
Area-Throughput Trade-Offs for Fully Pipelined
30 to 70 Gbits/s AES Processors

Alireza Hodjat, Student Member, IEEE, and Ingrid Verbauwhede, Senior Member, IEEE

Abstract—This paper explores the area-throughput trade-off for an ASIC implementation of the Advanced Encryption Standard (AES).

Different pipelined implementations of the AES algorithm as well as the design decisions and the area optimizations that lead to a low

area and high throughput AES encryption processor are presented. With loop unrolling and outer-round pipelining techniques,

throughputs of 30 Gbits/s to 70 Gbits/s are achievable in a 0.18-�m CMOS technology. Moreover, by pipelining the composite field

implementation of the byte substitution phase of the AES algorithm (inner-round pipelining), the area consumption is reduced up to

35 percent. By designing an offline key scheduling unit for the AES processor the area cost is further reduced by 28 percent, which

results in a total reduction of 48 percent while the same throughput is maintained. Therefore, the over 30 Gbits/s, fully pipelined AES

processor operating in the counter mode of operation can be used for the encryption of data on optical links.

Index Terms—Advanced Encryption Standard (AES), cryptography, crypto-processor, security, hardware architectures, ASIC, VLSI.

�

1 INTRODUCTION

OPTICAL networks require secure data transmission at
rates over 30 Gbits/s. In one application [1], the optical

switches require cryptographically secure random numbers
to generate the encrypted stream of data. For this purpose,
the Advanced Encryption Standard algorithm [2] designed
for over 30 Gbits/s throughput is required to generate the
sequences of random numbers. An encryption algorithm is
never used stand-alone for security reasons. Therefore, it is
combined with so-called modes of operation. One mode of
operation, called the counter mode [3], is suitable for high
throughput applications. It is used to produce high
throughput cryptographically strong pseudorandom num-
bers. It has the advantage that the encryption algorithm can
be pipelined because there is no feedback in this mode of
operation. Fig. 1 shows the details of the AES algorithm in
the counter mode of operation. In the case of a keystream
generation with the counter mode, the initial 128-bit seed is
loaded into the seed register (initial value of the counter
register). Every clock cycle, the counter value is incremen-
ted and loaded into the AES unit to be encrypted. The
encrypted value is the generated pseudorandom number.
Starting from a secure nonrepeating initial seed, a sequence
of a maximum of 2128 strings of 128-bit random numbers is
generated.

This paper presents the area-throughput trade-offs of a
fully pipelined, ultra high speed AES encryption processor.
Different pipelined architectures that can achieve the
required throughput for the above application and the area
optimization opportunities for such designs are explored.

Loop unrolling and inner and outer round pipelining of the
AES algorithm are techniques that can help us to achieve
the throughput of 30 to 70 Gbits/s using a 0.18-�m CMOS
technology.

The rest of this paper is organized as follows: Section 2
will investigate the related work. In Section 3, the ultra high
speed Advanced Encryption Standard algorithm is pre-
sented. The different steps of the AES algorithm and the
design considerations that will lead to a high throughput
design are described. Section 4 shows how the area efficient
byte substitution phase of the AES algorithm can be
implemented without any loss in speed and throughput.
Section 5 presents performance trade-offs for the high
throughput AES processor with area efficient byte substitu-
tion and on-the-fly key-scheduling. In Section 6, the
architecture for the offline key scheduling is presented
and the area-throughput trade-offs for the AES implemen-
tation with offline key scheduling unit is explored. Finally,
Section 7 provides the conclusion of this paper.

2 RELATED WORK

The Advanced Encryption Standard was accepted as a FIPS
standard in November 2001 [2]. Since then, there have been
many different hardware implementations for ASIC and
FPGA. References [4], [5], [6], [7] are some of the early
implementations of the Rijndael algorithm before it was
accepted as the Advanced Encryption Standard [8]. Re-
ference [9] is the first ASIC implementation of the Rijndael
on silicon. Other ASIC implementations are [10], [11], [12].
These references mainly focus on area efficient implementa-
tion of the AES algorithm using Sbox (byte substitution
phase) optimizations. They all use the suggestion of Rijmen
[13], one of the inventors of the Rijndael algorithm. He
suggested a way of optimization of the Sboxes based on
transforming the original field of GFð28Þ to a composite
field of GFðð24Þ2Þ or GFððð22Þ2Þ2Þ by isomorphic mapping.
These all focus on area efficient implementations of one
round of the AES algorithm without pipelining and,

366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

. A. Hodjat is with Broadcom Corporation, 16215 Alton Parkway, PO Box
57013, Irvine, CA 92619-7013. E-mail: alirezah@broadcom.com.

. I. Verbauwhede is with the Faculty of Engineering, Department of
Electrical Engineering-ESAT/COSIC, Computer Security and Industrial
Cryptography, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
E-mail: Ingrid.Verbauwhede@esat.kuleuven.ac.be.

Manuscript received 13 Dec. 2004; revised 1 June 2005; accepted 27 Sept.
2005; published online 22 Feb. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0412-1204.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



therefore, they can only provide a throughput rate of
between 2 to 3 Gbits/s. Only reference [14] can achieve the
throughput of 10 Gbps by implementing binary decision
diagram (BDD) circuit architecture and TBoxes, which are
the combination of Sboxes and the mix-column phase of the
AES algorithm. On the other hand, there are several
implementations for FPGA that can achieve a throughput
rate of 1 to 20 Gbits/s because they unroll the encryption
rounds and use pipelining. However, they don’t use the
composite field implementation of the Sboxes and mostly
use look-up table implementations of the byte substitute
phase and map them on the Block RAMs of the FPGA.
Moreover, reference [15] gives a review of possible
implementation strategies for hardware implementations
of the AES algorithm. However, it does not publish
implementation results. Our work is different from this
reference because we present different implementation
results (throughput and area cost).

None of the previously published AES implementations
present a throughput rate of over 30 Gbits/s. In this paper, the
possibilities of achieving a throughput of over 30 Gbits/s
encryption using the AES algorithm with minimum area
cost is explored. Our original contribution consists of
combining the pipelining techniques with a composite
field implementation. The architectures that are addressed
in this paper can achieve the above throughput rate with a
reduction up to 48 percent in the area cost compared to a
straightforward pipelined design of the AES algorithm.
Our approach is to unroll the round loop and use
pipelining inside and between each round. Then, by
designing an area efficient pipelined implementation of
Sboxes using composite field implementation, the area is
reduced significantly.

3 ADVANCED ENCRYPTION STANDARD

Fig. 2 shows the different steps of the AES algorithm [2].
The AES algorithm is performed in Nr number of rounds.
The architecture of one round contains two different
datapaths, the encryption datapath and the key scheduling
datapath. In the AES algorithm, the data block is 128 bits
long and the key size can be 128, 192, or 256 bits. The size of
the key defines the number of rounds that the algorithm is
repeated. The value Nr is equal to 10, 12, or 14 for the key
length of 128, 192, or 256 bits, respectively.

There are different steps in each round of the encryption
datapath. These are substitution, shift row, mix column,

and key addition. The byte substitution step is a nonlinear
operation that substitutes each byte of the round data
independently according to a substitution table. Shift row
step is a circular shifting of bytes in each row of the round
data. The number of shifted bytes is different for each row.
In the Mix column step, the bytes of each column are mixed
together. This is done by multiplying the round data with a
fixed polynomial modulo x4 þ 1. In the Add key step, the
round data is XORed with the round key. All four of the
above steps are required for every round except that the last
round does not include the mix column phase. Similar steps
are followed in the key scheduling flow. Except for the byte
substitution phase, most of the operations in the AES
algorithm are implemented using a chain of XORs. Byte
substitution is the most critical part of this algorithm in
terms of performance. The most efficient implementation of
this phase will be discussed in the next section. The details
of the 128 bit state representation and the different steps can
be found in [2].

In order to achieve an ultra high speed implementation
of the AES algorithm, there are a number of design
decisions taken as follows:

1. For key lengths larger than 128 bits, the critical path
of the AES algorithm sits in the key scheduling
datapath. Therefore, in order to have a balanced
critical path for both encryption and key scheduling
datapaths, a key length of 128 bits long is used. This
way the critical path is shorter and is in the
encryption flow. Moreover, the number of rounds,
Nr, will be fixed to 10 rounds.

2. For an ultra high speed design, the AES iteration
loop has to be unrolled. If the datapath is shared for
different rounds of the algorithm, then the through-
put will significantly decrease. The highest possible
throughput is achieved when one output sample is
generated every clock cycle. This is possible only
when the loop is unrolled and pipelining is applied.

3. Pipelining can be applied both for inside each round
and around each round. Inner round pipelining will
be presented in the next section. For outer round
pipelining, the pipeline registers will be placed

HODJAT AND VERBAUWHEDE: AREA-THROUGHPUT TRADE-OFFS FOR FULLY PIPELINED 30 TO 70 GBITS/S AES PROCESSORS 367

Fig. 1. AES in the counter mode of operation.

Fig. 2. Advanced Encryption Standard.



between the datapath instances of each round. Fig. 3
shows the outer round pipelined implementation of
the AES algorithm. There is one pipeline stage for
each round and the key schedule is calculated on
the fly.

4. The byte substitution phase is the slowest operation
in the AES algorithm. In this phase, every byte of the
data is substituted with another byte. The new byte
is calculated using a nonlinear operation in GFð28Þ.
There are two well-known implementations for the
substitution phase of the AES algorithm. One

approach is the direct implementation of the
substitution boxes using lookup tables because all
256 cases of the substitution bytes can be precom-
puted and can be stored in a lookup table. The other
approach is to use the GFð24Þ operations to calculate
the substitution value on the fly [11]. The former has
minimum delay, but consumes a huge amount of
area. The latter has efficient area consumption, but it
has a long critical path [9]. The next section shows
how we can achieve a minimum area and maximum
throughput using a pipelined implementation of the
second approach.

4 AREA EFFICIENT BYTE SUBSTITUTION

In the byte substitution phase, the input is considered as an
element of GFð28Þ. First, the multiplicative inverse in
GFð28Þ is calculated. Then, an affine transformation over
GF(2) is applied [2]. Since there are only 256 representations
of one byte, all the byte substitution results can be
calculated before hand. In this case, the implementation of
an Sbox (substitution box) can be done by a look-up table, as
shown in Fig. 4a. On the other hand, we can implement an
Sbox using Galois Field operations. Calculating the multi-
plicative inverse of elements in GFð28Þ is very expensive.
The inventors of the AES algorithm suggest an algorithm
that calculates the multiplicative inversion in GFð28Þ using
the GFð24Þ operations [13]. Also, reference [11] presents one
implementation of such an algorithm. This is the composite
field implementation of the byte substitution phase. Fig. 4b
shows how the complete Sbox can be designed using
GFð24Þ operations. We call it a nonpipelined Sbox using
GF operators. Here, the input byte (element of GFð28ÞÞ is
mapped to two elements of GFð24Þ. Then, the multiplicative
inverse is calculated using GFð24Þ operators. Then, the two
GFð24Þ elements are inverse mapped to one element in

368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 3. Outer round pipelining for the AES algorithm.

Fig. 4. Byte substitution architectures. (a) Sbox using LUT implementation. (b) Nonpipelined Sbox using GF operations. (c) Two-stage pipelined

Sbox using GF operations. (d) Three-stage pipelined Sbox using GF operations.



GFð28Þ. In the end, the affine transformation is performed.
Notice that an inversion in GFð24Þ can be efficiently
implemented using look-up tables because there are only
16 possibilities for four bits. The details of the GFð24Þ
operators are from reference [11].

Although the composite field implementation of the
Sbox is very area efficient, it suffers from a long critical
path. This will reduce the overall throughput significantly.
To overcome this drawback, further pipelining can be used.
This is the inner round pipelining for the AES algorithm
because the pipeline registers will appear inside of the byte
substitution phase, which is inside of each round. Pipelin-
ing inside the Sbox will increase the number of registers
used in the whole design and, therefore, the area can
increase if the pipeline registers are not in the right place.
Fig. 4c shows the two-stage pipelined implementation of an
Sbox using GF operators. The critical path is broken in half
and there are only three 4-bit registers. Fig. 4d shows the
three-stage pipelined implementation of an Sbox using GF
operators. The critical path is divided into three stages.
Notice that the first pipeline stage is after the addition
operation because it saves area. The addition operation
could be part of the second pipe stage, but that would
double the number of registers that are necessary for the
first pipeline stage. Therefore, this way fewer registers are
used and area is saved. Please note that the other
operations, shift row, mix column, and key addition remain
together in one pipeline stage.

Fig. 5 shows the area-delay trade-off of the different
implementations of the byte substitution phase that were
presented in Fig. 4. As was stated before, these results are
for a 0.18-�m CMOS standard cell library with conservative
wire load model. As seen in Fig. 5, the pipeline composite
field implementation of the Sbox saves area, while it has the
same critical path delay as the look-up table implementa-
tion. Depending on the required speed (throughput), either
a two or three pipeline stages implementation should be
used. The area cost of one Sbox using two-stage composite
field implementation is 23 percent less than the LUT design
with the same speed. For a three-stage composite field
implementation, this cost is 32 percent less than the
corresponding same-speed LUT design.

Obtaining a high throughput Sbox implementation is
done by means of two combined techniques. The first one is

the selection of the field: GFð28Þ or GFð24Þ. GFð24Þ is

traditionally chosen for its compact realization. This is, e.g.,

the case for reference [10] and it is also stated in [15].

However, it can also be combined with pipelining for high

throughput. This has not been done before and is an

original contribution of this paper. The GFð28Þ is faster if no

pipelining is used, but it cannot be pipelined. The second

technique is within the logic level synthesis tool (Synopsys

DC compiler in our case): The tool can be pushed for speed

or for area. This gives a variation of design points, as shown

by the individual curves on the figures. For instance, in

Fig. 5, the delay of the slowest pipeline stage of the Sbox is

plotted against the Area. Within one design option,

corresponding to one curve, the area will go up if the

synthesis tool is pushed for speed.

5 PERFORMANCE TRADE-OFFS FOR THE AES WITH

ON-THE-FLY KEY-SCHEDULING

This section presents the throughput-area trade-off of our

high speed AES processor which includes an online (on-the-

fly) key scheduling unit. Fig. 6 shows the inner and outer

round pipelined architecture for the encryption and key

scheduling datapath. In this figure, for the inner round

pipelining, the inside of each round is divided into two

pipeline stages. The first stage is the byte substitution phase

and the second one includes the rest of the steps in each

round, which are shift-row, mix column, and key addition.

In the first experiment, the look-up table implementation of

the byte substitute phase is used. We call this design the

AES architecture with two pipeline stages per round and

online key scheduling. It can be clocked with really high

clock frequencies, but the area cost is very high. For area

optimization, the conclusion of Section 4 can be used.

HODJAT AND VERBAUWHEDE: AREA-THROUGHPUT TRADE-OFFS FOR FULLY PIPELINED 30 TO 70 GBITS/S AES PROCESSORS 369

Fig. 5. The area-delay trade-off for the Sbox.

Fig. 6. AES with inner and outer round pipelining.



In Section 4, it was shown that the two or three stages
pipelined implementation of an Sbox using GF operations
can reduce the area significantly. Therefore, these two
implementations of the byte substitution phase can be used
instead of the look-up table implementation of Sboxes in
Fig. 6. When the Sbox with two pipeline stages (Fig. 4c) is
used, each round of the AES algorithm will have three
pipeline stages. When the Sbox with three pipeline stages
(Fig. 4d) is used, there are four pipeline stages inside of each
round. These are the most area efficient AES implementa-
tions with online key scheduling, achieving a throughput
between 30 to 70 Gbits/s. There is a significant area
reduction in these two designs compared to the two stages
pipelined architecture that uses the look-up table imple-
mentation for the Sbox.

Fig. 7 shows the throughput-area trade-off of the
proposed architectures of the AES processor with online
key scheduling. Four different pipelined architectures are
compared together. The architecture with one pipeline stage
per round with LUT Sbox is the implementation of Fig. 3.
The design with two pipeline stages per round with LUT
Sbox is the implementation of Fig. 6. The architecture with
three pipeline stages per round with composite Sbox is the
implementation of Fig. 6 when the Sbox of Fig. 4c is used.
Similarly, the design with four pipeline stages per round
with composite Sbox is based on Fig. 6 when the Sbox of
Fig. 4d is used.

Using the clock frequency and the number of clock cycles
for one encryption, the throughput is calculated. For
example, in the cases where one encrypted output is
generated every clock cycle and the data is 128 bits long,
the throughput is calculated by 128 * Clock Frequency. In
each figure, each point refers to the area cost of the design
and its maximum throughput. Therefore, by pushing the
synthesis tool for more speed, we can achieve higher
throughput, while the result costs more area. The main
point of this paper is to explore the area-throughput trade-
off for the AES algorithm so that the designer can pick the
best choice depending on his application.

Fig. 7 shows that the inner and outer round pipelined
architectures of the AES algorithm that use the pipelined
architectures of the composite Galois Field implementation
of the byte substitution phase can produce the throughput
rate from 30 to 70 Gbits/s in much smaller area compared
to the architectures that use the LUT-based implementation

of Sboxes. The area cost for the architecture with three
pipelined stages per round can be up to 35 percent less than
the design with LUT Sbox implementation. Moreover, the
architecture with four pipeline stages per round can cost up
to 30 percent less area than the design with LUT Sbox
implementation. Also, the area cost does not vary much
when the design is synthesized for higher clock frequencies.

The inner round pipelining of the AES algorithm reduces
the area while the same throughput is maintained, but the
cost is an increase in latency. Latency is defined by the
number of cycles that each data sample takes to go through
the encryption datapath before the encrypted output is
generated. When there is only outer round pipelining (one
stage pipeline per round), the latency is 11 cycles. In the
design with two pipeline stages per round, the latency is
21 cycles. For the fully inner and outer round pipelined
designs with three or four pipeline stages per round, the
latencies are 31 and 41 cycles, respectively. In our
application, latency is not important and the main concern
is throughput; therefore, we can gain much by defining
inner round pipeline stages.

6 PERFORMANCE TRADE-OFFS FOR THE AES WITH

OFFLINE KEY-SCHEDULING

In most encryption applications, the encryption key does
not vary as frequently as data. More specifically, in our
application, over 30 Gbits/s throughput is required for the
optical link during each session. The key schedule is
calculated for every session key and remains constant
during the whole session. In this case, the online (on-the-fly)
key scheduling datapath performs the same function for
every input sample of data. Thus, there is further room for
area optimization by calculating the key schedule of the
AES algorithm offline. In this approach, for every session
key, first the offline key scheduling unit calculates the
required round keys for every round and stores them inside
the round key registers. Then, the encryption datapath
performs the AES algorithm on the input data samples and
uses the stored round key values for the key addition phase.
The most important reason that causes the area reduction is
the following: Since, in our implementation, the AES round
loop is unrolled, therefore there are an equal number of
registers that store the value of round keys. Thus, by
defining an offline key scheduling unit, there is no overhead
in terms of the total number of required registers to store
the round keys and no extra memory is required. On the
other hand, in the offline key scheduling unit, there is no
need to unroll the round loop of the key scheduling
datapath and, therefore, only one round can be implemen-
ted. This way, the area is reduced significantly.

Fig. 8 shows the architecture of the offline key schedul-
ing unit that is designed for our high speed AES processor.
Fig. 8a shows the block diagram of the processor that
includes the key scheduling controller, the offline key
scheduling datapath, and the encryption pipeline. The
keysch_start signal will activate the key scheduling unit.
After 20 clock cycles the key schedule, which includes
11 128-bit round keys, is generated. Then, the keysch_done

370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 7. The throughput-area trade-off of the AES processor with online

key scheduling.



signal is asserted, which indicates that the processor is
ready to perform the encryption of the input data.

Fig. 8b shows the inside of the offline key scheduling
datapath. One round of the key scheduling algorithm with
two pipeline stages is designed in the feedback loop. Every
two clock cycles, one round key is generated and is shifted
to the round key registers. After a total of 20 cycles, all the
round keys are calculated and stored in the round key
registers. Notice that the Key_0 register will contain the
input key for round 0.

Fig. 8c shows the new encryption pipeline, which does
not include the key scheduling datapath. This is the unit
that is used for the encryption pipeline block that is
shown in Fig. 8a. Also notice that Fig. 8c is similar to the
design in Fig. 6, with the difference that the online key
scheduling datapath is removed. Following the same
methodology that was mentioned in Section 5 for the
choice of Sboxes, there will be three different AES
implementations that will have two, three, or four
pipeline stages inside each round of the algorithm. The
two stage pipelined design uses the look-up table
implementation of the Sboxes. The three stage pipelined
design uses the pipelined Sbox implementation of Fig. 4c
and the four stage pipelined design uses the pipelined
Sbox implementation of Fig. 4d. All these architectures
are synthesized using the 0.18-�m CMOS technology. The
synthesis results show that the architectures with an

offline key scheduling unit can further reduce the area up

to 28 percent.
Fig. 9 shows the throughput-area trade-off of the

proposed architecture of the high speed AES with offline

key scheduling unit. When the offline key scheduling unit is

used, the area cost for the architecture with three pipeline

stages per round can be up to 37 percent less than the

design with LUT Sbox implementation for the same speed.

Moreover, the architecture with four pipeline stages per

round can cost up to 33 percent less area than the same-

speed design with LUT Sbox implementation. Therefore, by

HODJAT AND VERBAUWHEDE: AREA-THROUGHPUT TRADE-OFFS FOR FULLY PIPELINED 30 TO 70 GBITS/S AES PROCESSORS 371

Fig. 8. (a) Block diagram of the processor with offline key scheduling unit. (b) The offline key scheduling datapath. (c) Encryption pipeline for the AES

design with offline key scheduling.

Fig. 9. The throughput-area trade-off of the AES processor with offline

key scheduling.



using the pipelined implementation of the composite Galois

Field implementation of the Sbox presented in Section 4 and

the offline key scheduling unit that is presented in this

section, the maximum area reduction of 48 percent is

achieved for the high AES core that provides a throughput

rate over 30 Gbits/s up to 70 Gbits/s.

7 CONCLUSION

This paper presents the architecture, synthesis results and

the area-throughput trade-offs of different pipelined archi-

tectures of the AES algorithm. Area efficient architectures

for fully pipelined high speed AES processors that can

provide an encryption throughput of 30 to 70 Gbits/s for a

0.18-�m CMOS ASIC technology are presented. Loop

unrolling and inner and outer round pipelining are used

to reduce the critical path and increase the maximum

throughput. By using a pipelined design of the composite

field implementation of the byte substitution phase of the

AES algorithm, the area is reduced up to 35 percent. Also,

by designing an offline key scheduling unit for the high

speed AES processor, an area reduction of an extra

28 percent is achieved. Therefore, the total area cost of the

final architecture is reduced up to 48 percent without any

loss in throughput. The area efficient AES architecture with

throughput rate of over 30 Gbits/s is used in the counter

mode of operation for the encryption of data streams in

optical networks.

ACKNOWLEDGMENTS

This material is based upon work supported by the Space

and Naval Warfare Systems Center-San Diego under

contract No. N66001-02-1-8938. This funding is gratefully

acknowledged.

REFERENCES

[1] H. Chan, A. Hodjat, J. Shi, R. Wesel, and I. Verbauwhede,
“Streaming Encryption for a Secure Wavelength and Time
Domain Hopped Optical Network,” Proc. IEEE Intl Conf. Informa-
tion Technology (ITCC 2004), Apr. 2004.

[2] US Nat’l Inst. of Standards and Technology, Advanced Encryption
Standard, http://csrc.nist.gov/publication/drafts/dfips-AES.
pdf, 2001.

[3] M. Dworkin, “Recommendation for Block Cipher Modes of
Operations,” SP 800-38A 2001, Dec. 2001.

[4] K. Gaj and P. Chodowiec, “Fast Implementation and Fair
Comparison of the Final Candidates for Advanced Encryption
Standard Using Field Programmable Gate Arrays,” Proc. Crypto-
graphers Track RSA Conf. (CT-RSA 2001), pp. 84-99, 2001.

[5] T. Ichikawa et al., “Hardware Evaluation of the AES Finalists,”
Proc. Third AES Candidate Conf., Apr. 2000.

[6] K. Gaj and P. Chodowiec, “Comparison of the Hardware
Performance of the AES Candidates Using Reconfigurable Hard-
ware,” Proc. Third Advanced Encryption Standard Candidate Conf.
(AES3), pp. 40-54, Apr. 2000.

[7] V. Fischer, “Realization of the Round 2 Candidates Using Altera
FPGA,” Comments Third Advanced Encryption Standard Candidates
Conf. (AES3), Apr. 2000.

[8] Nat’l Inst. of Standard and Technology Web site, http://www.
nist.gov/aes/, 2006.

[9] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and
Performance Testing of a 2.29 Gb/s Rijndael Processor,” IEEE J.
Solid-State Circuits (JSSC), Mar. 2003.

[10] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact
Rijndael Hardware Architecture with S-Box Optimization,” Proc.
ASIACRYPT 2001, pp. 239-254, 2001.

[11] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC
Implementation of the AES Sboxes,” Proc. RSA Conf. 2002, Feb.
2002.

[12] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A High-
Throughput Low-Cost AES Cipher Chip,” Proc. IEEE Asia-Pacific
Conf. ASIC, pp. 85-88, 2002.

[13] V. Rijmen, “Efficient Implemenation of the Rijndael S-Box,”
http://www.iaik.tu-graz.ac.at/research/krypto/AES/old/
~rijmen/rijndael/sbox.pdf, 2006.

[14] S. Morioka and A. Satoh, “A 10-Gbps Full-AES Design with a
Twisted BDD S-Box Architecture,” IEEE Trans. VLSI, vol. 12, no. 7,
July 2004.

[15] X. Zhang and K.K. Parhi, “Hardware Implementation of Ad-
vanced Encryption Standard Algorithm,” IEEE CAS Magazine,
vol. 2, no. 4, Dec. 2002.

Alireza Hodjat received the BS degree in
electrical engineering from the University of
Tehran, Iran, in 1999 and the MS degree in
electrical engineering from the University of
California, Los Angeles (UCLA), in 2002. He
received the PhD degree in the field of
embedded computing systems from the Elec-
trical Engineering at UCLA in December 2005.
He is with Broadcom Corporation, Irvine, Cali-
fornia. His research interests include hardware/

software codesign and Application Specific Instruction Set coprocessor
architectures and VLSI implementations for secure embedded systems.
He is a student member of the IEEE.

Ingrid Verbauwhede received the electrical
engineering degree in 1984 and the PhD degree
in applied sciences from the K.U.Leuven, in
Leuven, Belgium, in 1991. She was a lecturer
and visiting research engineer at the University
of California, Berkeley, from 1992 to 1994. From
1994 to 1998, she was a principal engineer first
with TCSI and then with Atmel in Berkeley,
California. She joined the University of Califor-
nia, Los Angeles, in 1998 as an associate

professor and the K.U.Leuven in 2003. Her interests include circuits,
processor architectures, and design methodologies for real-time,
embedded systems in application domains such as security, crypto-
graphy, digital signal processing, and wireless applications. She is a
senior member of the IEEE and a member of the IEEE Computer
Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

372 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


