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1. INTRODUCTION  

 

For reasons of energy-efficiency, modern embedded systems use specialized and 

distributed processing components. For example, a contemporary mobile phone contains 

multiple processing units for signal processing and control, specialized baseband signal-

processing hardware, along with a number of hardware acceleration units for selected 

application domains including graphics and cryptography. Newer generations of such 

embedded systems tend to increase the number of functions they support. As a result, 

they require an increasing number of specialized processing units to maintain the same 

level of energy-efficiency. Those units must be designed, validated and integrated under a 



shrinking design time schedule and design cost budget. This makes a split 

hardware/software design path and the use of non-programmable hardware less suited. 

We present an interactive codesign environment called GEZEL that targets such 

hardware-accelerated multiprocessor System-on-Chip (SoC) platforms. The platform is 

modeled in terms of custom hardware components as well as instruction-set simulators 

(ISS). We call our approach interactive because it allows quick modification of the 

simulation models of the platform hardware. Thus, the SoC platform can be modified 

easily during development of the software that runs on the SoC. 
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Figure 1: The GEZEL design flow. 

 

1.1 The GEZEL design flow 

 

Figure 1 shows the typical design flow followed using GEZEL. Two design phases 

can be identified during system-level design. In the first phase, a platform simulator is 

created by combining the GEZEL hardware simulation kernel with one or more 

instruction-set simulators (ISS). In the second phase, the platform simulator is configured 

with a description of the custom platform hardware as well as the embedded software 

running on the platform. In subsequent design iterations, changes to the platform 

hardware or software do not require a complete rebuild of the simulation platform, but 



just reconfigure it. In this paper, we will provide a description of this reconfiguration 

process.  

Once an adequate hardware design for the platform is created, GEZEL also provides a 

path to implementation by code-generation of synthesizable VHDL. This VHDL can be 

targeted to reconfigurable hardware (FPGA) or standard-cells using register-transfer-level 

(RT-level) synthesis tools. 

The GEZEL hardware simulation kernel can model and simulate various components 

of an SoC, including (co)processor micro-architectures as well as networks-on-chip. The 

components are expressed in the GEZEL language, which captures cycle-true models in 

the finite-state-machine-with-datapath (FSMD) model-of-computation. 

The GEZEL hardware simulation kernel is implemented as a scripting engine for 

models in the GEZEL language. It will parse GEZEL models, convert these models into 

executable C++ objects, and initiate simulation without going through a compilation 

phase. The GEZEL kernel is written in C++ and can be linked easily to various 

cosimulation environments in order to obtain an SoC platform simulator. The GEZEL 

environment is available as an open-source package from the World-Wide-Web [GEZEL 

Homepage 2004]. 

 

1.2 Paper Outline 

 

In this paper, we will put emphasis on the description — and simulation aspects of the 

GEZEL design flow. In Section 2, we review the GEZEL hardware description language 

and explain the major differences with conventional hardware description languages. We 

will also explain our hardware-software codesign model. In Section 3, we consider the 

GEZEL cosimulation strategy in more detail, and clarify the advantages of a scripting 

approach to simulator construction. In Section 4, we discuss several experiments that 

compare our approach to a more conventional approach that uses SystemC. In Section 5, 

we discuss related work and we conclude the paper in Section 6. 

 

2. THE GEZEL LANGUAGE  

 

In this section, we review the features of the GEZEL modeling language and compare 

it with existing hardware description languages. The language is presented once-over-

lightly, by means of an example. For a more formal treatment of the modeling 



characteristics, we would like to refer the reader to the GEZEL Language Reference 

Manual [GEZEL Homepage 2004].  
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Figure 2: Elements of the GEZEL language. 

 

2.1 An up-and-down counter in GEZEL 

 

Figure 2 shows the composing elements of the GEZEL language. A design model in 

GEZEL is a network of custom hardware blocks modeled as FSMD, and library blocks. 

An FSMD is a combination of a finite-state machine controller with a datapath, expressed 

using the GEZEL language. A library block is a black box with an interface defined in 

GEZEL and a behavior modeled in C++.  

Listing 1 shows an example of the cycle-true FSMD model of an up-and-down 

counter in GEZEL. It counts from 0 to 3 and then back to 0. 

 

Listing 1. An up-and-down counter in GEZEL. 

 1. dp updown(out a : ns(3)) { 
 2.    reg c : ns(7); 
 3.    sfg up { c = c + 1; a = c; } 
 4.    sfg dn { c = c - 1; a = c; } 
 5. } 
 6. fsm fsm_updown(updown) { 
 7.   initial s0; 
 8.   state   s1; 
 9.   @s0 if (c < 3) then (up) -> s0;   
10.       else (dn)            -> s1; 
11.   @s1 if (c > 0) then (dn) -> s1; 
12.       else (up)            -> s0; 
13. } 

 

The example will be helpful as we enumerate the elements of the 

GEZEL language. 



•  Variables and Data Types: There are two kinds of variables in GEZEL 

programs: registers and signals. Each of those variables can represent an 

unsigned or a two’s-complement signed number of selectable precision. The 

example creates a register c with a 7-bit unsigned type (line 2). The ports on 

a datapath, such as the 3-bit unsigned output a (line 1), are signals. 

•  Expressions: Expressions, such as on line 3 and 4, are formed using 

operators on registers and signals. Almost all operators from the C 

programming language are supported, and a few new ones such as for bit-

selection and bit-concatenation are added. 

•  Datapath Instructions: Expressions are grouped together into datapath 

instructions to represent a single clock cycle of register-transfer behavior. 

The data-path in Listing 1 has two instructions called up and dn (lines 3 and 

4). These instructions (also called signal flowgraph or sfg) represent a 

single clock-cycle of behavior using expressions. All expressions within a 

signal flowgraph execute concurrently. 

•  Datapaths: Several datapath instructions can be grouped together to form a 

datapath. A datapath also defines an interface with inputs and outputs (lines 

1—5). A datapath can include as many signal flowgraphs as needed. At any 

particular clock cycle an arbitrary combination of signal flowgraphs can 

execute under direction of a controller attached to the datapath. 

•  Finite State Machine Controllers: An FSM controller defines a schedule 

for datapath instructions in a datapath (lines 6—13). It defines an initial state 

(line 7), other states (line 8), and state transitions (line 9—12). State 

transitions can be conditionally dependent on the value of registers in a 

datapath. Instructions selected by the controller each correspond to the 

execution of one or more signal flowgraphs in the datapath. 

•  Library Blocks: Library blocks are prebuilt datapaths, with a behavior that 

is defined within the GEZEL kernel. Library blocks are used to model 

hardware-software interfaces, RAM blocks, intellectual-property user 

models (IP), and so on. 

•  Hierarchy and Instantiation: GEZEL handles complexity in a similar 

manner as most other hardware description languages, using hierarchy and 

datapath instantiation. 

 



2.2 Comparing GEZEL to existing hardware description languages 

 

The GEZEL language is a cycle-true, deterministic, and implementation-oriented 

hardware description language. Most existing hardware description languages on the 

other hand are event-driven, non-deterministic and simulation-oriented. GEZEL also 

makes explicit distinction between modeling of data and control. We will clarify these 

properties and point out the differences with other hardware description languages. 

 

GEZEL is a cycle-true hardware description language 

 

GEZEL does not have clock or reset signals. The clock- and reset-behavior is implicit 

to the design description. At the start of the simulation, a GEZEL design is initialized by 

bringing all FSM descriptions in a known initial state. After that the simulation advances 

at the upgoing edge of each clock cycle. In existing HDL on the other hand, the clock and 

reset signals are explicit. 

The hardware implementation of registers and wires is directly visible from the 

GEZEL source code. A GEZEL register will always translate to a synchronously-clocked 

flip-flop and a GEZEL signal will always translate to a wire. In contrast, a shared 

variable in VHDL, or a reg in Verilog, may or may not translate to a register 

depending on the way it is used. This can lead to subtle but annoying mistakes, such as 

the introduction of latches instead of flip-flops. 

 

GEZEL is a deterministic hardware description language 

 

A GEZEL program has deterministic behavior. This means that, for a given set of 

stimuli, the simulation outcome of that program will always be equal. The only way to 

introduce non-determinism would be to use a library block that is known to be non-

deterministic. The FSMD modeling in GEZEL itself is always deterministic. 

This does not mean that a user may never want to write a non-deterministic program. 

Indeed, some applications such as random-number generation may want to use non-

deterministic simulation. But the problem with most hardware-oriented languages 

(including Verilog, VHDL and SystemC) is that they do not tell the user if the program is 

deterministic or not. The non-determinism in traditional HDL originates from mixing the 

concepts of shared variables and concurrency. A reg in Verilog can have global visibility, 

and that variable may be updated by multiple concurrent modules. Such concurrent 



updates result in race conditions, for which the actual outcome can be simulator-

dependent. 

GEZEL avoids the non-determinism described above by verifying that registers and 

variables are assigned only once per clock cycle. In addition, GEZEL ensures that all 

signals that are used as expression operands, are also produced within the same clock 

cycle. While a detailed description of the deterministic aspects of GEZEL lies outside the 

scope of this paper, the property has several useful consequences. A GEZEL program 

will not generate unknown (‘U’) or undetermined (‘X’) values. As one of the main goals 

of GEZEL is cosimulation with software, it makes sense to use a uniform abstraction 

level for data values between hardware and software. Another property is that a GEZEL 

program is free from race conditions. Note that GEZEL does not prevent non-

determinism if a user would require it. In that case, the non-deterministic part must be 

included in a library block. 

 

GEZEL is an implementation-oriented language 

 

In GEZEL, the logic is structured around instructions of a datapath. Each of these 

instructions represents a clock cycle of behavior. In HDL on the other hand, logic is 

structured around processes. When a synthesizable result is required, designers often rely 

on a systematic two-process modeling style, with one process for combinational logic, 

and a second process for sequential logic. Such a modeling style is obviously redundant, 

yet it is recommended by synthesis tool vendors [Xilinx, 2004] as well as designers 

[Gaisler, 2004]. GEZEL programs correspond to this two-process HDL style by 

definition, and are therefore easier to keep consistent. 

 

GEZEL separates control modeling from data modeling 

 

GEZEL models separate between control and data processing by means of the FSMD 

model. In traditional HDL languages, this separation is not explicit. Often a state machine 

is encoded in HDL by means of a case statement, tightly mixing data processing with 

control processing. The problem with the case-statement approach for modeling of 

control is that it is deceptive. It gives the impression of being simple and straightforward, 

but in fact it is not. In one experiment, we translated a VHDL model of an independently 

published state-machine [Edwards, 2004] by hand into GEZEL. The resulting GEZEL 

program is less than half the size of the VHDL program (31 lines of GEZEL against 75 



lines of VHDL). Separate modeling of control and data-processing in GEZEL results in 

more compact and easier-to-understand code. 

A summary of the differences between GEZEL and other hardware description 

languages is listed in Table I. The GEZEL language is focused to modeling of 

synchronous digital systems, but we believe that it covers an adequate range of design 

cases to justify a dedicated language. Some examples of published GEZEL designs are 

enumerated next. 

•  A coprocessor IC for AES cryptography and biometric processing, 

implemented using side-channel leakage free CMOS technology [Tiri, 

2005]. 

•  A coprocessor for the Advanced Encryption Standard (AES [NIST, 2001]), 

attached to the SH-3 processor from Renesas and executed from within 

embedded Java [Matsuoka 2004]. 

•  A network-on chip architecture consisting of one-dimensional and two-

dimensional routers that cosimulate with multiple ARM processors [Ching, 

2004]. 

•  A microcontroller called MIC-1, and used as a design lab in an 

undergraduate course on hardware-software codesign [Madsen, 2002]. 

•  A coprocessor for the Discrete Fourier Transform (DFT), attached to the 

LEON-2 processor and used in a fingerprint authentication application 

[Yang, 2003]. 

 

Table I. Comparative feature list in GEZEL 

 GEZEL Verilog SystemC 

Model of Computation cycle-true event-driven event-driven 

Modeling Unit FSMD HDL process HDL process 

Deterministic Model yes no no 

Language dedicated dedicated general-purpose 

New Lang. Primitives yes (lib. blocks) no yes (classes) 

Simulation scripted scripted/compiled compiled 

Implementation-oriented yes yes no 

Application platform 
implementation 

hardware design system modeling 

Cosimulation interfaces user-defined; 
library blocks 

prog. lang. 
interface (PLI) 

C++ 
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Figure 3: The GEZEL Codesign Model 

 

2.3 Codesign Model 

 

As shown in Figure 3, our codesign model is based on combining cycle-accurate 

FSMD models for hardware with instruction-set simulation for software. We have 

developed memory-mapped interfaces for several different instruction-set simulators. At 

the language level, a memory-mapped interface is supported by a library block in 

GEZEL, and by initialized pointers in C.  

At the start of the simulation, the platform simulator loads the C executable into the 

instruction-set simulator, and parses the GEZEL program using the GEZEL kernel. The 

runtime engine of the GEZEL kernel however is not an interpreter of the GEZEL 

program. Instead, the GEZEL program is converted into a series of C++ objects that 

directly implement the behavior of the hardware. 

During the simulation, the instruction-set simulator and the GEZEL kernel run in 

lockstep: for each simulation cycle of the ISS, there is one simulation cycle of the 

GEZEL hardware. However, the simulation works equally well with derived clock rates - 

for example with an ARM that runs at five times the frequency of the GEZEL hardware. 

Data communication between GEZEL and C is implemented using memory-mapped 

interfaces. Memory write- and read-operations on the ISS are intercepted and their 

address is matched against the address decoded by the GEZEL library blocks. If a match 

is found, a value is transferred from the GEZEL program to the C program or vice versa.  



A designer uses these memory interfaces to attach and interface a coprocessor to the 

program running on the core. The design of such interfaces is adequately discussed in 

literature [De Micheli, 2001][Rowen, 2004]. 

We have created several cosimulators for various purposes, as listed in Table II. All 

of them use a scheme similar to that in Figure 3. 

 

Table II. Cosimulators using GEZEL 

Simulator Configuration 
GEZEL + ... 

Kernel added to 
GEZEL 

Codesign 
Interfaces 1 

Applications 

armcosim Single ARM SimIt-ARM [Qin, 
2003] 

MemMapped, 
CPMapped 

Teaching 

armzilla Multiple ARM SimIt-ARM MemMapped, 
CPMapped 

NoC research 
[Ching 2004] 

gezelsh SH3-Mobile SH-ISS (Renesas) MemMapped Secure Java 
[Matsuoka 2004] 

fdl_tsim LEON2 tsim 
(www.gaisler.com) 

MemMapped ThumbPod 
[Tiri 2005] 

gezel51 8051 Dalton ISS [Vahid 
2001] 

PortMapped Sensor-Network 
research 

libgzlsysc.a SystemC SystemC 
(www.systemc.org) 

PortMapped Legacy code 
integration 

1 MemMapped = Shared memory locations;  CPMapped = Using coprocessor 
interface; PortMapped = Using dedicated ports. 

 

3. COSIMULATOR IMPLEMENTATION 

 

With the codesign model described above, we are now interested in obtaining an 

optimized cosimulation. We present the execution ladder, a framework to formulate this 

optimization. Two optimization strategies are described: partial evaluation and runtime 

optimization. The discussion will rely on the following definitions: 

•  Model build-time: The time it takes to create an executable simulation 

model out of source code for that model. 

•  Design iteration-time: The time it takes, given a fixed testbench, to create 

an executable simulation model out of source code for that model, and then 

execute the testbench. Design iteration-time is thus is the sum of the model 

build-time and the simulation execution time. 
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Figure 4: The Execution Ladder 

 

3.1 The Execution Ladder 

 

The execution ladder, first published as [Schaumont, 2004a], is a framework to 

organize the optimizations that we will consider. At the heart of the execution ladder sits 

the idea that some tasks in a design are done more frequently than others. For example, a 

simulator is created a single time (once), but it is then used to simulate millions of clock 

cycles. When we optimize the design iteration-time, we should try to optimize the most 

frequently executed portions first, but we should not ignore the overhead introduced at 

parts that are executed less often. In terms of the example, this means that we should 

optimize the time it takes to simulate a single clock cycle, but we should not ignore the 

time it takes to create the simulator in the first place. Indeed we will show that C++-based 

simulators can take a long time to compile, and that this compilation time can 

overshadow the execution time. 

As illustrated in Figure 4, the execution ladder organizes tasks per design iteration 

according to their execution frequency. The top-level of the execution ladder concerns 

the activities that are done only once for a design. It includes the setup of the ISS/GEZEL 

cosimulation environment as well as creation of testbenches and the initial version of the 

code. The next level concerns activities that are done per design iteration. A GEZEL 

design description will be parsed before the simulation starts. A simulation itself consists 

of many clock cycles, therefore clock cycles are the next level in the execution ladder. 



Finally, the evaluation of each clock cycle will include many different signal evaluations. 

So the signal evaluations form the bottom of the execution ladder. 

 

3.2 Overall Optimization Strategy 

 

We will consider each step of the execution ladder separately for minimal design 

iteration-time. At the top two levels of the execution ladder, we use a technique called 

partial evaluation to create an efficient cycle simulator. At the lower two levels of the 

execution ladder we also apply runtime optimization of the cycle simulation. 

Table III illustrates for each level of the execution ladder: the input, output and 

evaluation program. For the upper two levels, the output is a program by itself on a lower 

level - this is what makes partial evaluation possible. In the next sections we discuss the 

optimizations at the individual levels. 

 

Table III. Partial Evaluation and Runtime Optimization of the Execution Ladder. 

Level Input Program Output 
Once GEZEL C++ Library GNU g++ Compiled GEZEL + 

ISS 

Once per Design 
Iteration 

GEZEL Program Compiled GEZEL + 
ISS 

RT-Simulator (C++ 
Objects) 

Once per Clock 
Cycle 

Simulator State 
FSMD Inputs FSM 
State 

RT-Simulator 
Simulation Loop 

Simulator State 
FSMD Outputs FSM 
Next-State 

Once per Signal 
Evaluation 

Expression Inputs RT-Simulator Eval 
Loop 

Signal Values 

 

3.3 Partial Evaluation 

First, consider a generic definition of partial evaluation. Given a program P that uses a 

static (constant) input Is and a dynamic input Id to evaluate an output O, then a partial 

evaluation of program P with input Is will create a specialized program Q. Program Q can 

create the output O using only dynamic input Id. With careful design, Q will also be 

faster than P because it needs to consider less input data. The idea of partial evaluation is 

found in many optimizations in design automation, as illustrated by the following 

examples. 

•  Strength reduction with software compilation. Expressions using loop 

counters may be simplified based on the knowledge of the static loop 

increment value [Muchnick 1997]. 



•  Add-shift expansion of hardware multiplication with constant values [Pasko, 

1999]. 

•  Fixed-point refinement in Digital Signal Processing, which relies on 

knowledge of the limited dynamic range of input signals [Kim, 1998]. 

•  Redundancy removal in hardware compilation, which relies in part on the 

propagation of constants into gates [De Micheli, 1994]. 

Partial evaluation translates as follows to the case of GEZEL. At the upper level of 

the execution ladder, a platform simulator is created. This is done by compiling the 

GEZEL C++ library, and by linking it to an instruction-set simulator. At the next level of 

the execution ladder, this simulator will read a GEZEL description and one or more 

embedded software binaries and will create a runtime simulation architecture. We 

therefore identify two opportunities for partial evaluation: one while creating the platform 

executable, and one while creating the runtime simulation architecture. The optimization 

during creation of the platform simulator is provided by the C++ compiler, and consists 

of well-known optimizing compiler techniques. 

The second optimization step concerns translation of a program written in the GEZEL 

language into C++ objects. First, the parsing process itself can be optimized, such as by 

using hash tables. This minimizes the overhead of symbol table management. In addition, 

when GEZEL language is translated into C++ objects we can create a C++ object 

structure that is application-specific. 

 

Procedural, Optimized Operators 

 

The C++ runtime architecture works with custom data types to represent arbitrary-

wordlength bit vectors. It is common practice to implement operations on these data types 

using custom C++ operators, because it results in clear and easy-to-maintain source code. 

However, the use of such operators introduces extra temporaries. For a statement such as 

my_custom_type a,b,c; 

b = a + (c >> 5); 

the C++ compiler will create two intermediate results - one to hold the result of the 

shift operation, and one to hold the result of the addition before it is assigned to b. These 

temporary objects are created and destroyed for each evaluation of the expression. Note 

that a C++ compiler will not optimize these temporary objects away, because they are not 

native machine types. By using procedural versions of the operators, we obtain control 



over allocation of temporary objects and can select an optimal version of each operation. 

For example, the expression above can be written as 

my_custom_type a, b, c, tmp; 

constant_shift_right(tmp, c, 5); 

add(tmp,a,tmp); 

assign(b,tmp); 

This code uses only a single temporary as well as a specialized version of the shift 

operator. While it can be tedious to write for a C++ designer, it is easy to create these 

objects out of GEZEL code. Thus, a data type that uses operators (looks ‘nice’) in 

GEZEL, can have an efficient procedural implementation in C++. In addition, GEZEL 

data types are converted into C++ objects during parsing. Operator optimizations such as 

the selection of the constant-shift operator are done before the simulation starts. Without 

the partial evaluation process, we would need to do these tests at runtime. 

 

Static allocation of intermediate expression results: 

 

The previous step can be taken further by controlling the allocation of all intermediate 

expression results explicitly. In GEZEL, we use a simple static allocation of all 

intermediate expression results. 

 

3.4 Runtime Optimization 

 

The bottom two levels of the execution ladder are located at the level of the runtime 

simulation infrastructure, and therefore must be handled with runtime optimization 

techniques. 

 

Cycle-skip Detection: 

 

With this mechanism, we attempt to skip simulation of a clock cycle altogether if it 

can be shown that the simulator state will not change in the next clock cycle. The 

conditions for skipping a cycle are: (1) no register has changed state in the previous clock 

cycle, (2) no controller has changed state in the previous clock cycle, (3) no 

hardware/software (HW/SW) interface ipblock has changed state. Skipping cycles is 

very useful to increase HW/SW cosimulation efficiency, since they allow to ‘wake-up’ 



the hardware simulation out of the ISS only when it is needed. Indeed, an ISS typically is 

much faster then a general hardware simulator. 

 

init:
c = 0; /* current cycle count */
s.n = o1.n = o2.n = 0;

simulate_sfg at cycle c:

1. eval(o1,c)
1.1 eval(s,c)
1.2 (s.n != c) => s=op3(in); 

s.n = c;
1.3 o1 = op1(s); 

o1.n = c;
2. eval(o2, c)
2.1 eval(s,c)
2.2 o2 = op2(s); 

o2.n = c

op3

op1

op2

o1

o2

s

in

 

Figure 5: Demand-driven evaluation of cycle-true simulations. ‘n’ is a signal attribute that holds the clock cycle 

of the most recent signal update, and is called the generation of the signal. 

 

Demand-driven Signal Evaluation: 

 

The simulator evaluates signals for each module in a demand-driven fashion, working 

from the outputs to the inputs. We also ensure that each signal is evaluated only once 

during each clock cycle. This is done by tagging signals with the clock cycle time of their 

last evaluation. Demand driven techniques were originally proposed for event-driven 

simulation [Smith, 1987], but are effective for cycle simulation as well. Figure 5 shows 

an example of demand-driven evaluation in the context of cycle-true simulation. Each 

signal has, besides a value, also a generation. The generation indicates at which cycle the 

value of a particular signal is valid, and is updated when a signal is reassigned. A simple 

comparison of the generation of a signal with the current cycle time allows deciding if we 

can use the current value of the signal, or rather if we should check the expression that 

defines the signal. As illustrated by Figure 5, when we first evaluate output o1, we need 

to evaluate all expressions leading to the new signal value. However, when we evaluate 

output o2, we conclude that the intermediate signal value s is already current. Demand-

driven evaluation guarantees that each operation is only evaluated once for each clock 

cycle. 

 

 

 

 



Simulator Caches: 

 

A third optimization technique relies on the use of simulation-specific caching tables. 

For example, in a GEZEL FSMD, the expression that defines a signal is dependent on the 

control step of the FSM. This control step selects a set of sfg, and each sfg selects a 

group of expressions. This is a double indirection that can be avoided by means of a 

hashing table per signal. The table is indexed by the control step and returns the 

expression defining this signal. Such a hashing table is filled up at runtime. 
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Figure 6: Relative contribution of each optimization. 

 

Finally we illustrate the relative contribution of all these optimizations. Overall, we 

found that with all optimizations mentioned above turned on, the execution time for a 

GEZEL stand-alone simulation improves on the average by one order of magnitude. We 

analyzed two samples designs in detail: an encryption unit and a Viterbi decoder. Both 

are described in the next section. For these designs, the order-of-magnitude in 

improvement is divided over the different levels of the execution ladder as illustrated by 

Figure 6. 

 

4. RESULTS 

 

Using the optimized GEZEL simulator and cosimulators, we now present two sets of 

results. First we compare stand-alone GEZEL designs to equivalent Verilog and SystemC 

designs. Next, we compare the design iteration-time of GEZEL to that of SystemC for an 

AES coprocessor design. 

 

 

 



4.1 Standalone Simulation 

 

To evaluate the efficiency of our simulator, we performed two kinds of experiments. 

The first are stand-alone hardware simulations, the second are cosimulations. We 

compare with two existing simulation environments: SystemC 2.0.1 and Verilog-XL 2.8. 

SystemC was selected because it can be easily used for cosimulation purposes. Verilog-

XL was selected because we started from Verilog reference code. All code developed for 

the examples is available on the World Wide Web [GEZEL Homepage 2004]. 

 

Table IV. Non-comment, non-blank line count (NCLOC) for design exanples. 

 AES Viterbi 

Verilog 522 426 

RTL SystemC 506 374 

GEZEL 312 265 

 

We started from two open-source Verilog designs. The first is an AES128 encryption 

processor [Usselman 2003], while the second is a (2,1,2) Viterbi decoder [Stojanovic 

1999]. Both were translated into SystemC 2.0.1 and GEZEL. During translation into 

SystemC, care was taken to optimize for execution speed, using the most efficient data 

types and minimizing the amount of signals. However we did not abstract the execution 

model into a bus functional model (a model with a cycle-accurate interface and 

functional-level internal behavior). Rather, the guidelines for synthesizable SystemC 

RTL code were followed [Synopsys 2002]. As a result, each design performs identically 

on a cycle-by-cycle basis in each of the three environments. The resulting design sizes 

are illustrated in Table IV and show that GEZEL allows for compact hardware 

descriptions. 

 

Table V. Design-iteration time for stand-alone (HW-only) simulation of examples. 

 AES 20K cycles Viterbi 100K cycles 

 Build 

(seconds) 

Simulate 

(seconds) 

Build 

(seconds) 

Simulate 

(seconds) 

Verilog 0.3 15 0.2 46 

RTL SystemC 85 21 56 15 

RTL GEZEL 1 13 0.1 22 

Simulation Platform: SUN Ultra-10 500 MHz, 2GB RAM with gcc 3.2.2 



 

We next compare the design iteration-time for each design. Table V lists the results 

for a 20K cycle testbench for AES and a 100K cycle testbench for Viterbi. Since we are 

interested in design iteration-time, we list the parse/compile time as well as the 

simulation time. For SystemC, we use the O3 flag to compile for performance. The 

evaluation platform is a SUN Ultra-10 (500 MHz CPU, 2GB RAM) with gcc 3.2.2. The 

model build-time for SystemC is considerably slower, because general C++ compilation 

is far more complex than the use of a dedicated scripting engine. The testbench of the 

AES design consists of about 1600 subsequent encryptions. This simulation is known to 

have a high event density because a good encryption algorithm toggles on the average 

half of the bits it processes. In this case, the cycle algorithm of GEZEL performs very 

well. For the Viterbi simulation, we observe the reverse situation. In this case, half of the 

cycles are idle cycles without any events. The reason why the Verilog version is slower is 

that it uses a two-phase clock, which is translated to a single-edge clock in SystemC and 

GEZEL. 

 

4.2 Cosimulation – Design Iteration Time 

 

Next we considered cosimulation. We first took the AES coprocessor design and 

evaluated the design iteration-time in more detail. We made use of the StrongArm 

instruction set simulator (SimIt-ARM 1.1b) in combination with the AES coprocessor. 

We wrote a cycle-accurate model (RTL) and a bus-functional model (BFM) of the AES 

encryption processor in GEZEL and SystemC, and collected build-time and simulation-

time in Table 5. In the BFM, a C function is used to simulate the AES core. 

 

Table VI. Simulation for SW-only, HW/SW cosimulation with a bus-functional 

model, and HW/SW cosimulation with RT-level Models. 

 

 

Build + Simulate 
(seconds) 

Simulation speed 
(cycles per second) 

ISS SW-only (AES in SW) 0.14 + 0.78 1M 

ISS + BFM SystemC 7.0 + 0.23 318K 

ISS + BFM GEZEL 1.8 + 0.72 101K 

ISS + RTL SystemC 20.5 + 9.0 8.1K 

ISS + RTL GEZEL 0.11 + 4.0 17.7K 

Simulation Platform: PC 3 GHz, 512MB RAM with gcc 3.2 



 

In all cases, the embedded software is compiled with O3-level optimization. A cycle-

accurate simulation on the ISS by itself runs at 1 million cycles per second. This 

implementation takes 785K cycles to complete. When using a hardware model for the 

AES, the total amount of cycles to simulate drops to about 70K because of the hardware 

acceleration that is provided by the coprocessor. 

The model build-time figures in Table 5 are clearly faster for GEZEL-based 

cosimulation. As indicated before, an encryption algorithm is rich in events, therefore a 

SystemC BFM model will much run faster than the event-driven SystemC RTL model. 

For GEZEL, the skip-cycle mechanism can omit a large number of clock cycles. This, 

combined with the cycle-simulation algorithm makes the GEZEL RTL model faster than 

that of SystemC. However, the GEZEL BFM does not outperform the SystemC BFM. 

This is because the cycle simulation algorithm will evaluate the AES function regardless 

whether the inputs have changed or not. 

 

5. RELATED WORK 

 

Cosimulation is traditionally done by connecting multiple simulation engines, for 

example an ISS and a HDL simulator [Zivojnovic, 1996]. Contemporary ISS achieve 

over 1 MHz cycle-accurate simulation performance on a workstation [Qin, 2003], 

moving the simulation bottleneck to the integration of HW and SW simulation. By using 

a programming language such as SystemC, a tight and efficient coupling between the 

hardware model and the ISS can be achieved. The hardware simulation efficiency can be 

further increased at the expense of simulation accuracy by using abstracted models 

[Semeria, 2000]. Such abstraction can apply to the hardware models, but also to the 

cosimulation interfaces [Fummi, 2004]. All of these approaches use a compiled 

programming language for hardware modeling. Our work targets to combine the benefits 

of a compiled programming language with those of an interactive design environment. 

We use an interpreted, dedicated language to avoid the compilation overhead, but also 

make sure to optimize the simulation speed. In addition, the use of a dedicated language 

allows to issue feedback and error messages that are directly related to the hardware 

model. In contrast, with a general-purpose language such as C or C++, one has first to 

create a correct C(++) program before the semantics of the hardware model can be 

checked. 



Many coprocessor design systems today are constructed as an ASIP synthesis system. 

In such a system, the instruction-set of a standard processor is extended or specialized to 

fit a dedicated task [Hoffmann 2001][Cong 2004]. The appeal of this approach is that a 

single environment can create the target architecture, as well as a design tool suite 

(compiler and simulator) to map and verify applications for this architecture. Our 

approach does not rely on extending instruction-sets, but on explicit description and 

integration of the coprocessor micro-architecture. This allows for loosely coupled 

coprocessors that do no fit the template of an instruction-set, for example with memory-

mapped coprocessors. In general, loosely-coupled architectures can offer better energy 

efficiencies than tightly-coupled ones [Schaumont, 2004b]. 

Modern SoC platforms increasingly consist of ‘soft’ hardware in the form of FPGA 

and other configurable technologies [Vahid, 2003]. This makes model build-time an 

important parameter, and motivates why we want to minimize design iteration-time  

instead of simply going for the fastest simulation speed possible. For the latter, very 

efficient techniques are available [DeVane, 1997]. 

A key insight in our work is that an extra interpreting step allows to do partial 

evaluation - the use of design properties to specialize the simulator [Au, 1991]. It can be 

done transparently to the designer and can take away some of the design burden. A 

related approach that allows for fast simulation in combination with minimal model 

build-time is just-in-time translation (JIT). This technique has been successfully applied 

to performance improvement of embedded software execution as well as instruction-set 

simulation [Nohl 2002]. The just-in-time translation step creates a native implementation 

of an instruction that can be reused later in the simulation, and thus avoids repeated 

interpreting of that instruction. Thus, some of the simulation work is moved from an 

inner simulation loop to an outer one. We are not aware of any cosimulation systems that 

use JIT-like techniques for the hardware part. 

 

6. CONCLUSIONS 

 

We have demonstrated an interactive design environment for domain-specific 

coprocessors, called GEZEL. Using a dedicated hardware modeling language and a 

general-purpose cosimulation interface, various types of cosimulators can be easily 

created. Compared to existing cosimulation methods, we have shown that comparable 

performance can be achieved while at the same time minimizing the design iteration-time 

- hence the use of the term interactive. We also obtain compact code size. Our results 



show that we can efficiently support a wide range of coprocessors, starting from tightly-

coupled designs up to very loosely-coupled ones. 
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