A Compact Architecture for Montgomery
Elliptic Curve Scalar Multiplication Processor

Yong Ki Lee™ and Ingrid Verbauwhede™)(2)

(1) University of California, Los Angeles, USA
) Katholieke Universiteit Leuven, Belgium
{jfirst,ingrid}Q@ee.ucla.edu

Abstract. We propose a compact architecture of a Montgomery elliptic
curve scalar multiplier in a projective coordinate system over GF(2™).
To minimize the gate area of the architecture, we use the common Z
projective coordinate system where a common Z value is kept for two
elliptic curve points during the calculations, which results in one register
reduction. In addition, by reusing the registers we are able to reduce two
more registers. Therefore, we reduce the number of registers required for
elliptic curve processor from 9 to 6 (a 33%). Moreover, a unidirectional
circular shift register file reduces the complexity of the register file, re-
sulting in a further 17% reduction of total gate area in our design. As
a result, the total gate area is 13.2k gates with 314k cycles which is the
smallest compared to the previous works.

Key words: Compact Elliptic Curve Processor, Montgomery Scalar
Multiplication

1 Introduction

Even though the technology of ASIC advances and its implementation cost de-
creases steadily, compact implementations of security engines are still a challeng-
ing issue. RFID (Radio Frequency IDentification) systems, smart card systems
and sensor networks are good examples which need very compact security imple-
mentations. Public key cryptography algorithms seem especially taxing for such
applications. However, for some security properties such as randomized authen-
tications and digital signatures, the use of public key cryptography algorithms
is often inevitable. Among public key cryptography algorithms, elliptic curve
cryptography is a good candidate due to its efficient computation and relatively
small key size.

In this paper, we propose an architecture for compact elliptic curve mul-
tiplication processors using the Montgomery algorithm [1]. The Montgomery
algorithm is one of the most popular algorithms in elliptic curve scalar mul-
tiplication due to its resistance to side-channel attack. We use the projective
coordinate system to avoid inverse operations.

In order to minimize the system size, we propose new formulae for the com-
mon projective coordinate system where all the Z-coordinate values are equal.

2 Yong Ki Lee and Ingrid Verbauwhede

When we use Lépez-Dahab’s Montgomery scalar multiplication algorithm [2],
two elliptic curve points must be kept where X and Z-coordinate values for each
point. Therefore, by the use of the common Z projective coordinate property,
one register for a Z-coordinate can be reduced. Considering that the register
size is quite large, e.g. 163, reducing even one register is a very effective way
to minimize the gate area. Moreover, efficient register management by reuse of
the registers makes it possible to reduce two additional registers. Therefore, we
reduce three registers out of nine in total compared to a conventional architec-
ture. In addition, we design a unidirectional circular shift register file to reduce
the complexity of the register file. While the multiplexer complexity of a register
file increases as the square of the number of the registers, that of our register
file is a small constant. Therefore, the proposed register file architecture effec-
tively reduces the overall area. Though the register file is small (6 registers) an
additional 17% of gate area is reduced using this technique. We also show the
synthesis results for various digit sizes where the smallest area is 13.2k gates
with the cycles of 314k.

The remainder of this paper is organized as follows. In Section 2, we review
the background on which our work is based. In Section 3, the common Z projec-
tive coordinate system is introduced and its corresponding formulae are given.
The proposed system architecture and the synthesis results are shown in Section
4 and Section 5 followed by the conclusion in Section 6.

2 Background

2.1 Lépez-Dahab’s Montgomery scalar multiplication

In this section we introduce Lépez-Dahab’s Montgomery scalar multiplication
algorithm, which uses a projective coordinate system [2]. The algorithm is shown
in Fig. 1. A non-supersingular elliptic curve E over GF(2™) is the set of coordi-
native points (z,y) satisfying y? + zy = 2% + ax? + b with the point at infinity
O, where a,b,z,y € GF(2™) and b # 0.

Input: A point P = (z,y) € E and a positive integer k = 2=t 4 Eﬁ;gk’ﬂi
Output: Q = kP

1. if (k =0 or z = 0) then output (0,0) and stop
D Xy, Zy— 1, Xy —at+ b, Zy — 2?
3. fori=1—2to0do
if k; = 1 then
()(17 Zl) «— Madd(X1, Z17 XQ, Zz), (XQ, ZQ) — Mdouble(XQ, ZQ)
else (XQ, ZQ) — 1\/[2:1.C1d()(27 Z2, Xl, Zl)7 ()(17 Z1) — Mdouble(Xl, Zl)
4. return Q «— Mxy(X1, Z1, X2, Z2)

Fig. 1. Montgomery scalar multiplication with Lépez-Dahab algorithm

A Compact ECC Processor 3

The adding formula of (X444, Zadqa) «— Madd(X1, Z1, X2, Z5) is defined in
Eq. 1.

ZAdgd = (Xl X o+ X9 X 21)2 (1)
XAdd =T X Zagq + (X1 X Zg) X (Xg X Zl)

The doubling formula of (X poubie, Zpousie) < Mdouble(Xs, Zs) is defined in
Eq. 2.

ZDouble - (XQ X Z2)2 (2)
XDouble = Xél +bx Zé

Q «— Mxy (X4, Z1, Xo, Z5) is the conversion of projective coordinate to affine
coordinate. Lopez-Dahab’s adding and doubling algorithms are described in
Fig. 2 where ¢ = b.

The total number of registers in Fig. 2 is six, i.e. the registers for X7, 71,
X5, Zy, Ty and Ty. The total field operations of Adding Algorithm are 4 mul-
tiplications, 1 square and 2 additions, and those of Doubling Algorithm are 2
multiplications, 4 squares and 1 addition. Note that it is not necessary to main-
tain Y-coordinate during the iterations since it can be derived at the end of the
iterations.

Adding Algorithm Doubling Algorithm
(X1,Z1) «— Madd(X1, Z1, X2, Z2) (X,Z) < Mdouble(X, Z)
1. Th «—=zx 1. T «—c¢
2. X1« X1 X Z» 2. X «— X2
3. 71— 7 xXo 3. Z«—Z7?
4. T2<—X1><Zl 4. T1<*Z><T1
5. Z1+—Z1+X1 5. Z«+—/ZxX
6. Z,— 73 6. Ty — T?
7. X1 = ZixTh 7. X —X?
8. X1« X1+T, 8 X X+1T%

Fig. 2. Lépez-Dahab’s Adding and Doubling Algorithms

2.2 Modular Arithmetic Logic Unit (MALU) and Elliptic Curve
Processor Architecture

In order to perform the filed operations, i.e. the multiplications, squares and
additions in Fig. 2, we need an Arithmetic Logic Unit (ALU). Fig. 3 shows the
MALU architecture of K. Sakiyama et al [5]. This is a compact architecture
which performs the arithmetic field operations as shown in Eq. 3.

Q
—
&

I

A(z) * B(z) mod P(zx) if emd =1 (3)
C(z) = B(z) + C(z) mod P(z) if emd=0

4 Yong Ki Lee and Ingrid Verbauwhede

MALU RAM
163/~/A WSS/N’B 1631 C

b <«a |p |

1634 Cell

ﬁwss {:|cell 0 5
15 cell 1 - -
Atba-g+1 : : 0

eme=DN e |

Tin

T .
163) | :
762
‘ ‘ Yo o ==

(a) MALU Architecture (b) Cell Architecture

Tout

Fig. 3. MALU Architecture

where A(z) = Ya;2%, B(z) = Xbia’, C(x) = Yext and P(z) = 219 + 27 4+ 28 +
o3+ 1.

d is the digit size and the number of cells. The square operation uses the same
logic as the multiplication by duplicating the operand. The arithmetic multipli-
cation and addition take [153] and one cycle respectively. The benefit of this
architecture is that the multiplication, the square and the addition operations
share the XOR array and by increasing the digit size, the MALU can be easily
scaled. The architecture of our ALU starts from this MALU.

ECP (Elliptic Curve Processor) architecture based on MALU is shown in
Fig. 4 [6]. Note that in Fig. 4, ALU is implemented with MALU and hence
includes three registers, and RAM contains five words of 163 bit size.

2.3 Implementation Consideration

If Lopez-Dahab’s Montgomery scalar multiplication algorithm is implemented
using Sakiyama’s MALU in a conventional way, the total number of registers is
9, i.e. 3 registers for MALU plus 6 registers for the Montgomery scalar multipli-
cation. In [6], 3 registers and 5 RAMs are used (8 memory elements in total).
One register is reduced by modifying Lépez-Dahab’s algorithm and assuming
that constants are loadable directly to the MALU without using a register. In
our architecture, we are able to reduce the number of registers to 6 even without
constraining ourselves to these assumptions. This was accomplished by observ-
ing the fact that the area of a scalar multiplier is dominated by register area.
Note that the registers occupy more than 80% of the gate area in a conventional
architecture. Therefore, reducing the number of the registers and the complexity
of the register file is a very effective way to minimize the total gate area.

A Compact ECC Processor 5

ROM 41
| ¥ L
Conﬁrol PN ALU

Unit l

RAM
I

Fig. 4. MALU based Elliptic Curve Processor Architecture

Accordingly, our compact architecture is achieved in two folds: reducing the
number of registers (one register reduction by using the common Z projective
coordinate system and two register reduction by register reuse) and reducing the
register file complexity by designing a unidirectional circular shift register file.

3 Common Z Projective Coordinate System

We propose new formulae for the common Z projective coordinate system where
the Z values of two elliptic curve points in Montgomery scalar multiplication are
kept to be the same during the process. New formulae for the common Z pro-
jective coordinate system have been proposed over prime fields in [3]. However,
this work is still different from ours in that first, they made new formulae over
prime filed while ours is over binary polynomial field and second, they made
new formulae to reduce the computation amount in special addition chain while
our formulae slightly increase the computation amount in order to reduce the
number of the registers. Please note that reducing even one register decreases
the total gate area considerably.

Since in Lépez-Dahab’s algorithm, two elliptic curve points must be main-
tained, the required number of registers for this is four (X;, Z;, X2 and Z5).
Including two temporary registers (77 and T5), the total number of registers is
six. The idea of the common Z projective coordinate system is to make sure that
7y = Zy at each iteration of Lépez-Dahab’s algorithm. The condition at the be-
ginning of the iterations is satisfied since the algorithm starts the iterations with
the initialization of Z; = Zy = 1. Even if Zy # Z5, we can make it satisfy this
condition using three field multiplications as shown in Eq. 4 where the resulting
coordinate set is (X7, Xo, Z).

6 Yong Ki Lee and Ingrid Verbauwhede

X1<—X1><Z2
X2(—X2><Zl (4)
ZHZ1><ZQ

Since we now assume Z; = Zs, we can start the Adding Algorithm with
the common Z projective coordinate system. With Z = Z; = Z5, Eq. 1 is re-

represented as shown in Eq. 5. Now Z 444 and X 444 have a common factor of
Z2.

Zpga = (X1 x Zy + Xo x Z1)? = (X1 + X2)? x 22
XAddZQTXZAdd—i-(XlXZQ)X(XQXZl) (5)
=2 X Zpga + (X1 x Xp x Z%)
Due to the property of the projective coordinate system, we can divide Z 444
and X 444 by the common factor of Z2. The comparison of the original equation

and the modified equation is shown in Table 1. Note that the new formula of
the Adding Algorithm is independent of the previous Z-coordinate value.

Table 1. The comparison between the original and the modified formulas

The original equation The new equation assuming Z = Z; = Z»
Zadd = (X1 X Zo+ X2 x Z1)? Zada = (X1 + X2)?
Xadd = X Zaga + (X1 X Z2) x (X2 X Z1) Xadda = X Zaaa + X1 X X2

In Doubling Algorithm, there is no such reduction since it deals with only
one elliptic curve point. Nevertheless, we can simplify the Doubling Algorithm
by noticing that T? + X2 = (T; + X)? at the steps of 6, 7 and 8 in Fig. 2. One
field multiplication can be reduced using this mathematical equality. The Eq. 2
is re-represented in Eq. 6 where ¢? = b.

ZDouble - (X2 X Z)2 (6)

XDouble = (X22 +cXx Z2)2
Note that the resulting Z-coordinate values are different between Adding and
Doubling formulae. In order to maintain a common Z-coordinate value, some
extra steps similar to Eq. 4 are required. These extra steps must follow every

pair of Adding and Doubling Algorithm. The final mathematical expression and
its algorithm are shown in Eq. 7 and Fig. 5 respectively.

X1 — XadaZpousie = {x(X1 4+ X2)® + X1 X2} (X2Z)* ; Pl Pl+ P2

Xy — XpouieZada = (X3 +cZ?)* (X1 + X2)? ;P2 2 x P2 (7)
Z — ZadaZpouste = (X1 + X2)?(X2Z)? ; The new common Z-coordinate

A Compact ECC Processor

Adding Algorithm Doubling Algorithm Extra Steps
L. Th— X1+ X2 1. Xo— X3 (Th) 1. X1 —X1x2
2. Ty T} (Th) 2. Z<—27% (Th) 2. Xo— XoxTs
3. T1<*X1><X2 3. T1<*C 3. ZHZXTQ
4. X1<—CL‘ 4. T1<—Z><T1
5. X1<—T2><X1 5. Z<—Z><X2
6. Xi —X1+T 6. Xo— Xo+T)

7. Xo— X3 (Th)

Fig. 5. Proposing Adding and Doubling Algorithms

In Fig. 5 we mark with (77) at each square operation to indicate that the
T register is free to store some other value. The reason for this will be obvious
in the next section. The comparison of the amount of field operations between
Lépez-Dahab’s algorithm and our algorithm is shown in Table 2.

Table 2. Comparison of the computational workload

Field Operation Lépez-Dahab’s algorithm Our algorithm
Multiplication 6 7
Square 5 4
Addition 3 3

Noting that the multiplication and the square are equivalent in the MALU
operation, the workload of our algorithm is the same as that of Lépez-Dahab’s
algorithm and we still reduce one register.

4 Proposing System Architecture

4.1 Arithmetic Logic Unit (ALU) Architecture

163
ALU Ctl 1
163 q 163 Control1
MSD
Reg 1 Reg 2 || Reg 3
<< d
A Ctl 2

Fig. 6. ALU Architecture

8 Yong Ki Lee and Ingrid Verbauwhede

The ALU architecture in Fig. 6 is similar to MALU in Fig. 3. The only
difference is in the placement of the registers and the control outside the ALU
block. Therefore, the ALU block is equivalent to an array of cells in Fig. 3.
The reason we separate the registers from the ALU block is for the reuse of the
registers. Note that at the completion of the multiplication or addition operation,
only the register Regl is updated while the registers Reg2 and Reg3 are remained
as the beginning of the operations. Therefore, Reg2 and Reg3 can be used not
only to store field operands but also to store some values of the proposed Adding
and Doubling algorithm where we need five registers for X1, Xo, Z, T1, and T5
in Fig. 5.

A care should be taken at this point since the same value must be placed in
the both of Reg2 and Reg3 for squaring. Therefore, during squaring, only one
register can be reused. This fact would conflict with our purpose to reuse each of
Reg2 and Reg3 as a storage of the adding and doubling algorithm. Fortunately,
it is possible to free one of the registers to hold another value during squaring.
As shown in Fig. 5, T7 can be reused whenever a square operation is required.

In Fig. 6, the control line Ctl1 signals the command (multiplication or addi-
tion) and the last iteration of the multiplication. When ALU performs a multi-
plication, each digit of d bits of Reg2 must be entered into ALU in order. Instead
of addressing each digit of the 163 bit word, the most significant digit (MSD) is
entered and a circular shift of d bits is performed. The shift operation must be
circular and the last shift must be the remainder of 163/d since the value must
be kept as the initial value at the end of the operation. During performing the
ALU operation, an intermediate result is stored in Regl. Regl, Reg2 and Reg3
are comparable with C, A and B in Fig. 3 respectively.

4.2 Circular Shift Register File Architecture

By reusing the registers, we reduce two of the registers in the previous sub-
Section. This causes that all the registers should be organized in single register
file. Therefore, the register file of our system consists of five registers. In our reg-
ister file architecture, we use a circular shift register file with a minimum number
of operations. The multiplexer complexity of a randomly accessible register file
increases as the square of the number of registers. On the other hand, since the
multiplexer complexity of a circular shift register file is a constant, this model
effectively reduces the total gate area.

The operations defined in Fig. 7 are the minimum operations such that any
replacement or reordering of the register values can be achieved. Since only Regl
gets multiple inputs, only one multiplexer of fixed size is necessary.

Note that Regl, Reg2 and Reg3 in Fig. 7 are the three registers which are
connected to the ALU in Fig. 6. The assignment operation loads the constants
of elliptic curve parameters into Regl which is the only register to be assigned
a constant value. The shift operation shifts the register values in circular and
the switch operation switches the values of Regl and Reg2. The copy operation
replaces the value of Regl with Reg2. Note that the copy operation is required

A Compact ECC Processor 9

o

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6

< Assignment Operation>

Reg 1 —* Reg 2 Regs—>Reg4—m

eg b

<Shift Operation>

N
Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6
<Switch Operation>
‘Reg1‘ ‘RegZ‘ ‘RegS‘ Reg4‘ ‘RegS‘ ‘Reg6‘

<Copy Operation>

Fig. 7. Operations and Architecture of Register File

for the field square operation which is implemented as the field multiplication
with two operands of the same value.

4.3 Overall System Architecture

The overall system architecture is shown in Fig. 8. Elliptic curve point add and
doubler (EC Add&Doubler) consists of Control 1, ALU and the register file.
Control 1 includes the hard-wired elliptic curve parameters and manages the
register file. Control 2 detects the first bit of 1 in Key (or a scalar) and controls

Mont. Scalar Multiplier
EC Add&Doubler

Key] —
[Control2 Control1 J/ X1
Tester JI J éz
Ready
ALU

Register File

Fig. 8. Overall System Architecture

10 Yong Ki Lee and Ingrid Verbauwhede

EC Add&Doubler depending on the Key values of the later bits according to the
Montgomery algorithm in Fig. 1. Key and Tester are placed outside Montgomery
scalar multiplier. We assume that Key can be addressable in single bit and the
addressed bit is forwarded into Control 2. Control 2 also generates the Ready
signal to indicate when the final outputs of X1, X2 and Z are ready. The outputs
are compared with the pre-computed results in Tester.

In our system, we suppose that the coordinate conversion into affine coordi-
nate system and calculation of Y-coordinate value are performed in the counter-
part of this system if it is needed. If we assume that this system is implemented
in RFID tags, the counter part can be a tag reader or back-end system.

4.4 Register File Management for Algorithm Implementation

For better understanding how the system works, the register file management of
Adding Algorithm of Fig. 5 is shown in Fig. 9. Note that when the algorithm is
actually implemented, some more detailed controls are required. In this example,
only the register file rearrangement is shown. Remember that the field addition
and multiplication are performed as Regl «— Reg2 x Reg3 and Regl < Regl +
Reg3 respectively. Initially, we assume that the arrangement of register values
are as step (1) in Fig. 9, and that Reg4, Regh and Reg6 are not available (marked
as —) since meaningful values are not stored yet. The commands of Assign, Shift,
Switch and Copy work as described in Fig. 7 and the rearrangements of register
values are shown in each step. Note that Shift«4 is the abbreviation of four
times Shift operation and some register values are changed to be — when the old

Step | Field Operation | Command | Regl | Reg2 | Reg3 | Reg4 | Regb | Regb
@) Initial X1 | X2 | % - - E
(2) Shift - X1 X2 Z - -
(3) Copy XI | X1 | X2 | Z - -
@) [1.Th — X1 + Xz Add T2 | X1 | X2 | Z - -
(5) Shift - T2 X1 X2 Z -
(6) Copy T2 | T2 | X1 | X2 | Z -
7 Shift — T2 | T2 | X1 | X2 | Z
) [2.Th — T3 Multiply | T2 - - X1 | X2 Z
9) Shift«4 - X1 X2 Z T2 -
(10) | 3. 71 — X1 x X | Multiply | T1 | - | X2 | Z | T2 | -
(11) Switch — T [X2z [T2 | -
(12) | 4. Xq <« = Load = X1 T1 X2 Z T2 -
(13) Shiftx2 | T2 | — | X1 | T1 | X2 | Z
(14) Switch - T2 X1 T1 X2 Z
(15) | 5. X1 — To x X1 | Multiply | X1 | T2 | - | TI | X2 | Z
(16) Switch | T2 | X1 | - | TI | X2 | Z
(17) Shift«5 | X1 | - | T1 | X2 | 2z | T2
(18) [6. X1 — X1 + T} Add X1 | - | T1 | X2 | Z | T2

Fig. 9. Register File Management for Adding Algorithm

A Compact ECC Processor 11

values are not used any more. The rest of the Montgomery scalar multiplication
algorithm can be also described similarly.

In fact, the use of this register file increases the number of cycles due to the
control overhead. However, considering that a field multiplication takes a large
number of cycles, the number of overhead cycles is relatively small. Note that
a field multiplication requires 163 cycles for 163 bit words and the digit size of
1 (reference Fig. 3 for the digit size). We compare synthesis results for various
cases in the following section.

5 Synthesis Results

In order to verify our algorithm and architecture, we synthesized the proposed
architecture using TSMC 0.18um standard cell library. Summarized results are
shown in Table 3. While version 1 uses a randomly accessible register file, the
other versions use the circular shift register file which is shown in the previous
section. Comparing version 1 with version 2, we can see how changing the register
file management strategy can effectively reduce the area (17% reduction of total
gate area). The use of the circular shift register file requires more cycles. However,
if we increase the digit size into 4 (version 5), a much smaller number of cycles
can be achieved with even less gate area.

Table 3. Synthesis Results

Version Digit size (d) Register Type Gate Area Cycle
Verl 1 Random Access 15,894 295,032
Ver2 1 13,182 313,901
Ver3 2 . . 14,188 168,911
Verd 3 Circular Shift 14,896 120,581
Verb 4 15,538 95,521

A comparison with other works is shown in Table 4. Since the architecture
of [4] uses an affine coordinate system, it requires only 6 registers but require a
larger number of cycles due to field inverse operations. The ALU of [4] has sep-
arate logic modules for multiplication, square and addition where multiplication
requires 163 cycles and square and addition require 1 cycle.

Except for [6], all the reported results include memory area. In [6], the re-
ported gate area of 8,214 does not include the required RAM area. For a fairer
comparison, we estimate the total gate area assuming that 1 bit memory is equiv-
alent to 10 gate area. Note that 1 bit register require 6 gates and there should
be some extra area for addressing. According to our experiment of synthesis for
a 163 bit register in standard CMOS compilers, the number of gates per bit is
above 10 gates. Even in this under-estimation, our results show much smaller
gate number with a smaller cycle number. This result is obvious considering that
our ALU is similar to [6] and the number of total memory units of our architec-
ture is two less than [6]. In [8], among several implementations, we show the one

12 Yong Ki Lee and Ingrid Verbauwhede

Table 4. Comparison with other works

Technology|Key Size|Digit Size| Area (Gate) Cycle |Memory Units
[7] 0.13 165 — 30,333 545,440 —
8] 0.13 160 - 28,311 2,500,000| 320%8 bits
[4] - 163 - 15,097 432,000| 6%163 bits
8,214 + 5 RAM -
[6] 0.13 163 1 (~ 16,364y~ | 353:710] 8163 bits
Our Work| - 1¢ 163 1 13,182 313,901| 6+163 bits
(Ver2)

**The gate area of 8,214 does not include RAM area. The gate area of 16,364 is an
estimation including the RAM area.

having the smallest area, which is still much larger than our results and also has
a much larger number of cycles. As a result, our implementation has not only
the smallest area but also the smallest cycle.

6 Conclusion

We proposed a compact architecture for an elliptic curve scalar multiplier. This
contribution has been achieved by reducing the number of the registers and the
complexity of the register file.

The reduction of the number of the registers is done in two different ap-
proaches. By proposing new formulae for the common Z projective coordinate
system, one register was reduced and by the reuse of the registers, two more
registers were reduced. Accordingly, three registers were reduced in total. The
reduction of the complexity of the register file is done by designing a circular
shift register file.

As a result, for elliptic curve scalar multiplication, only 13.2k gates and
314k cycles are required. This result not only achieves the smallest area but
also the smallest cycle number compared with fairly comparable architectures.
Moreover, our processor architecture is secure against TA (Timing Analysis) and
SPA (Simple Power Analysis) due to the property of Montgomery elliptic curve
scalar multiplication.

Acknowledgments. This work is supported by NSF CCF-0541472, FWO and
funds from Katholieke Universiteit Leuven.

References

1. P. Montgomery: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, Vol. 48. (1987) 243-264

A Compact ECC Processor 13

. J. Lépez and R. Dahab: Fast multiplication on elliptic curves over GF(2™) without
precomputation. International Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES). Lecture Notes in Computer Science, Vol. 1717. Springer-
Verlag (1999) 316-327

. N. Meloni: Fast and Secure elliptic Curve Scalar Multiplication Over Prime
Fields Using Special Addition Chains. Cryptology ePrint Archive: listing for 2006
(2006/216) (2006)

. C. Paar: Light-Weight Cryptography for Ubiquitous Computing. Invited talk at
the University of California, Los Angeles (UCLA). Institute for Pure and Applied
Mathematics (December 4, 2006)

. K. Sakiyama, L. Batina, N. Mentens, B. Preneel and I. Verbauwhede: Small-
footprint ALU for public-key processors for pervasive security. Workshop on RFID
Security (2006) 12 pages

. L. Batina, N. Mentens, K. Sakiyama, B. Preneel and I. Verbauwhede: Low-cost
Elliptic Curve Cryptography for wireless sensor networks. Third European Work-
shop on Security and Pri-vacy in Ad hoc and Sensor Networks. Lecture Notes in
Computer Science, Vol. 4357. Springer-Verlag (2006) 6-17

. E. A OztAurk, Berk Sunar and Erkay Savas: Low-power elliptic curve cryptography
using scaled modular arithmetic. International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES). Lecture Notes in Computer Science, Vol.
3156. Springer-Verlag (2004) 92-106

. A. Satoh and K. Takano: A Scalable Dual-Field Elliptic Curve Cryptographic Pro-
cessor. IEEE Transactions on Computers, Vol. 52. No. 4 (2003) 449-460

