
An interactive codesign environment for
domain-specific coprocessors
PATRICK SCHAUMONT AND DORIS CHING
University of California at Los Angeles
and
INGRID VERBAUWHEDE
University of California at Los Angeles, and Katholieke Universiteit Leuven

__

Energy-efficient embedded systems rely on domain-specific coprocessors for dedicated tasks such as baseband
processing, video coding, or encryption. We present a language and design environment called GEZEL that can
be used for the design, verification and implementation such coprocessor-based systems.
The GEZEL environment creates a platform simulator by combining a hardware simulation kernel with one or
more instruction-set simulators. The hardware part of the platform is programmed in GEZEL, a deterministic,
cycle-true and implementation-oriented hardware description language. GEZEL designs are scripted, allowing
the hardware configuration of the platform simulator to be changed quickly without going through lengthy
recompiles. For this reason we call the environment interactive. We present the execution ladder as an
optimization framework to balance interactivity against simulation speed.
We demonstrate our approach using several designs including an AES encryption coprocessor and a Viterbi
decoding coprocessor. We discuss the advantages of our approach as opposed to more conventional approaches
using SystemC and Verilog/VHDL.

Categories and Subject Descriptors: B.5.2 [Register-transfer Level Implementation Design Aids] Hardware
Description Languages, C.3 [Special-purpose and Application-based Systems] Embedded Systems
General Terms: Design
Additional Key Words and Phrases: Cosimulation, Hardware Description Language, Hardware-software
codesign.
__

This research was supported by NSF (Grant CCR-0310527) and SRC (Grant 2003-HJ-1116)..
Authors' addresses: Electrical Engineering Department, University of California at Los Angeles, CA 90095-
1594 USA (e-mail: {schaum,dorisc,ingrid}@ee.ucla.edu), and Electrical Engineering Department, Katholieke
Universiteit Leuven, B-3001, Belgium.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2005 ACM 1073-0516/01/0300-0034 $5.00

1. INTRODUCTION

For reasons of energy-efficiency, modern embedded systems use specialized and

distributed processing components. For example, a contemporary mobile phone contains

multiple processing units for signal processing and control, specialized baseband signal-

processing hardware, along with a number of hardware acceleration units for selected

application domains including graphics and cryptography. Newer generations of such

embedded systems tend to increase the number of functions they support. As a result,

they require an increasing number of specialized processing units to maintain the same

level of energy-efficiency. Those units must be designed, validated and integrated under a

shrinking design time schedule and design cost budget. This makes a split

hardware/software design path and the use of non-programmable hardware less suited.

We present an interactive codesign environment called GEZEL that targets such

hardware-accelerated multiprocessor System-on-Chip (SoC) platforms. The platform is

modeled in terms of custom hardware components as well as instruction-set simulators

(ISS). We call our approach interactive because it allows quick modification of the

simulation models of the platform hardware. Thus, the SoC platform can be modified

easily during development of the software that runs on the SoC.

existing simulators
(ISS, SystemC, ..)

GEZEL
HW simulation kernel

link

platform
simulator

GEZEL hardware
FSMD

platform software
C

simulation

hardware synthesis
and

IP integration

refinement needed

Platform Simulator
Construction

Design Loop &
Design refinement

1

2

VHDL
codegeneration

Figure 1: The GEZEL design flow.

1.1 The GEZEL design flow

Figure 1 shows the typical design flow followed using GEZEL. Two design phases

can be identified during system-level design. In the first phase, a platform simulator is

created by combining the GEZEL hardware simulation kernel with one or more

instruction-set simulators (ISS). In the second phase, the platform simulator is configured

with a description of the custom platform hardware as well as the embedded software

running on the platform. In subsequent design iterations, changes to the platform

hardware or software do not require a complete rebuild of the simulation platform, but

just reconfigure it. In this paper, we will provide a description of this reconfiguration

process.

Once an adequate hardware design for the platform is created, GEZEL also provides a

path to implementation by code-generation of synthesizable VHDL. This VHDL can be

targeted to reconfigurable hardware (FPGA) or standard-cells using register-transfer-level

(RT-level) synthesis tools.

The GEZEL hardware simulation kernel can model and simulate various components

of an SoC, including (co)processor micro-architectures as well as networks-on-chip. The

components are expressed in the GEZEL language, which captures cycle-true models in

the finite-state-machine-with-datapath (FSMD) model-of-computation.

The GEZEL hardware simulation kernel is implemented as a scripting engine for

models in the GEZEL language. It will parse GEZEL models, convert these models into

executable C++ objects, and initiate simulation without going through a compilation

phase. The GEZEL kernel is written in C++ and can be linked easily to various

cosimulation environments in order to obtain an SoC platform simulator. The GEZEL

environment is available as an open-source package from the World-Wide-Web [GEZEL

Homepage 2004].

1.2 Paper Outline

In this paper, we will put emphasis on the description — and simulation aspects of the

GEZEL design flow. In Section 2, we review the GEZEL hardware description language

and explain the major differences with conventional hardware description languages. We

will also explain our hardware-software codesign model. In Section 3, we consider the

GEZEL cosimulation strategy in more detail, and clarify the advantages of a scripting

approach to simulator construction. In Section 4, we discuss several experiments that

compare our approach to a more conventional approach that uses SystemC. In Section 5,

we discuss related work and we conclude the paper in Section 6.

2. THE GEZEL LANGUAGE

In this section, we review the features of the GEZEL modeling language and compare

it with existing hardware description languages. The language is presented once-over-

lightly, by means of an example. For a more formal treatment of the modeling

characteristics, we would like to refer the reader to the GEZEL Language Reference

Manual [GEZEL Homepage 2004].

FSMD FSMD

Library
Block

portwire

module
FSM

datapath

C++
Class

GEZEL language

(e.g. C++)

FSMD

Foreign Language

Figure 2: Elements of the GEZEL language.

2.1 An up-and-down counter in GEZEL

Figure 2 shows the composing elements of the GEZEL language. A design model in

GEZEL is a network of custom hardware blocks modeled as FSMD, and library blocks.

An FSMD is a combination of a finite-state machine controller with a datapath, expressed

using the GEZEL language. A library block is a black box with an interface defined in

GEZEL and a behavior modeled in C++.

Listing 1 shows an example of the cycle-true FSMD model of an up-and-down

counter in GEZEL. It counts from 0 to 3 and then back to 0.

Listing 1. An up-and-down counter in GEZEL.

 1. dp updown(out a : ns(3)) {
 2. reg c : ns(7);
 3. sfg up { c = c + 1; a = c; }
 4. sfg dn { c = c - 1; a = c; }
 5. }
 6. fsm fsm_updown(updown) {
 7. initial s0;
 8. state s1;
 9. @s0 if (c < 3) then (up) -> s0;
10. else (dn) -> s1;
11. @s1 if (c > 0) then (dn) -> s1;
12. else (up) -> s0;
13. }

The example will be helpful as we enumerate the elements of the

GEZEL language.

• Variables and Data Types: There are two kinds of variables in GEZEL

programs: registers and signals. Each of those variables can represent an

unsigned or a two’s-complement signed number of selectable precision. The

example creates a register c with a 7-bit unsigned type (line 2). The ports on

a datapath, such as the 3-bit unsigned output a (line 1), are signals.

• Expressions: Expressions, such as on line 3 and 4, are formed using

operators on registers and signals. Almost all operators from the C

programming language are supported, and a few new ones such as for bit-

selection and bit-concatenation are added.

• Datapath Instructions: Expressions are grouped together into datapath

instructions to represent a single clock cycle of register-transfer behavior.

The data-path in Listing 1 has two instructions called up and dn (lines 3 and

4). These instructions (also called signal flowgraph or sfg) represent a

single clock-cycle of behavior using expressions. All expressions within a

signal flowgraph execute concurrently.

• Datapaths: Several datapath instructions can be grouped together to form a

datapath. A datapath also defines an interface with inputs and outputs (lines

1—5). A datapath can include as many signal flowgraphs as needed. At any

particular clock cycle an arbitrary combination of signal flowgraphs can

execute under direction of a controller attached to the datapath.

• Finite State Machine Controllers: An FSM controller defines a schedule

for datapath instructions in a datapath (lines 6—13). It defines an initial state

(line 7), other states (line 8), and state transitions (line 9—12). State

transitions can be conditionally dependent on the value of registers in a

datapath. Instructions selected by the controller each correspond to the

execution of one or more signal flowgraphs in the datapath.

• Library Blocks: Library blocks are prebuilt datapaths, with a behavior that

is defined within the GEZEL kernel. Library blocks are used to model

hardware-software interfaces, RAM blocks, intellectual-property user

models (IP), and so on.

• Hierarchy and Instantiation: GEZEL handles complexity in a similar

manner as most other hardware description languages, using hierarchy and

datapath instantiation.

2.2 Comparing GEZEL to existing hardware description languages

The GEZEL language is a cycle-true, deterministic, and implementation-oriented

hardware description language. Most existing hardware description languages on the

other hand are event-driven, non-deterministic and simulation-oriented. GEZEL also

makes explicit distinction between modeling of data and control. We will clarify these

properties and point out the differences with other hardware description languages.

GEZEL is a cycle-true hardware description language

GEZEL does not have clock or reset signals. The clock- and reset-behavior is implicit

to the design description. At the start of the simulation, a GEZEL design is initialized by

bringing all FSM descriptions in a known initial state. After that the simulation advances

at the upgoing edge of each clock cycle. In existing HDL on the other hand, the clock and

reset signals are explicit.

The hardware implementation of registers and wires is directly visible from the

GEZEL source code. A GEZEL register will always translate to a synchronously-clocked

flip-flop and a GEZEL signal will always translate to a wire. In contrast, a shared

variable in VHDL, or a reg in Verilog, may or may not translate to a register

depending on the way it is used. This can lead to subtle but annoying mistakes, such as

the introduction of latches instead of flip-flops.

GEZEL is a deterministic hardware description language

A GEZEL program has deterministic behavior. This means that, for a given set of

stimuli, the simulation outcome of that program will always be equal. The only way to

introduce non-determinism would be to use a library block that is known to be non-

deterministic. The FSMD modeling in GEZEL itself is always deterministic.

This does not mean that a user may never want to write a non-deterministic program.

Indeed, some applications such as random-number generation may want to use non-

deterministic simulation. But the problem with most hardware-oriented languages

(including Verilog, VHDL and SystemC) is that they do not tell the user if the program is

deterministic or not. The non-determinism in traditional HDL originates from mixing the

concepts of shared variables and concurrency. A reg in Verilog can have global visibility,

and that variable may be updated by multiple concurrent modules. Such concurrent

updates result in race conditions, for which the actual outcome can be simulator-

dependent.

GEZEL avoids the non-determinism described above by verifying that registers and

variables are assigned only once per clock cycle. In addition, GEZEL ensures that all

signals that are used as expression operands, are also produced within the same clock

cycle. While a detailed description of the deterministic aspects of GEZEL lies outside the

scope of this paper, the property has several useful consequences. A GEZEL program

will not generate unknown (‘U’) or undetermined (‘X’) values. As one of the main goals

of GEZEL is cosimulation with software, it makes sense to use a uniform abstraction

level for data values between hardware and software. Another property is that a GEZEL

program is free from race conditions. Note that GEZEL does not prevent non-

determinism if a user would require it. In that case, the non-deterministic part must be

included in a library block.

GEZEL is an implementation-oriented language

In GEZEL, the logic is structured around instructions of a datapath. Each of these

instructions represents a clock cycle of behavior. In HDL on the other hand, logic is

structured around processes. When a synthesizable result is required, designers often rely

on a systematic two-process modeling style, with one process for combinational logic,

and a second process for sequential logic. Such a modeling style is obviously redundant,

yet it is recommended by synthesis tool vendors [Xilinx, 2004] as well as designers

[Gaisler, 2004]. GEZEL programs correspond to this two-process HDL style by

definition, and are therefore easier to keep consistent.

GEZEL separates control modeling from data modeling

GEZEL models separate between control and data processing by means of the FSMD

model. In traditional HDL languages, this separation is not explicit. Often a state machine

is encoded in HDL by means of a case statement, tightly mixing data processing with

control processing. The problem with the case-statement approach for modeling of

control is that it is deceptive. It gives the impression of being simple and straightforward,

but in fact it is not. In one experiment, we translated a VHDL model of an independently

published state-machine [Edwards, 2004] by hand into GEZEL. The resulting GEZEL

program is less than half the size of the VHDL program (31 lines of GEZEL against 75

lines of VHDL). Separate modeling of control and data-processing in GEZEL results in

more compact and easier-to-understand code.

A summary of the differences between GEZEL and other hardware description

languages is listed in Table I. The GEZEL language is focused to modeling of

synchronous digital systems, but we believe that it covers an adequate range of design

cases to justify a dedicated language. Some examples of published GEZEL designs are

enumerated next.

• A coprocessor IC for AES cryptography and biometric processing,

implemented using side-channel leakage free CMOS technology [Tiri,

2005].

• A coprocessor for the Advanced Encryption Standard (AES [NIST, 2001]),

attached to the SH-3 processor from Renesas and executed from within

embedded Java [Matsuoka 2004].

• A network-on chip architecture consisting of one-dimensional and two-

dimensional routers that cosimulate with multiple ARM processors [Ching,

2004].

• A microcontroller called MIC-1, and used as a design lab in an

undergraduate course on hardware-software codesign [Madsen, 2002].

• A coprocessor for the Discrete Fourier Transform (DFT), attached to the

LEON-2 processor and used in a fingerprint authentication application

[Yang, 2003].

Table I. Comparative feature list in GEZEL

 GEZEL Verilog SystemC

Model of Computation cycle-true event-driven event-driven

Modeling Unit FSMD HDL process HDL process

Deterministic Model yes no no

Language dedicated dedicated general-purpose

New Lang. Primitives yes (lib. blocks) no yes (classes)

Simulation scripted scripted/compiled compiled

Implementation-oriented yes yes no

Application platform
implementation

hardware design system modeling

Cosimulation interfaces user-defined;
library blocks

prog. lang.
interface (PLI)

C++

C
executable

compile

load at startup

C program

GEZEL Kernel

instruction-set
simulator

parser

GEZEL program

int main() {
volatile int *a = 0x8000;
..
*a = 123; // write
..
x = *a; // read

}

runtime
engine

cosim
stub

platform simulator

FSMD FSMD

Cosim
Interface

Cosim
Interface

intercept
memory R/W

Library blocks

Figure 3: The GEZEL Codesign Model

2.3 Codesign Model

As shown in Figure 3, our codesign model is based on combining cycle-accurate

FSMD models for hardware with instruction-set simulation for software. We have

developed memory-mapped interfaces for several different instruction-set simulators. At

the language level, a memory-mapped interface is supported by a library block in

GEZEL, and by initialized pointers in C.

At the start of the simulation, the platform simulator loads the C executable into the

instruction-set simulator, and parses the GEZEL program using the GEZEL kernel. The

runtime engine of the GEZEL kernel however is not an interpreter of the GEZEL

program. Instead, the GEZEL program is converted into a series of C++ objects that

directly implement the behavior of the hardware.

During the simulation, the instruction-set simulator and the GEZEL kernel run in

lockstep: for each simulation cycle of the ISS, there is one simulation cycle of the

GEZEL hardware. However, the simulation works equally well with derived clock rates -

for example with an ARM that runs at five times the frequency of the GEZEL hardware.

Data communication between GEZEL and C is implemented using memory-mapped

interfaces. Memory write- and read-operations on the ISS are intercepted and their

address is matched against the address decoded by the GEZEL library blocks. If a match

is found, a value is transferred from the GEZEL program to the C program or vice versa.

A designer uses these memory interfaces to attach and interface a coprocessor to the

program running on the core. The design of such interfaces is adequately discussed in

literature [De Micheli, 2001][Rowen, 2004].

We have created several cosimulators for various purposes, as listed in Table II. All

of them use a scheme similar to that in Figure 3.

Table II. Cosimulators using GEZEL

Simulator Configuration
GEZEL + ...

Kernel added to
GEZEL

Codesign
Interfaces 1

Applications

armcosim Single ARM SimIt-ARM [Qin,
2003]

MemMapped,
CPMapped

Teaching

armzilla Multiple ARM SimIt-ARM MemMapped,
CPMapped

NoC research
[Ching 2004]

gezelsh SH3-Mobile SH-ISS (Renesas) MemMapped Secure Java
[Matsuoka 2004]

fdl_tsim LEON2 tsim
(www.gaisler.com)

MemMapped ThumbPod
[Tiri 2005]

gezel51 8051 Dalton ISS [Vahid
2001]

PortMapped Sensor-Network
research

libgzlsysc.a SystemC SystemC
(www.systemc.org)

PortMapped Legacy code
integration

1 MemMapped = Shared memory locations; CPMapped = Using coprocessor
interface; PortMapped = Using dedicated ports.

3. COSIMULATOR IMPLEMENTATION

With the codesign model described above, we are now interested in obtaining an

optimized cosimulation. We present the execution ladder, a framework to formulate this

optimization. Two optimization strategies are described: partial evaluation and runtime

optimization. The discussion will rely on the following definitions:

• Model build-time: The time it takes to create an executable simulation

model out of source code for that model.

• Design iteration-time: The time it takes, given a fixed testbench, to create

an executable simulation model out of source code for that model, and then

execute the testbench. Design iteration-time is thus is the sum of the model

build-time and the simulation execution time.

Once

Once per
design iteration

Once per
simulation cycle

Once per
signal evaluation

ISS
GEZEL
Kernel

link

ISS

Embedded
Software

Custom Hardware
in GEZEL

ISS

Runtime Scheduler

Runtime Simulation
Data Structure

Figure 4: The Execution Ladder

3.1 The Execution Ladder

The execution ladder, first published as [Schaumont, 2004a], is a framework to

organize the optimizations that we will consider. At the heart of the execution ladder sits

the idea that some tasks in a design are done more frequently than others. For example, a

simulator is created a single time (once), but it is then used to simulate millions of clock

cycles. When we optimize the design iteration-time, we should try to optimize the most

frequently executed portions first, but we should not ignore the overhead introduced at

parts that are executed less often. In terms of the example, this means that we should

optimize the time it takes to simulate a single clock cycle, but we should not ignore the

time it takes to create the simulator in the first place. Indeed we will show that C++-based

simulators can take a long time to compile, and that this compilation time can

overshadow the execution time.

As illustrated in Figure 4, the execution ladder organizes tasks per design iteration

according to their execution frequency. The top-level of the execution ladder concerns

the activities that are done only once for a design. It includes the setup of the ISS/GEZEL

cosimulation environment as well as creation of testbenches and the initial version of the

code. The next level concerns activities that are done per design iteration. A GEZEL

design description will be parsed before the simulation starts. A simulation itself consists

of many clock cycles, therefore clock cycles are the next level in the execution ladder.

Finally, the evaluation of each clock cycle will include many different signal evaluations.

So the signal evaluations form the bottom of the execution ladder.

3.2 Overall Optimization Strategy

We will consider each step of the execution ladder separately for minimal design

iteration-time. At the top two levels of the execution ladder, we use a technique called

partial evaluation to create an efficient cycle simulator. At the lower two levels of the

execution ladder we also apply runtime optimization of the cycle simulation.

Table III illustrates for each level of the execution ladder: the input, output and

evaluation program. For the upper two levels, the output is a program by itself on a lower

level - this is what makes partial evaluation possible. In the next sections we discuss the

optimizations at the individual levels.

Table III. Partial Evaluation and Runtime Optimization of the Execution Ladder.

Level Input Program Output
Once GEZEL C++ Library GNU g++ Compiled GEZEL +

ISS

Once per Design
Iteration

GEZEL Program Compiled GEZEL +
ISS

RT-Simulator (C++
Objects)

Once per Clock
Cycle

Simulator State
FSMD Inputs FSM
State

RT-Simulator
Simulation Loop

Simulator State
FSMD Outputs FSM
Next-State

Once per Signal
Evaluation

Expression Inputs RT-Simulator Eval
Loop

Signal Values

3.3 Partial Evaluation

First, consider a generic definition of partial evaluation. Given a program P that uses a

static (constant) input Is and a dynamic input Id to evaluate an output O, then a partial

evaluation of program P with input Is will create a specialized program Q. Program Q can

create the output O using only dynamic input Id. With careful design, Q will also be

faster than P because it needs to consider less input data. The idea of partial evaluation is

found in many optimizations in design automation, as illustrated by the following

examples.

• Strength reduction with software compilation. Expressions using loop

counters may be simplified based on the knowledge of the static loop

increment value [Muchnick 1997].

• Add-shift expansion of hardware multiplication with constant values [Pasko,

1999].

• Fixed-point refinement in Digital Signal Processing, which relies on

knowledge of the limited dynamic range of input signals [Kim, 1998].

• Redundancy removal in hardware compilation, which relies in part on the

propagation of constants into gates [De Micheli, 1994].

Partial evaluation translates as follows to the case of GEZEL. At the upper level of

the execution ladder, a platform simulator is created. This is done by compiling the

GEZEL C++ library, and by linking it to an instruction-set simulator. At the next level of

the execution ladder, this simulator will read a GEZEL description and one or more

embedded software binaries and will create a runtime simulation architecture. We

therefore identify two opportunities for partial evaluation: one while creating the platform

executable, and one while creating the runtime simulation architecture. The optimization

during creation of the platform simulator is provided by the C++ compiler, and consists

of well-known optimizing compiler techniques.

The second optimization step concerns translation of a program written in the GEZEL

language into C++ objects. First, the parsing process itself can be optimized, such as by

using hash tables. This minimizes the overhead of symbol table management. In addition,

when GEZEL language is translated into C++ objects we can create a C++ object

structure that is application-specific.

Procedural, Optimized Operators

The C++ runtime architecture works with custom data types to represent arbitrary-

wordlength bit vectors. It is common practice to implement operations on these data types

using custom C++ operators, because it results in clear and easy-to-maintain source code.

However, the use of such operators introduces extra temporaries. For a statement such as

my_custom_type a,b,c;

b = a + (c >> 5);

the C++ compiler will create two intermediate results - one to hold the result of the

shift operation, and one to hold the result of the addition before it is assigned to b. These

temporary objects are created and destroyed for each evaluation of the expression. Note

that a C++ compiler will not optimize these temporary objects away, because they are not

native machine types. By using procedural versions of the operators, we obtain control

over allocation of temporary objects and can select an optimal version of each operation.

For example, the expression above can be written as

my_custom_type a, b, c, tmp;

constant_shift_right(tmp, c, 5);

add(tmp,a,tmp);

assign(b,tmp);

This code uses only a single temporary as well as a specialized version of the shift

operator. While it can be tedious to write for a C++ designer, it is easy to create these

objects out of GEZEL code. Thus, a data type that uses operators (looks ‘nice’) in

GEZEL, can have an efficient procedural implementation in C++. In addition, GEZEL

data types are converted into C++ objects during parsing. Operator optimizations such as

the selection of the constant-shift operator are done before the simulation starts. Without

the partial evaluation process, we would need to do these tests at runtime.

Static allocation of intermediate expression results:

The previous step can be taken further by controlling the allocation of all intermediate

expression results explicitly. In GEZEL, we use a simple static allocation of all

intermediate expression results.

3.4 Runtime Optimization

The bottom two levels of the execution ladder are located at the level of the runtime

simulation infrastructure, and therefore must be handled with runtime optimization

techniques.

Cycle-skip Detection:

With this mechanism, we attempt to skip simulation of a clock cycle altogether if it

can be shown that the simulator state will not change in the next clock cycle. The

conditions for skipping a cycle are: (1) no register has changed state in the previous clock

cycle, (2) no controller has changed state in the previous clock cycle, (3) no

hardware/software (HW/SW) interface ipblock has changed state. Skipping cycles is

very useful to increase HW/SW cosimulation efficiency, since they allow to ‘wake-up’

the hardware simulation out of the ISS only when it is needed. Indeed, an ISS typically is

much faster then a general hardware simulator.

init:
c = 0; /* current cycle count */
s.n = o1.n = o2.n = 0;

simulate_sfg at cycle c:

1. eval(o1,c)
1.1 eval(s,c)
1.2 (s.n != c) => s=op3(in);

s.n = c;
1.3 o1 = op1(s);

o1.n = c;
2. eval(o2, c)
2.1 eval(s,c)
2.2 o2 = op2(s);

o2.n = c

op3

op1

op2

o1

o2

s

in

Figure 5: Demand-driven evaluation of cycle-true simulations. ‘n’ is a signal attribute that holds the clock cycle

of the most recent signal update, and is called the generation of the signal.

Demand-driven Signal Evaluation:

The simulator evaluates signals for each module in a demand-driven fashion, working

from the outputs to the inputs. We also ensure that each signal is evaluated only once

during each clock cycle. This is done by tagging signals with the clock cycle time of their

last evaluation. Demand driven techniques were originally proposed for event-driven

simulation [Smith, 1987], but are effective for cycle simulation as well. Figure 5 shows

an example of demand-driven evaluation in the context of cycle-true simulation. Each

signal has, besides a value, also a generation. The generation indicates at which cycle the

value of a particular signal is valid, and is updated when a signal is reassigned. A simple

comparison of the generation of a signal with the current cycle time allows deciding if we

can use the current value of the signal, or rather if we should check the expression that

defines the signal. As illustrated by Figure 5, when we first evaluate output o1, we need

to evaluate all expressions leading to the new signal value. However, when we evaluate

output o2, we conclude that the intermediate signal value s is already current. Demand-

driven evaluation guarantees that each operation is only evaluated once for each clock

cycle.

Simulator Caches:

A third optimization technique relies on the use of simulation-specific caching tables.

For example, in a GEZEL FSMD, the expression that defines a signal is dependent on the

control step of the FSM. This control step selects a set of sfg, and each sfg selects a

group of expressions. This is a double indirection that can be avoided by means of a

hashing table per signal. The table is indexed by the control step and returns the

expression defining this signal. Such a hashing table is filled up at runtime.

10%

46%44%
‘once’ level:
g++ optimizer when
creating platform executable

‘once per design iteration’ level:
procedural and
optimized operators

runtime optimization:
signal-definer caches

Figure 6: Relative contribution of each optimization.

Finally we illustrate the relative contribution of all these optimizations. Overall, we

found that with all optimizations mentioned above turned on, the execution time for a

GEZEL stand-alone simulation improves on the average by one order of magnitude. We

analyzed two samples designs in detail: an encryption unit and a Viterbi decoder. Both

are described in the next section. For these designs, the order-of-magnitude in

improvement is divided over the different levels of the execution ladder as illustrated by

Figure 6.

4. RESULTS

Using the optimized GEZEL simulator and cosimulators, we now present two sets of

results. First we compare stand-alone GEZEL designs to equivalent Verilog and SystemC

designs. Next, we compare the design iteration-time of GEZEL to that of SystemC for an

AES coprocessor design.

4.1 Standalone Simulation

To evaluate the efficiency of our simulator, we performed two kinds of experiments.

The first are stand-alone hardware simulations, the second are cosimulations. We

compare with two existing simulation environments: SystemC 2.0.1 and Verilog-XL 2.8.

SystemC was selected because it can be easily used for cosimulation purposes. Verilog-

XL was selected because we started from Verilog reference code. All code developed for

the examples is available on the World Wide Web [GEZEL Homepage 2004].

Table IV. Non-comment, non-blank line count (NCLOC) for design exanples.

 AES Viterbi

Verilog 522 426

RTL SystemC 506 374

GEZEL 312 265

We started from two open-source Verilog designs. The first is an AES128 encryption

processor [Usselman 2003], while the second is a (2,1,2) Viterbi decoder [Stojanovic

1999]. Both were translated into SystemC 2.0.1 and GEZEL. During translation into

SystemC, care was taken to optimize for execution speed, using the most efficient data

types and minimizing the amount of signals. However we did not abstract the execution

model into a bus functional model (a model with a cycle-accurate interface and

functional-level internal behavior). Rather, the guidelines for synthesizable SystemC

RTL code were followed [Synopsys 2002]. As a result, each design performs identically

on a cycle-by-cycle basis in each of the three environments. The resulting design sizes

are illustrated in Table IV and show that GEZEL allows for compact hardware

descriptions.

Table V. Design-iteration time for stand-alone (HW-only) simulation of examples.

 AES 20K cycles Viterbi 100K cycles

 Build

(seconds)

Simulate

(seconds)

Build

(seconds)

Simulate

(seconds)

Verilog 0.3 15 0.2 46

RTL SystemC 85 21 56 15

RTL GEZEL 1 13 0.1 22

Simulation Platform: SUN Ultra-10 500 MHz, 2GB RAM with gcc 3.2.2

We next compare the design iteration-time for each design. Table V lists the results

for a 20K cycle testbench for AES and a 100K cycle testbench for Viterbi. Since we are

interested in design iteration-time, we list the parse/compile time as well as the

simulation time. For SystemC, we use the O3 flag to compile for performance. The

evaluation platform is a SUN Ultra-10 (500 MHz CPU, 2GB RAM) with gcc 3.2.2. The

model build-time for SystemC is considerably slower, because general C++ compilation

is far more complex than the use of a dedicated scripting engine. The testbench of the

AES design consists of about 1600 subsequent encryptions. This simulation is known to

have a high event density because a good encryption algorithm toggles on the average

half of the bits it processes. In this case, the cycle algorithm of GEZEL performs very

well. For the Viterbi simulation, we observe the reverse situation. In this case, half of the

cycles are idle cycles without any events. The reason why the Verilog version is slower is

that it uses a two-phase clock, which is translated to a single-edge clock in SystemC and

GEZEL.

4.2 Cosimulation – Design Iteration Time

Next we considered cosimulation. We first took the AES coprocessor design and

evaluated the design iteration-time in more detail. We made use of the StrongArm

instruction set simulator (SimIt-ARM 1.1b) in combination with the AES coprocessor.

We wrote a cycle-accurate model (RTL) and a bus-functional model (BFM) of the AES

encryption processor in GEZEL and SystemC, and collected build-time and simulation-

time in Table 5. In the BFM, a C function is used to simulate the AES core.

Table VI. Simulation for SW-only, HW/SW cosimulation with a bus-functional

model, and HW/SW cosimulation with RT-level Models.

Build + Simulate
(seconds)

Simulation speed
(cycles per second)

ISS SW-only (AES in SW) 0.14 + 0.78 1M

ISS + BFM SystemC 7.0 + 0.23 318K

ISS + BFM GEZEL 1.8 + 0.72 101K

ISS + RTL SystemC 20.5 + 9.0 8.1K

ISS + RTL GEZEL 0.11 + 4.0 17.7K

Simulation Platform: PC 3 GHz, 512MB RAM with gcc 3.2

In all cases, the embedded software is compiled with O3-level optimization. A cycle-

accurate simulation on the ISS by itself runs at 1 million cycles per second. This

implementation takes 785K cycles to complete. When using a hardware model for the

AES, the total amount of cycles to simulate drops to about 70K because of the hardware

acceleration that is provided by the coprocessor.

The model build-time figures in Table 5 are clearly faster for GEZEL-based

cosimulation. As indicated before, an encryption algorithm is rich in events, therefore a

SystemC BFM model will much run faster than the event-driven SystemC RTL model.

For GEZEL, the skip-cycle mechanism can omit a large number of clock cycles. This,

combined with the cycle-simulation algorithm makes the GEZEL RTL model faster than

that of SystemC. However, the GEZEL BFM does not outperform the SystemC BFM.

This is because the cycle simulation algorithm will evaluate the AES function regardless

whether the inputs have changed or not.

5. RELATED WORK

Cosimulation is traditionally done by connecting multiple simulation engines, for

example an ISS and a HDL simulator [Zivojnovic, 1996]. Contemporary ISS achieve

over 1 MHz cycle-accurate simulation performance on a workstation [Qin, 2003],

moving the simulation bottleneck to the integration of HW and SW simulation. By using

a programming language such as SystemC, a tight and efficient coupling between the

hardware model and the ISS can be achieved. The hardware simulation efficiency can be

further increased at the expense of simulation accuracy by using abstracted models

[Semeria, 2000]. Such abstraction can apply to the hardware models, but also to the

cosimulation interfaces [Fummi, 2004]. All of these approaches use a compiled

programming language for hardware modeling. Our work targets to combine the benefits

of a compiled programming language with those of an interactive design environment.

We use an interpreted, dedicated language to avoid the compilation overhead, but also

make sure to optimize the simulation speed. In addition, the use of a dedicated language

allows to issue feedback and error messages that are directly related to the hardware

model. In contrast, with a general-purpose language such as C or C++, one has first to

create a correct C(++) program before the semantics of the hardware model can be

checked.

Many coprocessor design systems today are constructed as an ASIP synthesis system.

In such a system, the instruction-set of a standard processor is extended or specialized to

fit a dedicated task [Hoffmann 2001][Cong 2004]. The appeal of this approach is that a

single environment can create the target architecture, as well as a design tool suite

(compiler and simulator) to map and verify applications for this architecture. Our

approach does not rely on extending instruction-sets, but on explicit description and

integration of the coprocessor micro-architecture. This allows for loosely coupled

coprocessors that do no fit the template of an instruction-set, for example with memory-

mapped coprocessors. In general, loosely-coupled architectures can offer better energy

efficiencies than tightly-coupled ones [Schaumont, 2004b].

Modern SoC platforms increasingly consist of ‘soft’ hardware in the form of FPGA

and other configurable technologies [Vahid, 2003]. This makes model build-time an

important parameter, and motivates why we want to minimize design iteration-time

instead of simply going for the fastest simulation speed possible. For the latter, very

efficient techniques are available [DeVane, 1997].

A key insight in our work is that an extra interpreting step allows to do partial

evaluation - the use of design properties to specialize the simulator [Au, 1991]. It can be

done transparently to the designer and can take away some of the design burden. A

related approach that allows for fast simulation in combination with minimal model

build-time is just-in-time translation (JIT). This technique has been successfully applied

to performance improvement of embedded software execution as well as instruction-set

simulation [Nohl 2002]. The just-in-time translation step creates a native implementation

of an instruction that can be reused later in the simulation, and thus avoids repeated

interpreting of that instruction. Thus, some of the simulation work is moved from an

inner simulation loop to an outer one. We are not aware of any cosimulation systems that

use JIT-like techniques for the hardware part.

6. CONCLUSIONS

We have demonstrated an interactive design environment for domain-specific

coprocessors, called GEZEL. Using a dedicated hardware modeling language and a

general-purpose cosimulation interface, various types of cosimulators can be easily

created. Compared to existing cosimulation methods, we have shown that comparable

performance can be achieved while at the same time minimizing the design iteration-time

- hence the use of the term interactive. We also obtain compact code size. Our results

show that we can efficiently support a wide range of coprocessors, starting from tightly-

coupled designs up to very loosely-coupled ones.

REFERENCES

AU, W., 1991. “Automatic Generation of Compiled Simulations through Program Specialization,” In
Proceedings of the 28th Design Automation Conference, ACM Press, June 1991, San Francisco, CA, 205—210.
CHING, D., SCHAUMONT, P., VERBAUWHEDE, I., 2004. "Integrated modelling and generation of a
reconfigurable network-on-chip," In Proceedings of the 18th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2004), April 2004, 139.
CONG, J., FAN, Y., HAN, G., ZHANG, Z, 2004. “Application-Specific Instruction Generation for
Configurable Processor Architectures.” In Twelfth International Symposium on Field Programmable Gate
Arrays, 2004, 183—189.
DEVANE, C., 1997. “Efficient Circuit Partitioning to Extend Cycle Simulation beyond Synchronous Circuits,”
In Proceedings of the International Conference on Computer-Aided Design, IEEE Computer Society Press, San
Francisco, CA, 154—161.
DE MICHELI, G., 1994. “Synthesis and Optimization of Digital Circuits,” McGraw-Hill Science and
Engineering, 1994.
DE MICHELI, G., ERNST, R., WOLF, W., 2001. “Readings in Hardware/Software Codesign.,” The Morgan
Kaufmann Systems On Silicon Series, Elsevier, Norwell, MA, 2001.
EDWARDS, S., 2004. “Design and Verification languages,” Columbia University CS Technical Report CUCS-
046-04.
FUMMI, F., MARTINI, S., PERBELLINI, G., PONCINO, M., 2004. “Native ISS-SystemC Integration for the
Co-Simulation of Multi-Processor SoC,” In Proceedings of the 2004 Design Automation and Test in Europe
Conference, February 2004, Paris, France, 464—469.
GAILSER, 2004. “A structured VHDL design method,” online copy at
<http://www.estec.esa.nl/microelectronics/vhdl/vhdlpage.html>.
GEZEL HOMEPAGE, 2004. <http://www.ee.ucla.edu/~schaum/gezel>
HOFFMANN, A, KOGEL, T., NOHL, A., BRAUN, G., SCHLIEBUSCH, O., WAHLEN, O., WIEFERINK,
A., MEYR, H., 2001. “A novel methodology for the design of application-specific instruction-set processors
(ASIPs) using a machine description language,” In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Nov. 2001, 20(11) : 1338—1354.
JONES, N.D., GOMARD, C.K., SESTOFT, P., 1993. “Partial Evaluation and Automatic Program Generation,”
Prentice Hall International, June 1993, xii + 415 pages. ISBN 0-13-020249-5.
KIM, S., KUM, K., SUNG, W., 1998. “Fixed-point optimization utility for C and C++ based digital signal
processing programs”, IEEE Trans. on Circuits and Systems II, November 1998, 45(11):1455—1464.
MADSEN, J., STEENSGAARD-MADSEN, J., CHRISTENSEN, L., 2002. “A Sophomore Course in
Codesign,” Computer, Nov. 2002, 108—110.
MATSUOKA, Y., SCHAUMONT, P., TIRI, K., VERBAUWHEDE, I, 2004. "Java cryptography on KVM and
its performance and security optimization using HW/SW co-design techniques," in Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2004),
September 2004, 303—311.
MUCHNICK, S., 1997. “Advanced Compiler Design and Implementation,” Morgan Kaufmann Publishers,
1997.
NOHL, A, BRAUN, G., HOFFMANN, A., SCHLIEBUSCH, O., MEYR, H., LEUPERS, R., 2002. “A
Universal Technique for Fast and Flexible Instruction-Set Architecture Simulation,” In Proceedings of the 39th
Design Automation Conference, June 2002, New Orleans, Louisiana, 22—27.
NIST, 2001. “Specification for the Advanced Encryption Standard,” Federal Information Processing Standards
publication 197, November 2001. online copy at <http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>
PASKO, R., SCHAUMONT, P., DERUDDER, V., VERNALDE, S., DURACKOVA, D., 1999. “A new
algorithm for elimination of common sub-expressions,” IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, January 1999, 18(1):58—68.
QIN, W., MALIK, S., 2003. “Flexible and Formal Modeling of Microprocessors with Application to
Retargetable Simulation,” in Proceedings of the 2003 Design Automation and Test in Europe, March 2003,
Munchen, Germany, 765—769.
ROWEN, C., 2004. “Engineering the Complex SoC,” Prentice Hall Modern Semiconductor Series, Upper
Saddle River, NJ, 20004.
SCHAUMONT, P., VERBAUWHEDE, I., 2004A. “Interactive cosimulation using partial evaluation,” In
Proceedings of the 2004 Design Automation and Test in Europe Conference, February 2004, Paris, France,
642—647.
SCHAUMONT, P., SAKIYAMA, K., HODJAT, A., VERBAUWHEDE, I., 2004B. “Embedded Software
Integration of Coarse Grain Reconfigurable Architectures,” In Proceedings of the 11th Reconfigurable
Architectures Workshop, April 2004, Santa Fe, NM, 137.

SEMERIA, L., GHOSH, A., 2000. “Methodology for Hardware/Software Co-verification in C/C++,” in
Proceedings of the 2000 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 405—408.
SMITH, S., 1987. “Demand Driven Simulation: BACKSIM,” In Proceedings of the 24th Design Automation
Conference, ACM Press, June 1987, Miami Beach, FL.
STOJANOVIC, V., KETAKI, R., 1999. “Baby Viterbi Decoder,”
<http://mos.stanford.edu/ee272/proj99/babyviterbi/>
SUTHERLAND, 2002. “The Verilog PLI Handbook: A Tutorial and Reference Manual on the Verilog
Programming Language Interface,” Springer, Norwell MA, 2002.
SYNOPSYS, 2002. “Describing Synthesizable RTL in SystemC,” v 1.2, Synopsys Inc, November 2002.
TIRI, K., HWANG, D., HODJAT, A., LAI, B.C., YANG, S., SCHAUMONT, P., VERBAUWHEDE, I., 2005.
“A Side-Channel Leakage Free Co-processor IC in .18um CMOS for Embedded AES-Based Cryptographic and
Biometric Processing,” In Proceedings of the 42th Design Automation Conference, ACM Press, June 2005,
Anaheim, CA.
USSELMAN, R., 2003. “Open Cores AES Core,” <http://www.opencores.org/projects/aes_core/>
VAHID, F., 2003. “The softening of hardware,” in IEEE Computer, IEEE Computer Society Press, April 2003,
27—34.
VAHID, F., GIVARGIS, T., 2001. “Platform Tuning for Embedded Systems Design,” IEEE Computer, March
2001, 34(3):112—114.
XILINX, 2004. “Synthesis and Simulation guide,” online copy at
<http://toolbox.xilinx.com/docsan/2_1i/data/common/sim/sim4_4.htm>.
YANG, S., SAKIYAMA, K., VERBAUWHEDE, I., 2003. "A compact and efficient fingerprint verification
system for secure embedded systems," Proc. 37th IEEE Asilomar Conference on Signals, Systems, and
Computers, November 2003, 405—408.
ZIVOJNOVIC, V., MEYR, H., 1996. “Compiled Hardware-Software Cosimulation,” in Proceedings of the 38th
Design Automation Conference, ACM Press, Las Vegas, CA, 127—136.

