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This paper describes a secure and memory-efficient embedded fingerprint verification system. It shows how a fingerprint verifica-
tion module originally developed to run on a workstation can be transformed and optimized in a systematic way to run real-time
on an embedded device with limited memory and computation power. A complete fingerprint recognition module is a complex
application that requires in the order of 1000 M unoptimized floating-point instruction cycles. The goal is to run both the minu-
tiae extraction and the matching engines on a small embedded processor, in our case a 50 MHz LEON-2 softcore. It does require
optimization and acceleration techniques at each design step. In order to speed up the fingerprint signal processing phase, we pro-
pose acceleration techniques at the algorithm level, at the software level to reduce the execution cycle number, and at the hardware
level to distribute the system work load. Thirdly, a memory trace map-based memory reduction strategy is used for lowering the
system memory requirement. Lastly, at the hardware level, it requires the development of specialized coprocessors. As results of
these optimizations, we achieve a 65% reduction on the execution time and a 67% reduction on the memory storage requirement
for the minutiae extraction process, compared against the reference implementation. The complete operation, that is, fingerprint
capture, feature extraction, and matching, can be done in real-time of less than 4 seconds.

Copyright © 2006 Shenglin Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. INTRODUCTION

Biometric verification systems offer great security and con-
venience due to the uniqueness and efficiency of the personal
biometric information. However, one of the most significant
disadvantages of these systems is that the biometric informa-
tion cannot be easily recalled. For example, in a fingerprint
authentication application, once the finger used as a pass-
word is compromised, it never can be used again. In a tradi-
tional biometric recognition system, the biometric template
is usually stored on a central server during enrollment. The
candidate biometric signal captured by the front-end input
device is sent to the server where the processing and match-
ing steps are performed. In this case, the safety of the precious
biometric information cannot be guaranteed because attacks
might occur during the transmission or on the server. Some
embedded fingerprint verification systems try to decentral-
ize the storage of the information by storing the fingerprint
template into a device such as a smart card [1]. Although this
provides higher security for the fingerprint matching pro-
cess as well as the template storage, the minutiae extraction

process still runs outside on the card reader and the trans-
mission of the input fingerprint information still can lead
to the disclosure of the important biometric data. What is
unique in our proposed method is that both the minutiae
extraction and the matching process are executed locally on
the embedded device, gaining maximum security of the sys-
tem. The embedded device has limited computation resource
and memory space. This requires that the signal processing
procedure must be fast and compact. Therefore, the goal of
our work is to show that efficient minutia extraction mod-
ules can be realized in the context of an embedded device.
It does require a systematic approach that looks at different
abstraction levels to reach this goal.

Different fingerprint authentication applications might
use the same fingerprint due to the limited number of fin-
gers for one person. So the fingerprints stolen from one ap-
plication could also be used in some other applications [2].
Therefore the secure storage of the fingerprint template is
becoming extremely important. By extracting the minutiae
and performing the matching locally, the system can avoid
attacks on the communication and the server. Also it avoids
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the need for biometric data to be stored on multiple servers
for multiple applications. One alternative is to encrypt the
sensitive data before it leaves the embedded device. Then an
attack on the link is not possible. This is certainly an op-
tion for some applications. There are two main reasons why
we opted to process the biometrics on the embedded device.
The first one is of perceived privacy. In our proposed sys-
tem, the fingerprint template needs to be stored only once
and the user keeps it with him. We want to avoid that bio-
metric data is stored in multiple places with different levels
of security. For example, it could be used to enter nuclear
facilities as well as the locker room of the local sports club.
If the data is sent over to be processed elsewhere, the user
has to trust that his/her personal data is treated confidentially
and not disclosed. The second reason is that in the future, we
envision that most embedded devices are connected with a
wireless link. The radio transmission energy is a much larger
cost than the local processing energy [3]. This can be orders
of magnitude in battery-operated devices. Thus the trend in
embedded devices is to minimize the amount of data that
needs to be transmitted. However, it is still possible to com-
promise the plain storage of the template in an embedded
device. To improve the security of the storage, we propose
a secure matching algorithm based on a well-defined trans-
formed template structure, which does not contain the orig-
inal fingerprint information.

The design of the embedded verification requires opti-
mizations at each design step. At the algorithm level, the se-
cure matching algorithm has been developed to address se-
curity issues in embedded devices. At the software level, opti-
mization based on profiling results reduces the required sys-
tem cycle number. At the hardware level, optimizations are
performed at both the memory organization and the data-
path acceleration. A memory trace map-based memory re-
duction strategy is applied to lower the system memory re-
quirements. Memory-mapped techniques have been used to
design the acceleration coprocessors.

The contributions of this paper are: (1) high-speed op-
timization technique using the pattern characteristics of the
fingerprints; (2) DFT accelerator by creating dedicated co-
processors to the embedded core; (3) a systematic memory-
estimation and optimization technique to reduce the mem-
ory needs of the feature extraction process for embedded de-
vices; (4) a more secure matching algorithm based on the lo-
cal structure.

This paper is organized as follows. Section 2 reviews
some related work. An overview of our proposed system is
presented in Section 3. Then the algorithm and speed op-
timizations for feature extraction are discussed in Section 4
and the memory management in Section 5. In Section 6 we
propose our secure matching technique. Finally we conclude
this paper in Section 7 with the main contribution of our
work.

2. RELATED WORK

Lots of research has been performed for the minutiae-based
fingerprint matching. Some of them use the local structure

of the minutiae to describe the characteristics of the minu-
tiae set [4]. The alignment-based matching algorithms make
use of the shape of the ridge connected to the minutiae [5].
Some other researches combine the local and global struc-
tures [6, 7]. The local structure is used to find the correspon-
dences of two minutiae sets and increase the reliability of the
global matching. The global structure reliably determines the
uniqueness of a fingerprint. The approach in [8] is similar to
our work. However, we propose a new definition of the lo-
cal structure of a minutia, which is proven efficient for low
quality input fingerprints.

As new processors continuously improve the perfor-
mance of embedded systems, the processor-memory gap
widens and memory represents a major bottleneck in
terms of speed, area, and power for many applications [9].
Memory-estimation techniques at the system level are used
to guide the embedded system designer in choosing the best
solution. In data dominated applications, summing up the
sizes of all the arrays is the most straightforward way to get
an upper bound of the memory requirement. However, “in-
place” problem [10] introduces a huge overestimate. In [11],
the internal in-place mapping is taken into consideration and
the total storage requirement is the sum of the requirements
for each array. In [12], the data dependency relations in the
code are used to find the number of array elements produced
or consumed by each assignment, from which a memory
trace of upper and lower bounding rectangle, as a function of
time, is found. In [13], a methodology based on live variable
analysis and integer-point counting is described. The method
introduced in this paper takes both the program size and the
data size into consideration and provides an efficient way to
reduce the memory requirements for embedded systems at
the system level using the information gathered from run-
time simulation.

For efficient fingerprint authentication system design on
an embedded platform, recent researches have introduced
coprocessor enhancements by a generic set of custom in-
struction extensions to an embedded processor instruction
set architecture [14]. Besides the hardware/software code-
sign optimization, we also proposed software-level accelerate
techniques in this paper.

3. SYSTEM OVERVIEW

In a traditional distributed system involving resource-limited
embedded devices, usually the system partitioning is only
based on distributing the computations between the embed-
ded device and a main server for lowering the overall energy
consumption. However, our proposed system requires a par-
titioning technique that also takes the security into consid-
eration. Therefore, we need to perform the complete bio-
metrics processing locally on the embedded device instead
of offloading them to the server or the card reader. The pro-
posed fingerprint verification system consists of four basic
subsystems: data collection, minutiae extraction, matching,
and communication. The first three take care of the bio-
metric processing and matching, while the communication
part allows the transmission of the result, a yes/no signal,
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Figure 1: (a) FPGA board setup for demonstration; (b) prototype architecture.
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Figure 2: NIST minutiae extraction flow.

to the server. By doing this, the sensitive biometric data is
confined to the embedded device and the only information
transmitted is the final binary result, which is nonsensitive.

The hardware platform to demonstrate our system con-
sists of a LEON-2 processor embedded in the Xilinx FPGA
(Virtex-II), DDR SDRAM, and an Authentec AF-2 CMOS
imaging fingerprint sensor. LEON-2 is a synthesizable VHDL
model of a 32-bit processor compliant with SPARC V8 archi-
tecture. The model is highly configurable, and particularly
suitable for system-on-chip (SOC) designs [15]. The demon-
stration setup and the architecture are shown in Figure 1.
The fingerprint sensor is connected via the serial link to the
FPGA board. The FPGA contains the soft LEON-2 SPARC
core and two acceleration units, one for minutiae processing
(DFT) and one for encryption purposes (AES).

To verify the fingerprint match algorithm, we apply our
system to a subset of the FVC2000 fingerprint database [16].
In order to evaluate a realistic system performance, we have
also constructed a new database using the Authentec AF-2
CMOS imaging sensor [17], which is a part of our finger-
print verification system. Ten live-scan fingerprint samples

per finger from 10 different thumbs are captured, forming a
test bench having a total of 100 fingerprint images.

4. FEATURE EXTRACTION

The feature-extraction step is the most computation-
intensive step. Its optimization to fit on an embedded device
consists of several steps. The first step is the optimization of
the algorithm itself to reduce the number of operations. The
second step consists of identifying the computation bottle-
necks and designing acceleration units for it. The third step
consists of the memory optimization.

4.1. Minutiae extraction algorithm

The start point of the algorithm for extracting the minutiae
of a fingerprint is taken from the NIST Fingerprint Image
Software [18]. The basic steps are shown in Figure 2.

The fundamental step in the minutiae extraction pro-
cess is deriving a directional ridge flow map to represent the
orientation of the ridge structure (MAPS). To locally analyze
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Figure 3: An example case of the window rotation.

the fingerprint, the image is divided into a grid of 8× 8 pixel
blocks with a larger surrounding 24 × 24 pixel window. For
each block, the surrounding window is rotated incrementally
and a discrete fourier Transform (DFT) analysis is conducted
at each orientation. The number of orientations is set to 16.
Within an orientation, the pixels along each rotated row of
the window are summed together, forming 16 vectors of row
sums (see Figure 3). Each vector of row sums is convolved
with 4 waveforms of increasing frequencies, producing reso-
nance coefficients that represent how well the vector fits the
specific waveform. The dominant ridge flow direction for the
block is determined by the orientation with the maximum
waveform resonance. Also the image quality is analyzed. The
blocks, for which it is difficult to accurately determine the
ridge flow, are marked, indicating that the minutiae detected
within those blocks are less reliable.

Each pixel is assigned a binary value based on the ridge
flow direction associated with the block to which the pixel
belongs (BINAR). A 7×9 pixel grid is defined centered at the
pixel. The angle of the grid row is set parallel to the local ridge
flow direction. Then the center row sum and the average row
sum are compared. If the center row sum is less than the av-
erage intensity, the center pixel is set to black; otherwise, it
is set to white. Following the binarization, the detection step
methodically scans the binary image of a fingerprint, identi-
fying the localized pixel patterns that indicate the ending or
bifurcation of a ridge (DETECT). Since the scanning tech-
nique is conservative to minimize the chance of missing true
minutiae, the minutiae candidates pointed out by perform-
ing these steps need further refinement stages. Typical types
of sources for the false minutiae include: (1) islands, lakes,

and holes in the binarized image; (2) nonreliable minutiae
in regions of poor image quality; (3) side minutiae, hooks,
overlaps, minutiae that are too wide, and so forth. Consid-
ering these problems, several steps are performed to remove
the false minutiae from the candidates list.

4.2. High-speed accelerator

Implementing the fingerprint verification module on an em-
bedded device requires not only accuracy, but also high-
speed and low power consumption. In this paper, we investi-
gate both software and hardware optimization techniques to
achieve this goal.

Software optimization aims at reducing the cycle count
of the whole process. To get better performance, the first step
is to find out the bottlenecks of the system. For this purpose,
the TSIM SPARC simulator is used to profile the C code [15].
Simulation shows that the minutiae extraction process takes
most (∼ 99%) of the execution time. Therefore, we will fo-
cus on the speed optimization of this module. Figure 4(a)
shows the profiling result of the minutiae extraction pro-
cess. The execution time of the image binarization and the
minutiae detection are 11% and 12% of the total, respec-
tively, and they are not considered the system bottlenecks.
However, the direction map deriving step (MAPS) occupies
74% of the total execution time. Therefore, the detailed al-
gorithm for it is investigated further. Figure 4(b) shows the
instruction-level profiling of the MAPS. The numbers of in-
structions for multiply (Mult) and addition (Add) sum up
to 56% of the total MAPS processing due to the repetitive
DFT calculations for creating the direction map. Based on
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Figure 4: (a) Profiling of the execution time for the minutiae ex-
traction; (b) instruction-level profiling of MAPS.

the profiling results, software optimization and hardware ac-
celeration are considered for the DFT calculations in the di-
rectional map-deriving step.

(1) Software optimization for the minutiae extraction

Observing the directional map of a fingerprint, we find that
the neighboring blocks tend to have similar directions due to
the continuousness of the ridge flow. An example is shown in
Figure 5. This characteristic can be used to significantly re-
duce the number of DFT calculations. For instance, the first
direction data, upper left in Figure 5, is calculated using the
same method as the original approach. After that, when de-
ciding the direction of the block right next to it, instead of
beginning with θ = 0, the DFTs for θ = 4, 5, 6 are first cal-
culated because the result is most likely to be θ = 5. Gen-
erally, for each θ, the pixels along each rotated row of the
window are summed together forming a vector of 24 row
sums (row sum(i, θ), i = 0, 1, 2, . . . , 23). Each vector of row
sums is convolved with several waveforms. Discrete values for
the sine and cosine functions at different frequencies (ϕ) are
computed for each unit along the vector. The row sums in
a vector are then multiplied to their corresponding discrete
sine values, and the results are accumulated and squared.
The same computation is done between the row sums in
the vector and their corresponding discrete cosine values.

Figure 5: Example of direction map. “−1” means no direction be-
cause of the zero-padding in the image.

The squared sine component is then added to the squared co-
sine component, producing a resonance coefficient that rep-
resents how well the vector fits the specific waveform. The
resonance coefficient is described as

ETotal(θ) =
∑

ϕ

(
A2(ϕ, θ) + B2(ϕ, θ)

)
,

A(ϕ, θ) =
23∑

i=0

row sum(i, θ) • sin
ϕ · i · π

16
,

B(ϕ, θ) =
23∑

i=0

row sum(i, θ) • cos
ϕ · i · π

16
.

(1)

For instance, if for θ = 5 the total energy is greater than
both its neighbors (θ = 4, 6) as well as a threshold value
(ETH), the direction of θ = 5 is considered correct. Other-
wise, θ is incremented or decremented until the total energy
for it peaks with a value greater than ETH. In other words, if
the three conditions in (2) are met, the direction of a block
is determined. It is noted that the sine and cosine values are
left-shifted by 16 bits for fixed-point refinement. The execu-
tion speed as well as the matching error rate is measured
when ETH is changed from 1.0× 107 to 3.5× 107. The exper-
imental result shows that when ETH is larger than 2.0 × 107,
the error rate is within an acceptable range:

ETotal(θ) > ETotal(θ − 1) [when θ = 0, θ − 1 = 15],

ETotal(θ) > ETotal(θ + 1) [when θ = 15, θ + 1 = 0],

ETotal(θ) > ETH.

(2)

(2) DFT accelerator for the minutiae extraction

Software optimizations reduce the number of DFT calcu-
lations and result in a significant speedup of the minutiae
extraction process. However, there are still a large number
of DFT calculations, even if ETH is set to a proper value.
Therefore, DFT hardware acceleration is needed in addition
to software optimization. A DFT coprocessor is designed to
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implement four parallel one-dimensional 24-point DFTs on
four different discrete sample frequencies (see Figure 6).

The coprocessor is memory-mapped and two memory
locations are used between the CPU and the coprocessor for
the instructions and the data, respectively. The 16 row sum
vectors are sent to the coprocessor and the sine and cosine
accumulate results are retrieved. By performing this, the con-
trol flow and the data flow of the DFT algorithm are sep-
arated into the embedded LEON-2 processor and the DFT
coprocessor, respectively [19]. This coprocessor design has
been done with the design environment GEZEL [20]. With
the GEZEL environment, a cosimulation is setup between
the software running on the embedded core and the hard-
ware acceleration units. GEZEL facilitates the codevelopment
of hardware accelerator units and software optimization on
the embedded platform. The area cost for the DFT copro-
cessor is 2844 LUTs and whole system requires 7700 LUTs
after place and route. The energy calculation part is not in-
cluded because it needs a square operation of 16-bit data,
which requires a general multiplier. As a result, the execution
time of the minutiae extraction is reduced to about 4 seconds
from originally 9 seconds resulting from the fixed-point im-
plementation on the 50 MHz LEON-2 processor, as shown in
Figure 7(a). This system speed is among the top results in the
light category of FVC2004 [21]. In the meantime, the energy
consumption is reduced from 5.187 mJ to 2.500 mJ in case of
ETH = 2.7 × 107 as presented in Figure 7(b). In order to ob-
tain the energy estimation, the power is simulated using Xil-
inx’s Xpower and we get the total system cycle number from
cycle true simulation with GEZEL.

5. MEMORY OPTIMIZATION

As mentioned before, in a fingerprint verification system, the
major computational bottleneck is the fingerprint minutiae
extraction. Like many other image processing algorithms,
it is array-dominated. Therefore, apart from optimizations
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Figure 7: (a) Reduction of the execution time for the minutiae ex-
traction; (b) reduction of the energy consumption for the minutiae
extraction (ETH = 2.7× 107).

for high-speed calculation, memory management is also
necessary. In this section, we will introduce a memory analy-
sis method. Several memory optimization techniques are im-
plemented based on the analysis results.

5.1. Memory analysis methodology

When a program is running, the memory space is divided
into two parts: a program segment and a data segment. The
data segment includes a heap and a stack. The heap starts
from the bottom of the program segment and increases when
the latest reserved memory block is beyond its range. When-
ever there is dynamic memory allocation, a block of memory
is reserved for later use. When a memory free happens, the
specific memory block is returned to the memory pool. On
the other hand, the stack pointer position changes when a
function call is executed or returned. Generally, the stack and
the heap grow and shrink in opposite direction. A collision
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of the stack and the heap implies a fatal error state. At any
particular moment, the memory usage of the system is deter-
mined by the sum of the size of the program, the heap, and
the stack as shown in Figure 8.

By inserting the memory trace agents in the program
where memory usage changes can happen, we get the posi-
tion of the heap bottom and the stack pointer dynamically
during the program run time. Taking the program size into
consideration, a dynamic memory usage trace map is gener-
ated. From the trace map, we can get information about the
dynamic memory requirement as well as the memory bottle-
neck of the application.

5.2. Baseline result for the minutiae detection

Applying the methodology described in the previous sec-
tion to the baseline minutiae extraction algorithm, a mem-
ory trace map is obtained (see Figure 9(a), where the x-
axis shows the number of memory change points). The
peak memory usage of the system is 1.572 Kbytes, including
325 Kbytes of program segment memory and 1.247 Kbytes
of data segment memory. For most portable embedded sys-
tems, a memory size beyond 1 Mbytes is too expensive. In or-
der to reduce the memory requirement for this application,
we try to minimize the program size as well as the running
time memory usage based on the information obtained from
the memory trace map.

5.3. Memory optimization

(1) Architecture optimization

The NIST starting point program, as is the case for most fin-
gerprint extraction algorithms, is floating-point based, while
the LEON-2 processor, as most low power embedded pro-
cessor cores, only supports fixed-point computation. There-
fore, we perform a fixed-point refinement optimization by
replacing all the floating-point variables with 32-bit long in-
teger ones. From the memory trace map (see Figure 9(b)) of
the fixed-point refined program, we notice that both the pro-
gram segment size and data segment size decrease. This is be-
cause, on the one hand, the fixed-point refinement removes
the floating-point calculation-related libraries; on the other

hand, the size of the elements of most arrays are modified
from the 8-byte “double” type to the 4-byte “int” type, which
reduces the storage memory by half. In total, the memory re-
quirement for a fixed-point refined program is 1.267 Kbytes.

(2) In-place optimization

The memory trace maps in Figures 9(a) and 9(b) show that
there is a major jump which introduces most of the mem-
ory usage in a very short period. Our idea for reducing the
data segment memory is first finding out where the jump
happens, then analyzing the algorithm to figure out the rea-
son for the major memory usage and implementing memory
management techniques to remove or lower the jump.

Detailed investigation of the minutiae extraction algo-
rithm shows that the biggest jump happens when a routine
named “pixelize map” is called. The functionality of this rou-
tine is to convert the block-based maps for direction, low-
flow flag, and high-curve flag into pixel-based ones. For each
pixelized map, 262.144 (256× 256× 4) bytes of memory are
required since for each pixel, one 32-bit integer is used to
present each value. This results in the jump in the memory
trace map.

The dimensions for the three maps are exactly the same.
Moreover, the values in direction map vary from 0 to 32 and
low flow map and high curve map consist of only 0 and 1.
Therefore taking one corresponding element from each map,
only 6 bits are required per pixel (4 bits for direction map,
1 bit for low flow map, and 1 bit for high curve map). It
is possible to merge these three different maps into one
map since we can combine the three elements (one from
each map) in one 32-bit integer. In compiler terminology,
this operation is called loop merging [22]. By implementing
this compression, the peak memory requirement becomes
744 Kbytes (see Figure 9(c)). The data segment memory de-
creases by 590 Kbytes compared to the previous result, while
the program segment size slightly increases by 47 Kbytes due
to the additional calculations, which are needed for the com-
pression and decompression of the pixelized maps.

(3) Online calculation

As shown in Figure 9(c), the memory requirement bottle-
neck is still in the pixelize map routine. Further optimiza-
tion can be implemented by reordering the sequence of cal-
culations [22]. Instead of generating the complete pixelized
maps, storing them and then using them, we adopt a run-
ning time calculation for the map value of each pixel. It is a
form of “just-in-time” calculations: a map element is gen-
erated by the program only when it is referred to during
run time. This technique removes the major memory usage
jump in the memory trace map, but it does require an anal-
ysis of the relative creation time and consumption time of
the map values. A minimum memory size is obtained when
the creation is just before the consumption [23]. The draw-
back of it is that the pixel index needs to be calculated each
time it is referred. However, using this online calculation, the
time consuming routine for generating the pixelized maps is
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Figure 9: Memory trace maps for (a) baseline program, (b) architecture optimization, (c) in-place optimized, (d) online calculation.

skipped, thus it is found that this technique will save memory
with no cost of speed. The result of this method is shown as
Figure 9(d). Comparison of the results shows that both the
program segment size and the data segment size decrease.
The total memory requirement is 483 Kbytes, which outper-
forms all the algorithms in the light category of FVC2004
[21]. Figure 10 shows the memory reduction for the opti-
mization techniques introduced before.

6. MATCHING

The matching step compares the candidate fingerprint
against the stored template. It uses the minutiae obtained
from the previous steps to perform this comparison. A novel
more secure matching algorithm is proposed in our sys-
tem. Unlike most of the existing techniques, this algorithm
is only based on the local neighborhood structure of the
fingerprint minutiae. There are two main reasons we pro-
posed this matching technique. First, a pure local structure
does not rely on any global information; therefore no cal-
culation is needed for alignment. This makes the algorithm
very efficient in terms of speed. Secondly, this algorithm will

increase the system security since the global picture of the
fingerprint cannot be easily obtained even when the stored
templates are disclosed.

6.1. Algorithm

From the result of the minutiae extraction step, information
such as the x, y coordinates and the local ridge direction is
available for each minutia. As mentioned before, direct stor-
age of the minutiae set could lead to disclosure of the biomet-
ric information. To enhance the security of the system, our
newly proposed technique is based on a derived local struc-
ture. Generally, given one minutia M, we define a new local
structure of it which is described as a feature vector:

LM=
{
d1,d2, . . . ,dN ,ϕ1,ϕ2, . . . ,ϕN , ϑ1, ϑ2, . . . , ϑN ,Ψ

}
, (3)

where N is the number of neighbors taken into considera-
tion during matching. Ψ is the local ridge direction of the
minutia M · dn (n = 1, 2, . . . ,N) describes the distance be-
tween the selected minutia M and its nth nearest neighbor,
ϕn (n = 1, 2, . . . ,N) is the related radial angle between M and
its nth nearest neighbor, and θn (n = 1, 2, . . . ,N) represents
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Figure 10: Memory-reduction techniques for minutiae extraction.

the related position angle of the nth nearest neighbor. One
example for N = 2 is shown in Figure 11, describing the lo-
cal structure of a minutia with its two nearest neighbors. All
the elements in the local structure can be calculated from the
information obtained from the minutiae extraction follow-
ing (4):

dn =
√

(xn − x0)2 + (yn − x0)2,

ϕn = diff
(
Ψn,Ψ

)
,

ϑn = diff
(

arctan
(
yn − y0

xn − x0

)
,Ψ
)

, n = 1, 2, . . . ,N.

(4)

The function diff(·) calculates the difference of two an-
gles and ports the result to the range [0, 2π). When two
minutiae are compared, the relative position and angles of
their N nearest neighbor minutiae are examined. We can
rewrite (3) to obtain an alternative form of the local feature
vector. Assume one minutia M in the input fingerprint is

LM=
{{
d1,ϕ1, ϑ1

}
,
{
d2,ϕ2, ϑ2

}
, . . . ,

{
dN ,ϕN , ϑN

}
,Ψ
}

(5)

and one minutia M′ in the stored template is

LM′ ={{d′1,ϕ′1, ϑ′1
}

,
{
d′2,ϕ′2, ϑ′2

}
, . . . ,

{
d′N ,ϕ′N , ϑ′N

}
,Ψ
}
. (6)

The proposed matching algorithm calculates how similar
the neighborhood of one minutia in the input fingerprint is
to that of one in the stored template. If it is similar enough,
these two minutiae are taken as a “matched” minutiae pair.
After each minutia pair is compared, the total number of
“matched” minutiae pairs is used to calculate the final match-
ing score.

To decide whether or not M and M′ are a matched
minutiae pair, a small four-dimensional range box is set for
(d,ϕ, ϑ,Ψ), respectively: {Δd,Δϕ,Δϑ,ΔΨ}. The first step is
to check the local ridge directions of the two minutiae. If
|Ψ − Ψ′| > ΔΨ, M and M′ are not matched. Therefore the

d1

d2

θ1
θ2

ϕ1

ϕ2

Figure 11: Local structure of a minutia (N = 2).

matcher searches for another minutiae pair. Otherwise, the
matcher continues to investigate the neighbor minutiae ac-
cording to the neighborhood condition described in (7):

∣∣di − d′j
∣∣⇐= Δd,

∣∣ϕi − ϕ′j
∣∣⇐= Δϕ,

∣∣ϑi − ϑ′j
∣∣⇐= Δϑ.

(7)

If the conditions in (7) are all satisfied, the ith neighbor
of the input minutia M and the jth neighbor of the template
minutia M′ are considered “marked.” After a thorough check
of all the neighbor minutiae of M and M′, the number of
marked neighbor pairs is accumulated as A. If this number
is above a specific threshold THA, the minutiae M and M′

are considered as a matched minutiae pair. The threshold is
set according to experimental results, which we will discuss
later. Following this procedure, a comparison of all the minu-
tiae in the input and template fingerprints results in the to-
tal number of matched minutiae pairs, B. Assuming that the
numbers of the minutiae of input and template fingerprints
are NUMinput and NUMtemp, respectively, the final matching
score is calculated as

score = B

max
(
NUMinput, NUMtemp

) . (8)

Two fingerprints will be verified as from the same finger if
their matching score is higher than a certain threshold.

According to the descriptions of the matching algorithm,
the template, which is stored in the embedded device, con-
sists only of the local relationship between each minutia and
its neighbors. Unlike other minutiae-based fingerprint ver-
ification systems, there is no global information about the
whole fingerprint stored. Therefore, even if the stored tem-
plate is compromised, it cannot be used to reconstruct the
original minutiae set of the fingerprint.

6.2. Definition of neighborhood structure

Our proposed matching method is based on the local struc-
ture of the minutiae. The selection of the number of neigh-
bors is very important for the system performance. If the
number is too small, which indicates a relative loose match-
ing condition, some nonmatched minutiae pairs, which are
somehow similar, are very likely to satisfy the matching con-
ditions. This may lead to a high false accept rate (FAR). On
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Table 1: Possibility to achieve baseline accuracy for different local-
structure definitions and thresholds.

Number of neighbors in local structure

4 5 6 7

Thresholds
(THA)

2 No No No No

3 No Yes Yes No

4 — No No No

5 — — No No

6 — — — No

the contrary, if the neighbor number is set too large, the
matching condition becomes very strict. Many matched pairs
may fail because the fingerprint image is sometimes incom-
plete and the minutiae detection is not very precise. This may
result in a high false reject rate (FRR). In order to choose
the proper neighborhood structure which could achieve rea-
sonable FRR and FAR, experiments are performed for differ-
ent local structure definitions, where the number of neighbor
minutiae taken into account varies from 4 to 7. For each local
structure definition, matching accuracy for different marked
neighbor pair thresholds is investigated. In this work we use
1% FRR and 0.01% FAR as the baseline accuracy needed for
modern biometric systems [24], Table 1 presents the possi-
bility to reach this standard for different cases.

From Table 1 it is found that the matching algorithm
based on minutiae structure including 5 or 6 neighbors can
achieve desirable accuracy with the marked pair threshold of
3. Further results are shown in Figure 12 for these two cases.
The x-axis is the FRR and the y-axis shows the FAR. After
analyzing the result, we define the number of neighbors as
6 and the marked neighbor pair threshold THA is set to 3 in
our work. By selecting this local structure, we achieve an FRR
of 1% and an FAR of less than 0.1%.1

Also we compared the template size of our matching al-
gorithm with others. For a typical case, 0 ≤ di ≤ 256,
0 ≤ ϕi, θi,Ψ ≤ 32, the average template size for our algorithm
is around 0.5 kbytes, which is comparable to the template size
in the light category of FVC2004 [21].

7. CONCLUSION

In this article, we demonstrate that it is feasible and it can
be done to implement a complete fingerprint authentication
system on a 50 MHz embedded platform. To address the se-
curity problem for biometric authentication systems, we pro-
pose a novel secure fingerprint verification technique, within
which the matching algorithm is based on a well-defined lo-
cal neighborhood structure of the minutiae.

In order to speed up the fingerprint image processing, a
set of software and hardware optimizations methods are ap-
plied, gaining a 65% execution time reduction with less than
half the energy consumption. A memory analysis method is

1 In the simulation of our database, there is no false accept error.
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Figure 12: False reject rate (FRR) and false accept rate (FAR) for
different selections of local structure.

introduced to trace the program memory usage during run
time. Based on the analysis results, memory-optimization
techniques and code transformations are implemented and
67% memory storage requirement reduction is achieved.
This results in an implementation that ranks in the top of the
light category, with an execution time of less than 4 seconds
on 50 MHz platform, an energy estimate on an FPGA of
2500 mJ, and a memory size, which is the smallest in the light
category of FVC2004. This work successfully ports the com-
plete fingerprint processing, which is usually done on a cen-
tral server, to a resource constraint embedded device.
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