
Process Isolation for Reconfigurable Hardware
�

�

Herwin Chan Patrick Schaumont Ingrid Verbauwhede
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, CA

ECE Department
Virginia Tech

Blacksburg, VT

ESAT / SCD-COSIC Department
Katholieke Universiteit Leuven

Leuven, BE
herwin@ee.ucla.edu schaum@vt.edu Ingrid@ee.ucla.edu

Abstract
One of the pillars of trust-worthy computing is process
isolation, the ability to keep process data private from
other processes running on the same device. While
embedded operating systems provide isolation for the
software part of these processes, there is no commonly
accepted isolation mechanism for the hardware
resources. As a result, systems may remain vulnerable
to hardware-based attacks. This paper presents a
secure coprocessor interface that extends the concept
of process isolation into reconfigurable hardware. In
the resulting coprocessor design, context information
for different processes concurrently accessing the
coprocessor is physically kept private. The
coprocessor interface can handle context switches
between different processes without assistance of the
operating system. Because of this, reconfiguration of
computation units can occur independent of the main
processor. Moreover, it does so with greater efficiency
than what is possible using software only.

1. Introduction
 The internet is dominant for transferring information
between machines and it is becoming increasingly
important to protect this data. The AES algorithm [1] is
the new standard in symmetrical cryptography and has
been the subject of hardware acceleration.
Developments in this area focused on such design goals
as fastest design [2], most efficient design [3], or the
most flexible design [4,5]. However, none of these
schemes addresses the issue of security between the
different processes sharing a single coprocessor.

CPU MEM
Crypto
coprocessor

task1 task2 task3

OS
No HW
isolation

SW
isolation

�

Figure 1. Lack of hardware isolation in current architectures

 In this paper, the terms task and process are used
interchangeably. Traditionally, these two software
entities differ in the amount of context information that
is considered private. Since our coprocessor can secure
context information for any software entity, the two
terms are indistinguishable to the coprocessor.
 On a server, there may be many different independent
secure connections alive at any moment. In current
implementations, a separate software process using a
shared coprocessor for cryptographic acceleration,
handles each connection. As Figure 1 shows, even
though a secure operating system can enforce isolation,
the coprocessor still can leak information between
independent processes through the coprocessor
registers.
 Multitasking operating system security focuses on
the implementation of two main goals: resource access
control and resource isolation [6]. Resource access
control is the assignment of permissions to use system
resources. The classic trusted operating system
heavily relies on the access control strategy by
explicitly assigning access rights to processes and
controlling the interaction between users and various
system objects (such as files, IPC, and the network
stack). Resource isolation ensures that data from one
process is not able to leak to another process. This is
the strategy of UNIX processes where each instance of
an application runs in its own virtual address space.
 Though access to the coprocessor can be managed in
the OS, process isolation remains a problem. This
paper describes a coprocessor interface that addresses
this issue. Direct application of the results of this work
increases security by complementing and enhancing
existing security design techniques.
 Security in computing systems is often associated
with the notion of trusted computing. Work in this area
mainly focuses on mechanisms to ensure that only
trusted software is allowed to be installed or executed.
Though well promoted by industry, the effectiveness of
such an approach is debatable [7,8]. In this paper, we
focus on providing security by process isolation though
a secure channel; malicious programs may run on our
system, but they cannot interfere with or snoop on other
processes. The idea of using hardware to provide

isolation has been explored in several related works.
Trusted Logic [10] offers an operating system
framework that isolates security services from their
environment. A secure hardware channel is established
so that application software can communicate with
software security services. In our work, security
services are implemented in hardware and the secure
communication channel is established by the
coprocessor interface.
 The security architecture of the CELL Broadband
Engine [11] processor is able load a program onto one
of its Synergistic Processor Element (SPE) cores and
run it in isolation mode. In this mode, neither the
executing program or its data can be observed or
manipulated. This framework, however, limits the
interactivity of the isolated program with other
processes in the system. Our scheme provides a secure
hardware interface where interactive services can be
easily accessed by other software processes.
 We also differentiate our system from FPGA security
in general, which focuses on protecting the bitstream
that describes the system’s hardware configuration.
Our system protects the data from processes in the
system and not the actual hardware.
 Processor / coprocessor communication overheads
are a large source of system inefficiency. Overheads
include coprocessor reconfiguration time and
transmission of context information before a
calculation can occur. Each process that needs
cryptographic services has its own secret key, initial
vectors, and modes of operation. This problem
severely limits the AES core from achieving its full
potential, and is most noticeable in common internet
communications where short bursty data packets
dominate [9].
 This paper describes a new type of coprocessor
interface that addresses the issues of security and
performance in a reconfigurable platform. It provides a
mechanism to ensure security between software
processes (some of which may be malicious) and to
minimize the overhead associated with context
switching between multiple processes and hardware
reconfiguration. In addition, since these features do not
require any OS support, existing systems can
incorporate them easily. The processor described in
this paper uses a generic AES core but the scheme is
applicable to any other type of crypto-coprocessor.
 Section 2 describes the function of the coprocessor
and its place in common system architectures. To
illustrate problems with traditional interfaces, we give
some motivating examples. Section 3 describes the
architecture of the AES secure multitasking
coprocessor. Section 4 presents the results of synthesis
and system co-simulation. Finally, Section 5 concludes
with the main ideas.

2. System Architecture
 Figure 2 shows three possible system architectures
for an AES coprocessor. The dashed lines represent the
flow of data and the solid lines represent the flow of
control signals. In Figure 2a, the coprocessor directly
connects to the microprocessor. This means that both
data and control signals must pass through the
microprocessor, making this the main bottleneck in an
AES operation. In the second architecture (Figure 2b),
the coprocessor connects directly to a streaming
interface that will supply the data. With this
architecture, the microprocessor only deals with control
of the coprocessor and interactions proceed on a
block-by-block basis rather than a word-by-word basis.

memory

uproc

Dsp/
mem

memory

uproc

AES
Net/
mem

dsp AES

memory

uproc

Dsp/
mem

AES
Net/
mem

(a) (b) (c)

Figure 2. Different system architectures: a) simple
coprocessor interface, b) streaming coprocessor interface, and
c) hybrid coprocessor interface

 The most significant source of communications
overhead is the transfer of context. Cryptographic
context is the process specific data such as the secret
key, the mode of operation, and initial values. The
transfer of this information for each process not only
reduces system efficiency, but also increases the risk of
data interception.
 Architecture 2a may seem to incur a large overhead
but has the benefit of a more traditional architecture and
is more appropriate for interactive type applications
such as a telnet session. Architecture 2b is more
appropriate for processing of continuous streaming data
or large data blocks. To maintain architectural
flexibility, the multitasking AES processor
simultaneously supports both of these architectures
(Figure 2c).
 Allowing reconfiguration of the AES coprocessor
can also increase system processing overhead. Though
the processing components within the coprocessor can
dynamically change to improve system performance,
this usually requires the suspension of all calculations
while reconfiguration takes place. Our system avoids
this obstruction by modular design of the coprocessor
architecture and implementation of a transaction based
interface.

 We now present two motivating examples that
illustrate the purpose of our multitasking coprocessor
interface. The examples illustrate security and context
switching operations.

2.1 Security Example
 One possible attack can occur at the moment that a
process has just used the coprocessor to encrypt a
command to a remote server. A malicious process may
then use the same coprocessor without reprogramming
the settings to send its own data to the remote server,
essentially spoofing the identity for the first process.
 In a related attack, the malicious process can partially
reprogram the coprocessor by just changing modes
from encryption to decryption. The previous encoded
output can then be reinserted into the coprocessor to
reveal the unencrypted message.
 With current coprocessors, this can be prevented by
having the tasks reset the coprocessor after each
operation. However, this solution imposes additional
overhead, because it increases the period within which
the coprocessor interface will remain locked by a single
task. Moreover, it leaves the responsibility of security
on the design of the operating system. Operating
systems themselves are very complicated software
structures.
 The idea of the multitasking AES coprocessor is to
have a hardware solution to this problem. The
cryptographic state of a process will be securely stored
and managed on the coprocessor itself. To guarantee
security of the state information, a separate dedicated
controller manages the state of each process.

2.2 Context Switch Example
 Assume that a single AES coprocessor encrypts two
channels of streaming data. Each channel has a
different mode of operation and different keys. The
streaming data is time sensitive and must have its
latency bounded by a certain value. For a traditional
interface, this would mean that the operating system
would have to manage the context switching between
these two tasks. The overhead due to software context
switching and repeated interactions with the
coprocessor is a limitation on the total throughput of the
system.
 A system with many processes having bursty data
illustrates an extreme example of context switching.
This situation is not unusual in a VPN server, which
handles large number of secure interactive sessions.
 The multitasking AES coprocessor stores the
contexts (process specific data such as the key and
mode of operation) of the processes in the coprocessor.
This means that for streaming applications, the
bandwidth of the AES core is shared among the active

tasks with no time lost to context switching. For
extremely bursty traffic, the context information is
already stored on chip; therefore, overheads associated
with processor-coprocessor interactions are minimized.

3. AES Coprocessor

3.1 AES Algorithm

The AES cipher is a block cipher [1], which means
that encryption and decryption operate only on fixed
blocks of data. In our implementation, 128 bit is the
block size.

The algorithm consists of five main operators:
AddRoundKey, SubBytes, ShiftRows, MixColumns,
and KeyExpansion. The inverse of these operators are
used for decryption. Figure 3 shows the how these
operators are used to perform encryption and
decryption.

Encryption Decryption
AddRoundKey
For round = 1 to 9

SubBytes
ShiftRows
MixColumns
AddRoundKey

SubBytes
ShiftRows
AddRoundKey

AddRoundKey
For round = 1 to 9

InvShiftRows
InvSubBytes
AddRoundKey
InvMixColumns

InvShiftRows
InvSubBytes
AddRoundKey

Figure 3: Pseudocode for AES encryption and decryption

In both encryption and decryption algorithms, there
is a FOR loop that runs through four of these steps.
Hardware is efficiently realized by implementing only
this group of operations (a single round) into hardware.
The same hardware can then be used several times to
perform a single encryption or decryption operation.

3.2 Coprocessor Architecture

Figure 4 shows the main logical blocks in the
coprocessor. The processor interface block accepts
instructions from the microprocessor through a
memory-mapped interface. This block will then assign
the work to one of the agent blocks. The agent blocks
are dedicated controllers that are able to perform AES
encryption and decryption in any mode of operation.
The agent blocks each have enough registers to store
the state of the calculation. The AES core performs the
actual calculations. In our implementation example,
this is a purely combinational block, which performs a
single round of encryption or decryption; eleven rounds
are necessary to perform a single AES calculation.

Figure 4. Architecture of multitasking coprocessor

 There are several agents in the coprocessor
managing multiple AES cores (each responsible for
calculating a single round). The number of these
elements change depending on the throughput and
latency requirements of the system. A round robin
scheduling algorithm is used to ensure fair access to the
AES cores. Memory read and write access control
blocks are available to support the streaming or block
processing architecture of Figure 2b. For easy
integration with popular architectures, all interfaces are
32-bit buses.
 Both encryption and decryption support the
following modes of operation: electronic codebook
(ECB), cipher block chaining (CBC), cipher feedback
(CFB), output feedback (OFB), and counter (CTR).
Such flexibility enables support of a wide variety of
popular security protocols including IPSec, SSH, and
SSL/TLS.
 The following subsections explain the detailed
functions of the main blocks in our coprocessor
architectures. This includes the processor interface,
agent blocks, and access control.

3.3 Processor Interface
 The microprocessor connects to the coprocessor
through a memory-mapped interface. The processor
interface uses an instruction set designed to minimize
the amount of communications necessary. Figure 5
shows the format of the instructions the coprocessor
receives. Depending on the type of command, zero or
more of the optional fields are used.

Figure 5. Instruction format of the coprocessor

 The normal use of the protocol is shown in Figure 6
and proceeds in the following manner: A process sends
a command to the coprocessor to reserve some
resources for future calculations. If resources are
available, the coprocessor grants the request by
returning a random and unique ID number. Future
commands will use this ID number to reference the
cryptographic context in which calculations occur. At
the end of a process' life, the processor gives the
command to the coprocessor to release the reserved
resources.

Set up context

Return unique
random ID number

Use ID number to
issue commands

Close context
(end of job)

Processor Coprocessor

�
Figure 6. Processor / coprocessor interface protocol

 It should be noted that the protocol allows a software
process to identify it’ s assigned agent through the
random ID number. However, the reverse is not true.
The hardware agent cannot identify its corresponding
process and implicitly trust all processes based on the
ID number.
 The protocol also allows using the coprocessor
without the reservation of resources. In this case, the
coprocessor will return the result upon the completion
of the calculation.
 Table 1 shows the five types of commands that are
available and the amount of communications needed to
complete them.

Agent
1

Agent
n

Processor interface

…

AES round
core 1

AES access control

Read
Mem

Access
control

Write
Mem

Access
Control

…
AES round

core m

Cmd (3) Mode(4) ID number (24)

Read address (32)
Write address (32)

Block size (10)

Key (128)

Data (128)

Initial vector or
Counter value (128)

Optional
Instruction
fields

TABLE 1. Commands accepted by the coprocessor
Cmd Description Return

value
Words
rd+wr

Agent
setup

Reserve and
configure an agent
for AES calculation

ID
number
or
FALSE

9+1

Agent
check

Check to see if
previous calculation
has been completed

DONE or
FALSE

1+1

Agent
release

Clear a certain
context from the
coprocessor

DONE or
FALSE

1+1

Agent
single

Perform a single
preset AES
calculation

AES
result or
FALSE

5+4

Agent
continuous

Perform a series of
preset AES
calculations taking
data directly from
memory

DONE or
FALSE

4+1

Immediate Perform a single
AES calculation

AES
result or
FALSE

13+4

3.4 Agent Blocks
 The architecture of the agent block is shown in
Figure 7. These blocks are responsible for managing
calculations for a single process. The task given to an
agent may be to encrypt a large data file. In this case,
the agent block retrieves the data from memory,
performs multiple AES calculations, and then writes
the encrypted data back to memory. Because there is a
tight coupling between a software process and it’s agent,
many agents blocks exist within the multitasking
coprocessor.
 The agent consists of a small finite state machine
with a collection of registers to remember the state of
AES calculations.

Mode
data

Intermediate data
key

Round key
Round number

Initial vector/counter
Read address
Write address

Block size

req

req

req

req

ack

ack

ack

ack

Data from
memory

Data from
AES

Data from
processor interface

FSM
Registers (722 bits)

read
ctrl

write
ctrl

AES
ctrl

processor interface
ctrl

�

Figure 7. Architecture of the agent blocks
�

 The values stored in the registers add up to 722 bits of
data and contribute to over 60% of the area of this block.

In designs where many agents are required, area can be
saved by using an AES core that performs a full AES
calculation; intermediate data storage (which accounts
for 30% of the total registers) will not be required in the
agent. The result is a larger AES core and a system
with slightly longer latencies. Instead of registers, a
common RAM module for all the agents can also
achieve a more area efficient but lower performance
design.

3.5 Access Control
 Access control blocks regulate admission to the AES
core and the external memory blocks by the agents.
Each of these blocks implements a round robin priority
scheduler. This means that the priority of the agents to
use the resources rotates each clock cycle. This ensures
fairness among the agents competing to use the
resources and guarantees that all calculations
experience the same latency.

3.6 Reconfiguration
 The interface protocol introduced in subsection 3.3 is
transaction based. It serves to isolate the requests made
by the main processor from the active components
performing the computation. In a reconfigurable
system, this allows the number of agents and AES cores
to change without the knowledge of the application
software. This results in smaller and more portable
software (multiple versions for each dynamic
configuration is no longer necessary).
 The AES coprocessor can be configured by
specification of the number of agent blocks and
associated AES cores. The two parameters, the number
of agents and the number of AES cores, affect the
performance of the system differently. The number of
agent blocks determine the number of simultaneous
processes that may be handled. The number of AES
cores determine the maximum throughput which the
system can support. For an efficient system, these two
parameters are determined based on the required
throughput and latency of the processes.
 The agents and AES cores all operate independently
from each other. The agents are isolated from the main
processor through the processor interface block. The
AES cores are isolated from the agents through the
access control block. Because of this modular
architecture, it is possible to add or remove elements
dynamically without halting currently running
processes. This further increases the efficiency of the
platform.

4. Results
 We implemented and tested the coprocessor design in
our system design environment. The following
sections analyze the resulting performance and cost of
the system.

4.1 Design Size and Speed
 To examine the relative size of each of the modules in
the design, we synthesized the design for the Virtex-II
Pro FPGA using Synplicity. Table 2 shows the results.

TABLE 2. Size and speed of modules in the coprocessor
Module Slices Critical

path (ns)
AES core 3037 --
AES access controller 132 2.9
Agent (each unit) 1065 7.6
Read memory access
controller

186 6.2

Write memory access
controller

12 1.9

Microprocessor interface 623 5.8

 Agents take up about a third the area of the AES core.
This suggests that system performance can be easily
increased by adding agents and increasing system
efficiency. The resulting area/performance ratio will be
lower than if only AES cores are added to the
coprocessor.

4.2 Performance Analysis
 In order to show the benefits of our coprocessor
design at the system level, we analyze its performance
using real world data. Studies such as [12] shows that
90% of internet traffic is under 1Kbytes. In our test
scenario, a packet size of 1Kbytes is assumed. We can
then measure the time it takes to process each of these
packets. Table 3 shows the results of the comparison.

TABLE 3. Comparison of overhead for bursty traffic loads
 Context

switch
(cycles)

AES calc
(cycles)

Total
Time
(cycles)

efficie
ncy

Multitasking 54 63 117 54 %
Traditional 194 63 257 25 %

 This result shows that the multitasking interface can
handle more than twice the number of 1Kbyte packets
as the traditional coprocessor interface. However, the
actual AES core is still running at half its capacity. This
suggests that further improvements are possible in the
instruction set design of this type of coprocessor.
Future versions should further optimize the design to
increase the capacity for the bursty traffic model.
 The coprocessor is also able to encrypt several
continuous data streams. This traffic pattern is
common for multimedia type applications. Latency is

often important in teleconferencing applications and
they exhibit this type of traffic pattern. Table 4 shows
how the latency changes as the coprocessor processes
multiple data streams.

TABLE 4. Comparison of latency for different number of

simultaneous streams
Number of
simultaneous
streams

Multitasking
interface latency
(clock cycles)

Traditional
interface latency
(clock cycles)

1 22 12
2 28 400
3 36 594
4 48 788

 For a single stream, the traditional approach
outperforms the new multitasking interface approach.
However, for multiple data streams the multitasking
coprocessor is able to scale much more gradually. In
our interface, context switching is performed in
hardware at the AES round level. Consequently, the
latency increases much more gradually.
 This effect becomes much more serious for
traditional interfaces when implemented in a network
that processes both bursty packets and continuous
streams. The high frequency of bursts can severely
degrade the latency of the stream processes.
 Note that agents are hardware objects designed to
make efficient use of the computational resource, in this
case, the computation of one AES round. The overall
throughput of the system, however, is limited by the
AES core. For systems requiring increased throughput,
multiple cores must be created.

4.3 Application Profile
 A secure data server application was implemented on
top of multithreaded software simulation platform.
When a client establishes a connection with the server,
a key and encryption mode of operation is negotiated.
Data is then encrypted and sent to the client. Several
clients can be handled simultaneously and a process is
created to manage each connection. The footprint of
the different software components is shown in Table 5.

TABLE 5. Size of software components
Server Application 2,794 bytes

SW AES 33,536 bytes
Coprocessor interface drivers 2,928 bytes

Quickthreads library 1,868 bytes
Multithreaded TCP/IP
communications stack

106,957 bytes

System calls 4,508 bytes
TOTAL 152,591 bytes

From the system point of view, the size of the software
can be reduced by 20% if a coprocessor is used to
perform AES encryption. This shows that for a data

server application, it is possible to reduce cost, increase
performance and increase security together with our
proposed coprocessor.

5. Conclusions
 Though security in multitasking systems is
traditionally the domain of the operating system,
hardware solutions can offer similar protections. This
paper describes a coprocessor interface for
crypto-processors that prevents the access or use of
secret information from software processes running on
a common processor.
 Conventional coprocessor interfaces do not offer any
features to protect data in a multitasking environment.
In addition, because of the high context switch times,
overall system throughput is degraded under bursty
traffic loads.
 The coprocessor interface described in this paper
address both these issues. The use of small-distributed
agents in the coprocessor physically separates data
from different software processes. By assigning unique
and random ID numbers to agents, software processes
running on the microprocessor are unable to access data
from one another.
 We demonstrate that secure coprocessors do not need
the support of a large and complicated software
infrastructure. Because of this independence, the
coprocessor interface can be added to existing systems
with minimal design overhead.
 Traditional solutions to multitasking security
explicitly define resources to which a process has
access. In this work, services are not denied if
resources are available. Instead, security is created
through the protection of cryptographic contexts that
exist in the system. A software process binds to its
context in the coprocessor through the 24-bit ID
number assigned at time of creation.
 In addition to greater security, performance is also
improved. There is tight coupling between the access
control blocks and the agents. This allows efficient
sharing of the AES cores so that the maximum
throughput is maintained even during multiple
simultaneous executions of calculations having
different modes of operation. The access control blocks
also serve to isolate the processing elements. This
allows reconfiguration of the coprocessor without
suspension of calculations in progress.
 The concepts described can be adapted to apply to
any previously designed AES core and directly adds the
security and multitasking features necessary in real
systems. The number of agents in the coprocessor is
easily adjustable at design time to tune the performance
for particular expected traffic patterns.

Acknowledgment
This material is based upon work supported by the
Space and Naval Warfare Systems Center - San Diego
under contract No.N66001-02-1-8938, NSF (Grant
CCR-0310527), and SRC (Grant SRC-2003-HJ-1116).

References
[1] National Institute of Standards and Technology

(U.S.), Advanced Encryption Standard.
http://csrc.nist.gov/publication/drafts/dfips-AES.p
df

[2] A. Hodjat and I. Verbauwhede, “Minimum area
cost for a 30 to 70 Gbits/s AES processor,” Proc.
IEEE Computer Society Annual Symposium on
VLSI (ISVLSI ’04), pp. 498-502, February 2004.

[3] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu,
“A Highly Efficient AES Cipher Chip,” Proc. of
Asia and South Pacific Design Automation
Conference ASP-DAC 2003, pp.561-562, January
2003.

[4] F.K. Guurkaynak, A. Burg, N. Felber, W. Fichtner,
D. Gasser, F. Hug, and H.Kaeslin, “A 2 Gb/s
Balanced AES Crypto-Chip Implementation,”
Proc. of the 14th ACM Great Lakes Symposium on
VLSI, pp.39-44, 2004.

[5] M. McLoone and J.V. McCanny, “Generic
architecture and semiconductor intellectual
property cores for advance encryption standard
cryptography,” Proc. IEE Computers and Digital
Techniques, July 2003.

[6] P-H Kamp and R. Watson, “Building Systems to
Be Shared, Securely,” ACM Queue, vol. 2, issue 5,
pp. 42-51, July/August 2004.

[7] S.J. Vaughan-Nichols, “How trustworthy is trusted
computing?” Computer, vol. 35, issue 3, pp.18-20,
March 2003.

[8] R. Oppliger and R. Rytz, “Does trusted computing
remedy computer security problems?” IEEE
Security and Privacy Magazine, vol.3, issue 2,
pp.16-19, March/April 2005.

[9] D. Whiting, B. Schneier, and S. Bellovin, “AES
Key Agility Issues in High-Speed IPsec
Implementations” , May 2000.
http://www.schneier.com/paper-aes-agility.html

[10] http://www.trusted-logic.com/mob_tech.html
[11] http://www-128.ibm.com/developerworks/power/l

ibaray/pa-cellsecurity
[12] N. Brownlee and K. Claffy, “ Internet stream size

distributions,” Proc. of 2002 ACM SIGMETRICS
international conference on Measurement and
Modeling of Computer Systems, pp.282-283, June
2002.

