1380

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 11,

NOVEMBER 2006

Multilevel Design Validation
in a Secure Embedded System

Patrick Schaumont, Senior Member, IEEE, David Hwang, Member, IEEE,
Shenglin Yang, Student Member, IEEE, and Ingrid Verbauwhede, Senior Member, IEEE

Abstract—In this paper, we present the simulation-based validation approach that we used during the design of ThumbPod-2, a
portable fingerprint authentication system. The particular nature of secure system design has considerable impact on the simulation
requirements and design flow. We present two key contributions. We will first show that rigorous design of secure digital systems
requires a multilevel validation approach, meaning validation at multiple steps in the design flow. Indeed, an attacker chooses the
easiest entry point and does not stick with one abstraction level. Second, we show the use of a cosimulation and codesign environment
called GEZEL that can support this type of multilevel validation. We will illustrate this multilevel design validation strategy with the

verification of security of the ThumbPod-2 device.

Index Terms—Multilevel simulation, security, embedded systems.

1 INTRODUCTION

MODERN embedded systems are constituted of hetero-
geneous hardware and software elements. These
elements interact along physical boundaries (buses), soft-
ware boundaries (function calls), and network boundaries
(sockets), both within the device as well as in communica-
tion with other agents around them. Validation of such
hardware/software devices is a challenging area due to the
heterogeneity of simulation environments of the different
components.

The development and validation of security for those
embedded systems adds another dimension to the validation
problem [1]. This is true because not only do the elements of
the embedded system require validation, but, in particular,
each interface between elements requires extensive valida-
tion to ensure security is not compromised. This practice of
enforcing security at the boundaries can, for example, also be
seen in server-level security coprocessors [2].

In an embedded system, the interface between elements
and hardware/software is particularly vulnerable because
of their limited physical protection from attackers. A well-
known example of a successful attack on an embedded
system at the hardware-software interface is the hacking of
the X-Box game console [3]. In that system, a secret key used

e P. Schaumont is with the Department of Electrical and Computer

Engineering, Virginia Tech, Blacksburg, VA 24061.
E-mail: schaum@ut.edu.

e D. Hwang is with KeyEye Communications, Irvine, CA 92618.
E-mail: dhwang@ee.ucla.edu.

e S. Yang is with the Department of Electrical Engineering, University of
California at Los Angeles, Los Angeles, CA 90095.

E-mail: shengliny@ee.ecla.edu.

o [Verbauwhede is with the Department of Electrical Engineering,
University of California at Los Angeles, Los Angeles, CA 90095 and the
Katholieke Universiteit Leuven, ESAT-COSIC, 3000 Leuven, Belgium.
E-mail: ingrid.verbauwhede@esat.kuleuven.be.

Manuscript received 12 Sept. 2005; accepted 16 Feb. 2006; published online
21 Sept. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0310-0905.

0018-9340/06/$20.00 © 2006 IEEE

in a software decryption algorithm can be probed from a
bus during system bootup. Thus, the cryptographic strength
of the software algorithm is completely compromised by a
loophole at the hardware level. It shows that embedding
security is not a point solution at one abstraction level, but a
design approach that covers from the application down to
the physical implementation.

Performing simulation-based validation of an embedded
system, driven by design-for-security considerations, is the
focus of this paper. We rely on simulation techniques
1) because they naturally appeal to a designer interested in
implementation and 2) because we are dealing with
heterogeneous system implementations, typically consist-
ing of hardware and software.

By itself, the simulation-based validation of mixed
hardware-software systems and microarchitectures is a
well-explored topic [4]. Recently, complexity issues in
embedded system design have called for an increased use
of formal tools, next to or in combination with simulation-
based approaches [5]. However, security in embedded
systems, and the associated validation, is basically different
from their design complexity. Increasing the key length of
an embedded cipher to strengthen security, for instance, is
useless if the key storage is not well protected.

The objective of embedded security is to minimize, both
temporally and spatially, the risk of an attack. A secure
embedded system contains a root-of-trust [7], a single secret
from which all other secrets are derived. The root-of-trust
brings security and cryptographic strength to the embedded
system, but it also is its Achilles” heel.

The outline of our paper is as follows: In Section 2, we
briefly introduce the main design case of this paper: a
portable embedded fingerprint authenticator called Thumb-
Pod-2. The biometrics in this application are used as the
equivalent of an electronic key. The root-of-trust in Thumb-
Pod-2 consists of a fingerprint minutiae template and a
master key. The validation problem in ThumbPod-2 thus
needs to demonstrate the systematic protection of those

Published by the IEEE Computer Society

SCHAUMONT ET AL.: MULTILEVEL DESIGN VALIDATION IN A SECURE EMBEDDED SYSTEM

secrets. In Section 3, we present a methodology for secure
system design, based on multilevel system validation. The
protection of the root-of-trust can be partitioned into
individual design problems at different levels of abstraction
(protocol, architecture, microarchitecture, and circuit), and
each of these problems can be approached using simulation.
We will discuss two validation cases in more detail. One is the
design of the fingerprint matching operation and another is
the design of the secure protocol. Both of these cases require
interaction with the root-of-trust without compromising it. In
Section 4, we present GEZEL, the system simulation environ-
ment used in the ThumbPod-2 design. GEZEL enables cycle-
true cosimulation of hardware and software components
and has an integrated path into implementation and
stimuli generation. Finally, Section 5 presents the main
results obtained out of the ThumbPod-2 design.

2 THuUMBPOD-2 EMBEDDED AUTHENTICATION

In this section, we briefly introduce the driver application for
our methodology. The ThumbPod-2 system is an embedded
authentication system that is able to capture fingerprint
images and locally compare the extracted minutiae template
to a prestored template. This prestored template belongs to
the rightful owner of ThumbPod-2. Successful matching with
this template shows that the ThumbPod-2 user and the owner
must be the same person; in other words, matching
authenticates the identity of the user.

Upon successful matching, the ThumbPod-2 can estab-
lish a secure communications link with a server. This link
can be used for various electronic transactions that need
authentication, such as credit card transactions, personnel
access, login operations, remote car locking, and so on.

In contrast to its predecessor, ThumbPod-1 [8], Thumb-
Pod-2 has rigorously applied the principles of secure
embedded system design. In particular, care was taken to
design and validate a matching protocol that protects the
prestored template as a root-of-trust.

Fig. 1 gives an overview of the matching protocol.
ThumbPod is a client in a client-server application. Starting
with the capture of a user’s fingerprint, the device will
extract the minutiae out of this fingerprint. These minutiae
represent a person-unique signature that can be compared
with and matched to a prestored template. Depending on the
resulting matching score, ThumbPod will give the user access
to a securely stored master key. Meanwhile, the server has
generated a random number and communicated this number
to ThumbPod. In combination with the master key, Thumb-
Pod can generate a secure session key, valid for the duration
of a single successful fingerprint matching. The session key
can be used to encrypt a communications payload between
the server and ThumbPod. From Fig. 1, we can see that the
session key eventually relies on the secrecy of two elements:
the master key, which is a shared secret between ThumbPod
and the server, and the minutiae template, which is stored
only on the ThumbPod. We assume that a secure enrollment
protocol has been performed to load the master key and
template in the device.

The design problem of ThumbPod-2 is, in short, how do
we map the system described above to a combination of
software and hardware elements such that we can

1381
ThumbPod-2 Client
Minutiae Secure-
Extraction ~ —Sensitive
S l rho—-— -+ 1
erver ===[Matching [=" I
1
| Algorithm Templa‘%. !
rand | = 7= |
| Re]er \\,‘Accept root-of-trust 1
i 1
1| Load Load Master |1
Master 1 | Bogus Master 7] Key @]!
Key 1 “
1
| : key |
lain !
—| Crypto : - Crypto 1
plain I Session Key S, |
i 1
1 " - - = =" ‘
cn
payload Crypto : L Crypto —:» payload
_ === 1

Fig. 1. Security protocol of the ThumbPod-2 client.

guarantee the secrecy of the root-of-trust in the resulting
implementation? This design objective must be met without
assumptions on the possible security attacks on the system.
In practice, security breaches will occur at places where one
would not expect them (such as the X-box hack mentioned
earlier). We found a stepwise, simulation-based multilevel
approach particularly effective in implementing our secur-
ity objective in a systematic manner. This multilevel
approach is discussed in the next section.

3 MULTILEVEL DESIGN VALIDATION OF A SECURE
SYSTEM

In multilevel design validation, we consider the operation
of an embedded system at multiple abstraction levels and
target validating each design level by itself. In the context of
embedded secure systems, we will validate that the system
can withstand security attacks at a single level of design
abstraction at a time. Outside of a single level of design,
these attacks become side-channel attacks which must be
dealt with at a different level of design abstraction.

In a secure embedded system, the security is based on a
component that is trusted, which we call the root-of-trust.
The root-of-trust is “a component that must always behave
in the expected manner, because its misbehavior cannot be
detected” [9]. This means that the device behaves as
expected even in the presence of adversarial conditions,
which are intentional or by accident.

Providing security is a multilayer defense. At the
network level, trusted components include certification
authorities for public key infrastructure and time servers.
At the application level, the system is partitioned into
multiple cooperating actors. One of these actors will hold
the root-of-trust and embodies it as a secure ID token, a
smart-card, a biometric passport. At the architecture level, a
single actor is implemented and partitioned between secure
software routines—which, for instance, handle biometric
data on the token—and nonsecure routines. At the micro-
architecture level, the implementation is further refined

root-of-trust

L

. Architecture-level
Protocol/Algorithm-level " attacks

validation

Matching &
Crypto

Covered by
Cycle-true
Simulation

] Microarchitecture-level
Architecture-level attacks

validation

Matching &
Crypto

HW.

Software
driver

.) Circuit-level
Microarchitecture-level attacks

validation

DPA-resistant

HW.

Fig. 2. Multilevel validation of secure embedded systems.

with hardware support, including cryptographic hardware
acceleration units and storage units for the sensitive data
and keys. At the logic level and circuit level, logic styles and
design methods are proposed to make the hardware
resistant to side channel leakage in the implementation in
the form of power and timing attacks.

The main reasons why the complete system cannot be
protected are cost and complexity. Security measures have a
cost associated that one wants to minimize. In addition, a
secure component should minimize complexity and be as
small as possible as it eases the protecting and monitoring
of the system boundaries and interfaces.

Especially important in the context of multilevel design
validation is a clear and well-defined security boundary. It is
the interface between the trusted or secure part and the
untrusted, regular part of the embedded system. The security
boundary exists at different levels of abstraction. At the
application level, the security boundary is at a trusted server
or at an authority that issues public key certificates. In the
context of embedded systems, the security boundary consists
of transactions, instructions, buses, registers, and physical
wires. The recursive multilevel security partitioning and
associated multilevel validation for a typical secure em-
bedded system is shown in Fig. 2.

At the protocol level, the entire embedded system is
considered trusted because it holds a root-of-trust. The
validation of the communication protocol thus targets
showing that this root-of-trust cannot leak by illegal

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 11,

NOVEMBER 2006

protocol sequences. This model applies to a large class of
secure embedded systems, such as secure tokens, smart-
cards, electronic ID cards, etc. The embedded device itself
can still be attacked at the architecture level by interfering
with the implementation of the embedded software and
hardware inside of the device. These attacks are thwarted
by partitioning the device at the architecture level in a
trusted and a nontrusted part, which will isolate the root-of-
trust to a confined area. In Fig. 1, this area is indicated as a
secure-sensitive shaded area. A typical embedded system
will contain one or multiple, usually very heterogeneous,
processor cores. Some of these cores or coprocessors will
execute secure operations, while others will be running
regular software. Similarly, there will be a partioning
between secure and nonsecure storage. Very sensitive parts
of the device need to be designed in tamper proof and/or
side-channel-resistant environments.

Multilevel validation thus recognizes that the protection
of a root-of-trust is a recursive problem. In order to consider
all possible side-channel attacks, it is necessary to consider
system operation at multiple abstraction levels and to
validate that the security assumptions of the higher levels
also hold up at the lower levels.

In the following paragraphs, we give examples of
validation at different abstraction levels in the ThumbPod-2
design. We first briefly introduce the design and valida-
tion environment that we have used in solving this
security partitioning problem.

3.1 Cycle-True Platform Validation in GEZEL

The target architecture of a typical secure embedded device
consists of an embedded processor core, to implement the
software parts, combined with one or more secure hard-
ware accelerators. In our case, these hardware accelerators
are developed using special circuit-level techniques that
protect the accelerator against circuit-level side-channel
attacks [10]. The ThumbPod-2 is an illustration of this target
architecture.

In this paper, we will focus on the validation techniques
needed at the protocol/algorithm, architecture, and micro-
architecture levels and assume that the circuit level will be
side-channel attack resistant by construction.

Following the stepwise approach discussed in Fig. 2, we
target using simulation at multiple abstraction levels,
including the functional level, as well as architecture-level
simulations. Table 1 lists the simulation and modeling
accuracies required for each of the design levels. We use the

TABLE 1
System Design Abstraction Levels for Secure Embedded Systems

Security
abstraction level

Minimum
Simulation Accuracy

Modeling accuracy

Application Protocol
Algorithm
Architecture

Micro-Architecture

Circuit

Protocol Transactions
Function accurate
Instruction accurate
Cycle accurate

Continous-time

Actor model
Behavioral model
Instruction-set model

Hardware model

Device model

SCHAUMONT ET AL.: MULTILEVEL DESIGN VALIDATION IN A SECURE EMBEDDED SYSTEM

PTTTTmmmoommooeees Secure Circuit Style ----
AMBA .} i) 5
Peripheral Input | | || Cryptographic Module '
\, —L 1
Bus ‘[Port [MASTER |
: o KEY @ !
LEON-2 : Chip ;
Processor i | Command T :
! Interface H
| Template !
Output | ! 1 Storage :
Port [Oracle (<= oot-of-]
i N trust @ E
Software (C) Hardware (GEZEL)
. Memory-mapped
X-compile Interface . :
) Simulation

/

7

LEON2

I
ISS :

Fig. 3. Thumbpod-2 Platform (top) and system simulation (bottom).

GEZEL
Kernel

GEZEL design environment, which captures cycle-true
descriptions of hardware and which also supports cosimu-
lation of those hardware descriptions with embedded
software. Using GEZEL, we support security partitioning
and the associated multilevel design validation required for
the shaded area of Table 1. We thus assume here that we
have a side-channel-free circuit technology available that
can serve as a target for the secure part of GEZEL models.
An example of such a technology is WDDL [11]. Rather then
using the minimum simulation accuracy required for each
level, we choose to consistently use cycle-true simulation
throughout the design. This higher simulation accuracy
benefits the investigation of side-channels based on timing
and power consumption. The power estimation model uses
Hamming-distance toggle counting, where, optionally, a
distinction can be made between upgoing transitions
(which, in CMOS, drain current) and downgoing transitions
(which, in CMOS, source a current).

The bottom part of Fig. 3 shows how the ThumbPod-2
platform can be modeled as the combination of an
embedded core and a coprocessor in secure circuit technol-
ogy. The coprocessor includes a cryptographic module and
an oracle. Both of these will be discussed further. The
GEZEL kernel [12] provides simulation support for the
hardware part of the design, while an instruction-set
simulator for LEON?2 is used to support the software part.
The system simulation is cycle-accurate. The cosimulation
speed of the complete platform using GEZEL and the
LEON2 ISS is about 50KHz on a 3GHz Pentium PC when
the system is fully exercised.

The communication between the embedded core and the
ThumbPod-2 is done by means of memory-mapped inter-
faces and GEZEL provides modeling constructs for these
interfaces next to the hardware modeling for the coproces-
sor. When the GEZEL coprocessor is part of the side-
channel attack resistant implementation, the memory-
mapped interfaces will become the boundary between the
secure and the nonsecure part of the system. The validation

1383

of the security properties at different abstraction levels in
the system can then focus on these interfaces.

e At the architecture-level, one can simulate various
logical out-of-sequence accesses to the coprocessor
in GEZEL. These exceptional sequences can usually
be derived out of the higher-level security protocols
and an example of such a sequence will be provided
in Sections 3.2 and 3.3.

e At the microarchitecture level, one can look at the
cycle-true timing behavior of memory reads and
writes and investigate possible side-channels based
on timing or simple power-analysis. A well-known
example of this can be found in elliptic-curve
encryption (ECC) of public keys, where the key-bits
translate directly to a different sequence of copro-
cessor instructions and where they, consequently,
can be picked up easily [13].

Besides memory-mapped interfaces for processors,
GEZEL also supports other interfaces depending on the
kind of processor or host system that is being used for the
nonsecure part of the system. For example, we have used an
8051 microcontroller with a port-mapped interface to
design secure public-key coprocessors for smartcards.
Another example is the use of the coprocessor interface on
an ARM processor to obtain a performance-optimized
secure coprocessor implementation.

Finally, security can also be implemented at the physical
layer by means of tamperproof hardware and side-channel
resistant circuit styles; though these implementations are
beyond the scope of this paper, the same security design
principles can be applied at these lowest levels [11].

In the following, we will discuss how the ThumbPod-2
security protocol shown in Fig. 1 maps into the platform of
Fig. 3 and how the cosimulator helps in system validation.

3.2 Protocol Transformation

In this section, we discuss the transformation of a secure
protocol from a server-client model to a server-insecure
software client-secure hardware architecture model. This
transformation must be done with validation at each new
interface introduced to prevent leakage of information from
the root-of-trust.

Consider the biometric verification protocol as shown in
Fig. 4. In this figure, a server and a device share a secret
master key K. The server also stores a secure one-way hash
of the user’s master fingerprint template, which is non-
sensitive due to the noninvertible nature of the keyed-hash
function. The device stores the actual fingerprint template.
The protocol begins by the server generating a pair of
random numbers (RAND, RANDT) and forwarding these
to the device. The device performs a live biometric feature
extraction and match on the candidate fingerprint. If a
match is made, the device creates a session key SK using
RAND and the master key K. It also creates a keyed hash of
the template (to compare with the server’s stored version).
The device generates two authentication tokens based on
the session key, the random value RANDT, and the keyed
hash of the template. If any part of the protocol is incorrect,
the device generates dummy tokens.

1384

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 11,

NOVEMBER 2006

VERIFICATION PROTOCOL (CHRONOLOGICAL ORDER)

Device — Server ID
Server Load corresponding K

Server — Device RAND | RANDT
Device

Load TEMPLATE

Device — Server TOKEN1 | TOKEN2
Server

Generate RAND, RANDT, SK = E(K, RAND)

Obtain RAW IMAGE from user
Perform FEATURE EXTRACTION algorithm to obtain MINUTIAE

Perform MATCH algorithm of MINUTIAE versus TEMPLATE
If match, load K and generate HASH = H(K,TEMPLATE)
Else, set K= 0000 and set HASH = 0000
Generate SK = E(K,RAND)
Generate TOKEN1 = E(SK,RANDT) and TOKEN2 = E(SK,HASH)

Decrypt TOKEN1 | TOKEN 2 to verify device and interpret result.
Server — Device TRANSACTION RESULT

Fig. 4. Original biometric protocol.

A protocol running on an unprotected embedded
processor, however, is vulnerable to a number of architec-
ture and software attacks. To improve security, a protocol
transformation is required to move all sensitive variables
and functions in a secure hardware root-of-trust.

To perform the transformation, the designer must first
determine which data elements must be contained within
the root-of-trust and which can be left exposed. The
variables in the root-of-trust are called variables of trust.
In the protocol in Fig. 4, the master key K and the template
must remain in the root-of-trust.

Once data variables of trust are determined, the next step
in the transformation is to determine which functions
directly use the variables of trust in a way that could leak
sensitive information. In our case, the matching algorithm,
the keyed-hash generation, the session key generation, and
token generation are such functions. Thus, these functions
of trust must be mapped into the root-of-trust to prevent
leakage out of the root-of-trust.

After determining the variables and functions of trust
(shown in bold in Fig. 4), the next transformation step is to
partition these elements onto the hardware root-of-trust,
leaving the other elements in insecure software. Finally, a
communication protocol must be constructed such that the
root-of-trust can communicate securely with the insecure
software. In our case, this leads to the enhanced biometric
protocol shown in Fig. 5.

In terms of microarchitecture, the root-of-trust is im-
plemented as a memory-mapped coprocessor. We interface
the hardware coprocessor to an insecure processor via a
memory-mapped interface with a 16-b instruction bus
(INS), 32-b input data bus (DIN), and 16-b output data
bus (DOUT).

A instruction set must be designed to interface between
the insecure software and the hardware coprocessor. The
only communication between the insecure coprocessor and
the hardware coprocessor (root-of-trust) at the architecture-
level is these three buses. Hence, the communication across
these buses and their ensuing security is what must be
validated.

The instruction set between software and secure copro-
cessor includes 38 instructions, 11 of which support the
mapping the biometric protocol (Fig. 5), 11 others support
the matching oracle (discussed further), and 16 others

implement debug and BIST mechanisms on the coprocessor
microarchitecture.

The biometric protocol maps each atomic action of the
protocol into an instruction. For example, there is an
instruction to send the RAND-RANDT values from the
insecure coprocessor to the secure processor. After the
passing of the data, another $begin_encrypt instruction
allows the secure coprocessor to generate the first token
(or a dummy token). After the token is generated and
therefore consumed by the processor, the processor sends a
$do_hash instruction to generate the second token. After
receiving the second token, the insecure processor is able to
send this to the server for final verification.

Internal to the hardware coprocessor are a number of
security mechanisms, such as security flags and sequencing
counters, to protect the coprocessor from false instruction
and out-of-sequence instruction attacks.

We will now focus on a specific sequence of the
biometric protocol, namely, the biometric matching. The
location of the biometric matching in the overall biometric
protocol of Fig. 5 is marked with a double sidebar.

3.3 Biometric Matching Oracle

The biometric matching process compares the minutia set of a
user to a template minutia set. This template is prestored and
belongs to the true owner of the ThumbPod. The original
matching algorithm of the ThumbPod is based on pairwise
comparison of the minutia set and is developed as an
algorithm in C. The algorithm relies on calculations in polar
space and may be consulted in [14]. The validation of this
algorithm in C requires simulation against a database of
sample fingerprints to establish reliability bounds (false-
accept and false-reject ratios, as described in [14]). The C code
is also run on top of the instruction-set simulator to evaluate
the performance on the target embedded processor.

For the security point-of-view, the complete C algorithm
requires the highest level of trust because it directly
manipulates the template minutia (the root-of-trust). Sub-
sequent refinements of the algorithm therefore target
isolating the root-of-trust to a confined area of the
implementation, which will eventually map into a secure
circuit style.

At the architecture level, we therefore introduce the
concept of an oracle. The oracle will hide the matching

SCHAUMONT ET AL.: MULTILEVEL DESIGN VALIDATION IN A SECURE EMBEDDED SYSTEM

1385

VERIFICATION PROTOCOL (CHRONOLOGICAL ORDER)

Device (I) — Server ID
Server Load corresponding K

Server — Device (1) RAND | RANDT

Device (1)

Device (I) — Device (S),, NUM_MINUTIAE

Device (S)

Device (I) — Device (S) RAND | RANDT

Device (S)

}
Device (I) — Device (S) BEGIN_ENCRYPT

Device (S)

TOKEN1
DO_HASH

Device (S) — Device (I)
Device (I) — Device (S)
Device (S)

}

TOKEN2
TOKEN1 | TOKEN2

Device (S) — Device (I)
Device (I) — Server
Server

Server — Device (l)

Generate RAND, RANDT, SK = E(K, RAND)

Obtain RAW IMAGE from user
Perform FEATURE EXTRACTION algorithm to obtain MINUTIAE

{i kk | MINUTIA} x (NUM_MINUTIAE (i)
x NUM_TEMPLATE (j) x NUM_NEI_MIN (k) x NUM_NEI_TEMPL (kk))
Store NUM_MINUTIAE
For each MINUTIA received {
Load template region for TEMPLATE j and TEMPLATE NEIGHBOR kk
Local MATCH algorithm with MINUTIA i and MINUTIA NEIGHBOR k
Update partial match registers

}
After all MINUTIAE, obtain final match result
If match, set MATCH_FLAG = 1; Else, set MATCH_FLAG =0

If TEMPL_LD_FLAG == 1 & SEQUENCE == 4 {
Store RAND and RANDT
Set MATCH_FLAG_CRYPTO = MATCH_FLAG and SEQUENCE = 12

Set MATCH_FLAG =0

If TEMPL_LD_FLAG == 1 & SEQUENCE == 12 {
If MATCH_FLAG_CRYPTO == 1, load K; Else, set K = 0x0000
Generate SK = E(K,RAND)
Generate TOKEN1 = E(SK,RANDT) and set SEQUENCE = 13

}
Else, set TOKEN1 = 0x0000

If TEMPL_LD_FLAG == 1 & SEQUENCE == 13 {
If MATCH_FLAG_CRYPTO == 1, generate HASH = H(K,TEMPLATE);
Else, set HASH = 0x0000
Generate TOKEN2 = E(SK, HASH)
Set MATCH_FLAG_CRYPTO = 0 and SEQUENCE =4

Else, set TOKEN2 = 0x0000 and MATCH_FLAG_CRYPTO =0

Decrypt TOKEN1 | TOKEN 2 to verify device and interpret result
TRANSACTION RESULT

Fig. 5. Transformed biometric protocol.

operations that lead up to the accept/reject decision for a
users’ fingerprint, and only announce the final result,
similar to the oracle concept in Greek Mythology. The
oracle must remain sufficiently simple because it will
eventually map into hardware. We rewrote the C code for
the original algorithm so that the oracle was clearly
identifiable in the complete matching algorithm as a
separate set of functions. Doing these transformations at
the C level enabled us to use a single fast instruction-set
simulator throughout the architecture validation phase. The
result of this partitioning algorithm is that the minutia
template, combined with the comparison operations that
touch it, are isolated as a root-of-trust in the program.

In the third step of the refinement, the microarchitecture
for the oracle was created as a GEZEL module that was
cosimulated with a driver program in C. The driver
program presents the same API as the architecture-level
oracle, but, in fact, interfaces to a memory-mapped hard-
ware implementation of this oracle. The GEZEL description
is a cycle-true, register-transfer level description of the
protocol architecture which can implement all operations of
the oracle by means of a custom instruction set, as was
discussed earlier, in Section 3.2. Table 2 shows the example

of the 11 instructions that were created to control the oracle

microarchitecture.
In the next section, we turn to the issue of microarch-

itecture modeling in GEZEL and cosimulation of the
coprocessor with C.

4 COPROCESSOR MODELING, IMPLEMENTATION,
AND VERIFICATION IN GEZEL

In the previous two sections, we have described a
partitioning process that isolates the root-of-trust over
multiple abstraction levels. At the microarchitecture level,
this partitioning results in custom hardware architectures
which are described in the GEZEL language and which are
then cosimulated with C running on an instruction-set
simulator. In this section, we will briefly describe the
GEZEL modeling language and discuss the implementation
support offered by a GEZEL-based environment. This
support consists of 1) automatic generation of synthesizable
VHDL and 2) generation of register transfer (RT) level and
chip-level test-vector stimuli.

1386

TABLE 2
System Design Abstraction Levels
for Secure Embedded Systems

Op Mnemonic
84 ins_oracle_start

Operation

Reset oracle and prepare for
matching

Instruction storing which minutiae
(0 through 29) to compare against.

85 ins_oracle_index

86 ins_oracle_index_nei Instruction storing which neigh-
bor (0 to 5) to compare against.
Store DIN as candidate DIS_IN
for matching.

Store DIN as candidate PHI_IN
for matching.

Store DIN as candidate
SITA_NEI_IN for matching.

Store DIN as candidate SITA_IN
for matching.

87 ins_oracle_dis_input
88 ins_oracle_phi_input
89 ins_oracle_sita_nei_input
90 ins_oracle_sita_input

Load the first minutia into tem-
plate storage.

94 ins_oracle_load

95 ins_oracle_load_last Load the last minutia into template
storage.

98 ins_oracle_loadtemplatenum Load the number of template
minutiae (NUM_TEMPL) into the
oracle and crypto engine.

Load the number of candidate
minutiae (NUM_MINUTIAE) into
the oracle.

99 ins_oracle_loadinputnum

4.1 Microarchitecture GEZEL Models for Codesign

Let us consider again the secure_match() operation of the
biometric protocol. As can be seen in the architecture
validation step of Fig. 6, this step tests the value of variable
match_count against a preset value N. match_count holds
the number of minutia in the input fingerprint that are
considered matching (equal) to those in the template
fingerprint. When this number exceeds the preset
value N, the input fingerprint is considered similar to the
template. The actual value of match_count is, however,
secure-sensitive since it has an obvious relationship to the
prestored template minutia (root-of-trust). For example, an
attacker could exhaustively traverse the input template
minutia space with artificially generated minutia and
extract the secret template by observing the value of
match_count during the traversal.

Therefore, at the microarchitecture level, the function
secure_match() is separated into a secure hardware part
described in GEZEL and a software driver in C. Listing 1
and Listing 2 illustrate a (simplified) model of the GEZEL
and C part of this model.

GEZEL is a cycle-true register-transfer modeling lan-
guage. A system consists of a number of modules, each of
which are expressed as the combination of a data path (dp,
as in lines 1, 6, and 33) and a controller (hardwired, line 5,
or fsm, line 16). A GEZEL data path can have one or more
instructions or sfg, each of which will take a single clock
cycle to execute. The controller of a data path will define an
execution schedule for those sfg.

The module matchmod, in lines 1-5 in Listing 1, holds
a single register matchent which will hold the secret

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 11,

NOVEMBER 2006

User Minutia

Template Minutia

NOT OK

T

OK
O

root-of-trust .

Algorithm
Validation - A
for each input minutia pair I:
for each template pair T:
it (1==T)
matching_count++;
if (matching_count > N)
then match = true;
else match = false; .
Architecture hain oracle
Validation | secure_initialize(); secure_initialize() {
matching_count = 0;
for each input minutia pair I: }
for each template pair T secure_compare(|) {
secure_compare(|); |::> if (I==T)
matching_count-++;
if (secure_match()) }
then match = true; secure_match() {
else match = false; if (matching_count > N)
then return true;
else return false;
: @
C GEZEL
. driver oracle
Micro- o0
: secure_initialize():
arch Ite(.:tu re secure_compare(): .
Validation secure_match():
(Listing 2) (Listing 1)

Fig. 6. Multilevel design validation of the biometric oracle.

number of matched minutia. The module also has a 1-bit
output port match that will provide a flag representing
the result of the threshold comparison for match_count. A
hardwired controller, as in line 5, executes the same
instruction each clock cycle. The matchmod module in
lines 1-5 is a strongly simplified version of the actual
oracle. It assumes that matchcnt will be generated by
some unspecified GEZEL logic.

LISTING 1. GEZEL module for secure_match
dp matchmod (out match : ns (1)) {

1

2 reg matchcent : ns(5);

3 sfg compare { match = (matchcnt > 20); }
4. }

5. hardwired h_match_mod (matchmod) {compare;}
6. dp matchmod_decoder (in ins ns (8);

7 out dout ns(32)) {
8 sigmatch ns(1);

9. reg ireg ns(8);

10. reg doutreg ns(32);

11. use match_module (match) ;

12. sfg dec { ireg = ins;

13. dout = doutreg;}

14. sfg rmatch { doutreg =match; }

SCHAUMONT ET AL.: MULTILEVEL DESIGN VALIDATION IN A SECURE EMBEDDED SYSTEM

15. }
16. f£sm h_matchmod_decoder (matchmod_
decoder) {

17. initial s0;

18. state sl1, s2;

19. @s0 (dec) ->sl;

20. @sl if (ireg==1) then (dec, rmatch)
->82;

21. else (dec) ->sl;

22. @s2 if (ireg==0)} then (dec) ->s8l;

23. else (dec) ->82;

24. }

25. ipblock b_ins} (out data : ns(8)) {

26. iptype ' ’'leonsimsource’’;

27. ipparm ’'’address=0x20000000"";

28. 1}

29. ipblock b_dataout (in data : ns(32)) {

30. iptype ' ’leonsimsink’’;

31. ipparm ’ 'address=0x20000004"";

32. }

33. dp sysmatch {

34. sig ins ns(8);

35. sig dout ns (32) ;

36. use match_module_decoder (ins, dout) ;

37. use b_ins (ins) ;

38. use b_dataout (dout) ;

39. 1}

40. system S {

41. sysmatch;

42. '}

LISTING 2. C driver for secure_match
#include <stdio.h>

1

2

3. enum {ins_idle, ins_readmatch};

4. int secure_match() {

5 volatile unsigned char *ins

6 = (volatile unsigned char *)
0x20000000;

7. volatile unsigned int *dout

8. = (volatile unsigned int *)
0x20000004;

9. *ins = ins_readmatch;

10. rv = *dout;

11. *ins = ins_idle;

12. return rv;

13. 1}

The second module in Listing 1 (lines 6-24) represents
an instruction decoder that interfaces the C driver on the
embedded processor to matchmod. Such an instruction-
set decoder multiplexes the memory bus over the
different hardware I/O ports that need to be accessed
and synchronizes the embedded software to the secure
hardware module. The instruction decoder illustrates the
use of structural hierarchy (line 11) and the use of a
finite-state-machine specification to express conditional
sfg sequencing (lines 16-24). The instruction decoder is
connected to the embedded software by means of

1387

ins
(0x80000000)

dout
(0x80000004)

hardware
(GEZEL)

software
(LEON2)

int secure_match() {

wait for ins !=idle

*ins = ins_readmatch; _,{

rv = *dout; dout = matchcount

*ins = ins_idle;

|

returmn rv: wait for ins == idle
) \7

time
Fig. 7. One-way handshaking between C and GEZEL.

memory-mapped interfaces (lines 25-32), which specify
the shared address location between a hardware port at
GEZEL level (e.g., port data on line 25) and a memory
address for the C program (e.g., address 0x20000000 on
line 27).

A C driver for this GEZEL module is shown in Listing 2.
As was shown earlier in Fig. 6, the objective of this driver is
to map a C API (secure_match()) into accesses to a secure
hardware module. Because of the memory-mapped inter-
faces, these accesses can be represented using memory
read/writes on initialized pointers (Listing 2, lines 5-8). As
can be seen from the driver C description, the value of the
secure match comparison is obtained as a single memory
read (line 10). Detailed security aspects, such as how many
minutia in the input actually matched to the template (the
value of match-count in Listing 1), remain private to the
hardware module. The combination of the software in
Listing 2 and the hardware in Listing 1 results in a one-way
handshake protocol, as illustrated in Fig. 7. This one-way
handshake protocol assumes that the hardware needs to
synchronize the software but not vice versa.

4.2 Implementation of GEZEL Modules

Besides cosimulation, GEZEL also supports a path to
implementation. This support consists of VHDL code
generation, as well as the possibility of recording block-
level 1/O stimuli as well as chip-level I/O stimuli. The
VHDL is generated at the RTL level. In contrast to typical
transaction-level C-based cosimulation models, GEZEL
models are fully convertible to VHDL. That is, if a module
can be written and simulated in GEZEL, then there exists a
direct translation of this module into synthesizable VHDL.

Listing 3 shows an example of how I/O stimuli are
recorded during GEZEL cosimulation. Using a trace
directive in I/O signals (lines 5 and 6), interface signals
are probed and placed into a text file with one value written
per cycle. These stimuli can be reused for RT-simulation of
the VHDL and, later, for chip-level validation of the actual
chip. RT-simulation at VHDL of the complete system is
clearly out of the question. However, we did simulations at
the individual block level, primarily to verify the correct-
ness of the generated VHDL code.

1388
coproc_driver.c coproc. £fdl
(C) (GEZEL)
v
LEON2 0 D—»D—D Platform
ISS & simulation
I
LEON2 Chip-level Block-level
(VHDL) Stimuli Stimuli
Synthesis & [RT) (synthesisa Block-level
Implement Simulation) Backend RT-simulation
A
FPGA] Chip
Logic Chip-level
Analyser Validation

Fig. 8. Design flow with back-end validation levels.
LISTING 3. Stimuli trace recorders in GEZEL

dp sysmatch {

sig ins ns(8);

sig dout ns (32) ;

Strace(ins, vectors/ins.txt);
Strace(dout, vectors/out.txt) ;

use match_module_decoder (ins, dout) ;
use b_ins (ins);

use b_dataout (dout) ;

P W oo Jo Ul i WN B

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 11,

NOVEMBER 2006

5 RESULTS

In this section, we summarize the validation and imple-
mentation results of the complete ThumbPod-2 system.

5.1 Validation of the Final Protocol

The protocol between the insecure processor and the secure
coprocessor that holds the root-of-trust is fully validated at
the microarchitecture level. Using a GEZEL model for the
coprocessor and its interface and an ISS of the LEON
processor, an embedded C test program was written to
verify the proper protocols of the system and test a number
of potential attacks.

The C testbench coproc_driver.c was simulated on the
instruction-set simulator and it passed instructions and data
to/from the GEZEL coprocessor. It tested all 38 instructions
in various orders for a total of over 230,000 instructions
tested. The test bench verified the normal operation of the
protocol and correctly withstood various forms of out of
sequence and improper instruction attacks. A software-
coded built-in self-test (BIST) was also implemented to test
the encryption modes of the final device.

5.2 Implementation and Design Validation Flow

The implementation flow for the ThumbPod-2 system is
shown in Fig. 8. After platform cosimulation using C and
GEZEL, the GEZEL modules are converted into synthesizable
RTL-VHDL and test-bench stimuli are recorded into files.
These stimuli are used for block-level RT simulations in
VHDL. LEON’s output to the coprocessor (instruction and
input data buses) was modeled by the appropriate stimuli
files. The coprocessors’ return path to the LEON (output
bus) was written into another test file and automatically
tested versus the known original output file. Hence, RTL
validation of the coprocessor could be performed without
RTL simulation of the LEON processor. The RTL-validated
VHDL is synthesized into the final ASIC implementation.
The LEON2 processor was not implemented on the same

TABLE 3
Coding and Performance for the Biometric Oracle
Level C GEZEL Performance
NCLOC* NCLOC (cycles)
Algorithm 311 188.2M
Architecture 331 188.4M
Micro-Architecture 321 255 73.0M
*NCLOC = Non-Comment Lines of Code
TABLE 4
Code Lengths of the Coprocessor
Module GEZEL RTL Gate-level
NCLOC VHDL VHDL
NCLOC NCLOC
Interface 154 402 573
Oracle 255 3517 31,690
Crypto 364 1623 4,804
Memory — 2574 30,004

SCHAUMONT ET AL.: MULTILEVEL DESIGN VALIDATION IN A SECURE EMBEDDED SYSTEM

TABLE 5
Area of the Coprocessor

Module Area Eq.

(mm2) gates

Interface 0.023 2K
Oracle 0.114 11K
Crypto 0.794 79K
Memory 1.054 105 K

die, but separately implemented on an FPGA. When the
chip returned from fabrication and packaging, a test setup
was created that combined an FPGA board with a test board
holding the ASIC. This way, chip testing could use the same
coproc_driver.c testbench that was used during system-
level conception of the system. As a result, the GEZEL
environment allowed smooth validation of the ISS model,
the RTL model, the gate-level VHDL model, and the final
fabricated IC.

5.3 Coding and Design Complexity
Finally, we document the coding and design complexity of
the design in Table 3, Table 4, and Table 5. Table 3
illustrates how the design size of the biometric oracle
evolves over the different modeling abstraction levels.

The final fabricated IC consisted of four components:

1. the interface between the coprocessor and processor,
2. the oracle,
3. the cryptographic engine based on AES, and
4. the storage memory of the fingerprint.
Table 4 shows the size of the design descriptions and the
implementation for each of those components.

6 CONCLUSIONS

System-level design of secure embedded system such as
ThumbPod-2 includes multiple levels of design. These
levels each take care of specific security and integrity
aspects of the system and each of those can be modeled as a
separate validation problem. For validation at the micro-
architecture level, we used a codesign environment called
GEZEL to perform cycle-true system-level validation. The
IC that was fabricated in this methodology has been proven
operational and, moreover, was shown to be able to
withstand a wide range of security attacks.

ACKNOWLEDGMENTS

The authors acknowledge the support of the Fannie and
John Hertz Foundation, US National Science Foundation,
SRC, and FWO.

REFERENCES

[1] S. Ravi, “Security in Embedded Systems: Design Challenges,”
ACM Trans. Embedded Computing Systems, special issue on security,
vol. 3, no. 3, pp. 461-491, Aug. 2004.

[2] T. Arnold and L.P. Van Doorn, “The IBM PCIXCC: A New
Cryptographic Coprocessor for the IBM eServer,” IBM]. Research
and Development, vol. 48, nos. 3/4, pp. 491-503, 2004.

1389

[3] A. Huang, “Keeping Secrets in Hardware: The Microsoft XBox
Case Study,” AI Memo 2002-008, Massachusetts Inst. of Technol-
ogy 2002.

[4] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli,
“Design of Embedded Systems: Formal Models, Validation, and
Synthesis,” Proc. IEEE, vol. 85, no. 3, pp. 366-390, Mar. 1997.

[5] P. Mishra, N. Dutt, N. Krishnamurthy, and M. Abadir, “A Top-
Down Methodology for Microprocessor Validation,” IEEE Design
and Test of Computers, vol. 21, no. 2, pp. 122-131, Mar.-Apr. 2004.

[6] S.W. Smith, R. Perez, S.H. Weingart, and V. Austel, “Validating a
High-Performance, Programmable Secure Coprocessor,” Proc.
22nd Nat'l Information Systems Security Conf., Oct. 1999.

[7]1 S. Pearson, “Trusted Computing Platforms, the Next Security
Solution,” HP Technical Report HPL-2002-221, Nov. 2002.

[8] P.Schaumont, K. Sakiyama, Y. Fan, D. Hwang, B. Lai, A. Hodjat,
S. Yang, and 1. Verbauwhede, “Testing ThumbPod: Softcore Bugs
Are Hard to Find,” Proc. IEEE Int’l High Level Design Validation and
Test Workshop (HLDVT "03), pp. 77-82, Nov. 2003.

[9] Trusted Computing Group, http://www.trustedcomputinggroup
.org, 2006.

[10] K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and 1.
Verbauwhede, “A Side-Channel Leakage-Free Co-Processor IC in
0.18 um CMOS for Embedded AES-Based Cryptographic and
Biometric Processing,” Proc. Design Automation Conf., pp. 222-227,
June 2005.

[11] K. Tiri and I. Verbauwhede, “Simulation Models for Side-Channel
Information Leaks,” Proc. 2005 Design Automation Conf., pp. 228-
233, June 2005.

[12] The GEZEL Design Environment, http://rijndael.ece.vt.edu/
gezel2, 2006.

[13] K. Sakiyama, L. Batina, P. Schaumont, and I. Verbauwhede,
“HW/SW Co-Design of TA/SPA-Resistant Public-Key Crypto-
Systems,” Proc. Workshop Cryptographic Advances in Secure Hard-
ware, Sept. 2005.

[14] S. Yang and I. Verbauwhede, “A Secure Fingerprint Matching
Technique,” Proc. ACM Workshop Biometrics: Methods and Applica-
tions, pp. 89-94, Nov. 2003.

Patrick Schaumont received the MS degree in
computer science from Rijksuniversiteit Ghent,
Belgium, and the PhD degree in electrical
engineering from the University of California,
Los Angeles (UCLA) in 1990 and 2004, respec-
tively. He is an assistant professor in the
Electrical and Computer Engineering Depart-
ment of Virginia Tech. Before joining UCLA in
2001, he had been a researcher at IMEC,
Belgium, since 1992. His research focuses on
design methods and architectures for embedded systems and he works
in close cooperation with designers to demonstrate new methodologies
on practical applications. He is a senior member of the IEEE.

David Hwang received the MS degree from the
University of California, Los Angeles (UCLA) in
December 2001, researching architectures and
ASIC implementations of VLSI digital signal
processing systems. He received the PhD
degree in electrical engineering from UCLA in
March 2005. His research focused on VLSI
y implementations and architectures for crypto-
‘ graphic and secure systems. He is currently with
KeyEye Communications investigating DSP
architectures for multi-gigabit Ethernet transceivers. He was a UC
Regents Scholar, a Department of Defense NDSEG Fellow from 1999 to
2000, and a Hertz Foundation Graduate Fellow from 2000 to 2005. He is
a member of the IEEE.

1390

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 11, NOVEMBER 2006

Shenglin Yang received the BS and MS
degrees in electronics from Beijing University,
Beijing, China, in 1998 and 2001, respectively.
She is currently pursuing the PhD degree in
electrical engineering at the University of Cali-
fornia, Los Angeles. Her research interests
include biometrics, pattern recognition, em-
bedded systems, and security. She is a student
member of the IEEE.

Ingrid Verbauwhede received the electrical
engineering degree in 1984 and the PhD degree
in applied sciences from the Katholieke Uni-
versiteit Leuven (K.U. Leuven), Belgium, in
1991. She was a lecturer and visiting research
engineer at the University of California (UC),
Berkeley, from 1992 to 1994. From 1994 to
1998, she was a principal engineer, first with
TCSI and then with Atmel in Berkeley, California.
— — She joined the University of California, Los
Angeles (UCLA), in 1998 as an associate professor and joined the
K.U. Leuven in 2003. At K.U. Leuven, she is codirector of the ESAT-
COSIC research group. Her research interests include circuits,
processor architectures and design methodologies for real-time,
embedded systems in application domains such as security, crypto-
graphy, digital signal processing, and wireless applications. She was the
general chair of the IEEE International Symposium on Low Power
Electronic Devices (ISLPED) in 2003. She is or has been a member of
several program committees, including DAC, ISSCC, DATE, CHES,
ICASSP, SIPS, and ASAP. She is the design community chair for the
42nd and 43rd DAC executive community. She is a senior member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

