHA-1 and how to achieve 
the bound. 
 

4. Iteration Bound of SHA-1 
 

The maximum attainable speed of the SHA-1 
algorithm is determined by calculating the iteration 
bound [8]. The data-flow graph (DFG) representation 
is depicted on Figure 3, where D  represents a delay 
node and the other nodes represent the individual 
functions in a SHA-1 hash operation. Since the order 
of the four adders in SHA-1 does not make a 
difference on the mathematical calculation, there are a 
few different ways to represent a SHA-1 DFG. Figure 
3 is the DFG which has the smallest bound. 

A loop is a path that begins and ends at the same 
node. For example,  is a loop, 
where  is the delay node named 
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loop calculation time and  is the number of delay 
nodes in the l -th loop, the l -th loop bound is defined 
as . The iteration bound is defined as follows. 
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where  is the set of all the possible loops.  L
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the loop which corresponds the gray nodes in Figure 3 
is the one having the maximum loop bound. Therefore, 
the iteration bound of SHA-1, 

2
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This means that a delay of one SHA-1 hash 
operation can not be less than this bound. 
 
5. Analysis of Unfolded SHA-1 
Architectures 
 

In order to approach the bound given in section 4, 
we performed the unfolding transformation [8]. The 
unfolding transformation combines the operations of 
several iterations into a single cycle. By unfolding, the 
hidden concurrencies can be parallelized. In this 
section, we increase the unfolding factor in powers of 
2, and show how the delay approaches the iteration 
bound. 

Figure 3. Data-flow graph of SHA-1 
 



5.1. One hash operation per cycle 
 

We start with an architecture without the unfolding 
transformation. Since the additions dominate the delay 
in SHA-1 hash operations, the number of additions in 
the critical path must be minimized before other 
functions are considered. 

Among the four additions in a hash operation, only 
one addition can be parallelized. Therefore, the critical 
path has a delay of three additions as shown on Figure 
4. The shaded nodes represent the critical path. 

 
5.2. Two hash operations per cycle 

 
 By unfolding two hash operations, i.e. with 

unfolding factor two, four additions out of eight 
additions can be parallelized. Therefore, the critical 
path has a delay of four additions. Figure 5 shows the 
architecture which has the minimum critical path delay 
for two hash operations per cycle. Therefore, the 
critical path is composed of four additions and one 
circular shift. A similar approach of unfolding two 
hash operations is done at [3].  

Since the delay of circular shifts is negligible in 
hardware implementations, we will count only 
additions, +, and non-linear functions, , in the delay 
analysis. Therefore, the normalized loop delay with 
unfolding factor two,  , is as follows.  
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where we divide by 2 to normalize by the unfolding 
factor.  

By unfolding by the unfolding factor 2, we have a 
gain of one addition delay comparing with the 
architecture of one hash operation per cycle. However, 
it has still much larger delay than the iteration bound. 

 
5.3. More than two operations per cycle 
 

In order to approach the iteration bound, we 
increase the unfolding factor. When , each 
addition of 2 hash operations to a cycle, i.e. increasing 
unfolding factor by two, causes a delay increase by 

2>n

)()(2 tFDelayDelay ++× . This fact is explained in sub-
section 5.4. Note that we ignore the delay of the 
circular shifts. Therefore, the normalized loop delay 
with unfolding factor  is as follows. n
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where  is a even number , and the last term is 
obviously a positive value since .  
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This means our architectures approach the iteration 
bound, which is calculated using the DFG in section 4. 

 
Figure 4. One hash operation per cycle 

 

 
Figure 5. Two hash operations per cycle 

 

Table 1. The total numbers of additions and non-linear functions in critical paths for a 
block hash 

n  1 2 4 5 8 10 16 20 40 80 
addN  246 168 132 126 120 120 126 132 168 246 

nonN  0 0 22 27 36 40 49 54 76 117 



 However,  cannot be arbitrarily increased.  n
For the unfolding factor n ,  cycles are 

required for 80 hash operations. We allocate two extra 
cycles, one is for getting the input and initializing 
registers and the other is for making and giving the 
output. Therefore, the total required number of cycles 
per block hash is , and the total delay with 
unfolding factor , , is as follows.  
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Therefore, the total number of addition delays, , 
and the total number of non-linear function delays, 

, in the critical path for one block hash can be 
formulated as follows. 
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In order to distribute 80 operations equally over 
each cycle, the possible values of  are divisors of 80, 
i.e. 1, 2, 4, 5, 8, 10, 16, 20, 40 and 80. The optimal 
value of  can be shown by calculating every possible 
case. Table 1 shows the comparison of  and  
values for all the possible n . Assuming that 

, 8 is the optimal point. 
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5.4. Eight operations per cycle 
 
In this sub-section, we show the architecture for the 

unfolding factor eight, which achieves the highest 
throughput. Using equations in Figure 2 iteratively, 

, , ,  and  can be expressed in 
terms of , , ,  and . The expanded 
equations are given in Figure 6. Having the values of 

 and  is straightforward since the 
values only depend on the time indexes and the given 
parameters. However,  values must be used a 
little bit carefully due to their dynamic changes during 
2~4 round operations. Nevertheless, having the values 
of  is also straightforward. 
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In Figure 6, A  and F  represent an addition delay 

and a non-linear function delay respectively, and the 
values of right side of equations are the assignment 
delays for each equation. The assignment delays can be 
calculated as follows. 
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The variables, α , β  and γ , are either register values 
or functions whose delays can be similarly calculated. 
As shown in Figure 6, if  in , a increase 
in unfolding factor by two causes a delay increase by 

2+≥ ti iTEMP

)()(2 tFDelayDelay ++×  as stated in the sub-section 5.3.  
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 Figure 6. Equation Set for Delay Optimized Eight Operations per cycle 



6. Implementations in FPGA and Synthesis 
for ASIC 
 

Our designs were implemented using GEZEL [7], a 
design environment for exploration, simulation and 
implementation of domain specific architecture. 
GEZEL designs and their associated test-benches can 
be automatically translated to synthesizable VHDL 
codes. Using this environment, many different designs 
can be quickly described, simulated and compared. 

 We implemented the SHA-1 algorithm with 
unfolding factors  1, 2, 4 and 8 to verify our 
theoretical results. The results for the FPGA 
implementation (Virtex2 XC2V1000) are given in 
Table 2, and the synthesized results for an ASIC using 
TSMC 0.18μm standard cell library are given Table 3. 
The throughputs are calculated using the following 
equation: 

=n

)512(
#

bits
Cyclesof

FrequencyThrougput ×=  

For the four-step pipeline, we used the 22 cycle 
version since the 12 cycle version cannot be equally 
divided in four parts. Note that only 10 cycles out of 
12 cycles are devoted to the hash operations. Since 
each round of the pipeline version requires 6 cycles (5 
cycles for hash operations and one for either 
initialization or finalization), the total number of cycles 
of the pipeline version is 24 cycles. 

As a result, in FPGA implementations, the 12 cycle 
version achieved 893 Mbps and the pipeline version 
achieved 3,541 Mbps. In CMOS synthesis, the 12 
cycle version achieved 3.1 Gbps and the pipeline 
version achieved 10.4 Gbps. We also measured the 

energy consumptions of FPGA implementations. 
According to the results, the pipeline version consumes 
the least energy per 512 bit message block, and among 
the non-pipeline versions, the 42 cycle version 
consumes the least energy. Even though the 12 cycle 
version achieved the most throughputs in both cases, 
some other versions could be preferred due to the costs 
of area and power. 

The total delay of a SHA-1 calculation is the 
product of the number of cycles and the one cycle 
delay. It is compared with the total number of addition 
delays, , in the Figure 7. Even though does 
not account for the delays of non-linear functions, (the 
delay of additions dominates the total delay) the results 
show their linear dependency on each other. The 

addN addN

Table 2. Results of FPGA Implementations for Critical Path Optimization 
     Required cycles 
for a 512 bit block 82 Cycles 42 Cycles 22 Cycles 12 Cycles 24 Cycle 

(pipeline) 
Area in slices 

(including RAM) 1,446 1,575 1,742 2,394 4,258 

Critical Path Delay 12.8 17.6 27.2 47.8 24.1 
Frequency (MHz) 78.1 56.8 36.8 20.9 41.5 

Throughput (Mbps) 488 693 856 893 3,541 
Energy per block 1.16mJ 0.93mJ 0.96mJ 1.30mJ 0.81mJ 

Table 3. Results of CMOS Synthesis for Critical Path Optimization 
Required cycles 

for a 512 bit block 82 Cycles 42 Cycles 22 Cycles 12 Cycles 24 Cycle 
(pipeline) 

Area in gates 
(including RAM) 26,939 30,797 39,580 54,133 124,643 

Critical Path Delay 3.99 5.32 8.56 13.75 8.19 
Frequency (MHz) 250.6 187.9 116.8 72.7 122.1 

Throughput (Mbps) 1,564 2,291 2,718 3,103 10,419 
 

 

Figure 7. Comparison the total number of 
critical path additions and total delay for one 

block hash 



results of the other unfolding factors can be easily 
predicted due to this linearity. Therefore, we can 
conclude  is the optimum unfolding factor based 
on both mathematical analysis and implementation 
results. 

8=n

All the programming is done at register transfer 
level and we have mostly concentrated on optimizing 
micro-architecture rather than focusing lower-level 
optimization. We believe that more careful 
implementations can achieve a better throughput 
and/or a less area. Nevertheless, the throughputs are 
the fastest results among ever published results. The 
comparison with other implementations is described in 
Table 4. 

 
7. Conclusion 
 

We analyzed the iteration bound of SHA-1 and 
proposed throughput optimized SHA-1 architectures 
which approaches the bound. The implementations in 
FPGA achieved 893 Mbps without a pipeline and 
3,541 Mbps with a pipeline, and syntheses using 
0.18μm CMOS technology achieved 3.1 Gbps without 
a pipeline and 10.4 Gbps with a pipeline. The high 
throughputs were possible by the unfolding 
transformation. Moreover, we showed that 12 cycle 
versions are optimal in our design approach by 
mathematical analysis. 

Our analysis method and the architecture can be 
applied to other hash algorithms. Moreover, since we 
showed how the reductions of cycles affect the 
performance, our results can be used to predict 
performance changes for some other implementations 
when our idea is applied.  
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Table 4. The comparison between our results and others 
 [2] [3] [4] [5] [6] Our Proposal 

Technology Xilinx FPGA 
V100ecs144 

Xilinx FPGA 
V150bg352

0.25u  
ASIC 

0.18u 
ASIC 

0.13u 
ASIC 

Virtex 2 FPGA 
XC2V1000 0.18u ASIC 

Area 1,578 
CLBS N/A 20,536 

Gates 
70,170
Gates(1)

9,859 
Gates 

2,394 
Slices

4,258 
Slices 

54,133 
Gates 

124,643 
Gates 

Frequency 
(MHz) 72 55 143 116 333.3 20.9 41.5 72.7 122.1 

Cycles 84 40 82 80 85 12 24 
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