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Abstract. The hash algorithm forms the basis of many popular crypto-
graphic protocols and it is therefore important to find throughput opti-
mal implementations. Though there have been numerous published pa-
pers proposing high throughput architectures, none of them have claimed
to be optimal. In this paper, we perform iteration bound analysis on the
SHA2 family of hash algorithms. Using this technique, we are able to
both calculate the theoretical maximum throughput and determine the
architecture that achieves this throughput. In addition to providing the
throughput optimal architecture for SHA2, the techniques presented can
also be used to analyze and design optimal architectures for some other
iterative hash algorithms.
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1 Introduction

Hash algorithms produce a fixed size code independent of input size of mes-
sages. Generated codes from hash algorithms are commonly used for digital
signature [1] and message authentication. Since the hash outputs are relatively
small compared to the original messages, the hash algorithms take an impor-
tant roll for computation efficiency. Considering the increasing data amount to
store or communicate, the throughput of hash algorithms is an important factor.
Common hash algorithms include SHA1, MD5, SHA2 family (SHA256, SHA384
and SHA512) and RMD family (RMD160, RMD256 and RMD320). The SHA2
family of hash algorithms [2] has become of particular interest lately due the
official support of the National Institute of Standards and Technology (NIST)
in 2002.

Even though many publications were produced to show high throughput ar-
chitectures of SHA2, there has been no mathematical analysis of the delay bound.
In this paper, we analyze the iteration bound analysis of SHA2, which gives us
the maximum theoretical throughput achievable by the algorithm. Knowing the
iteration bound not only allows the designer a goal to design towards, but also
signals the designer when an optimal architecture has been achieved.
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The remainder of this paper is organized as follows. We start with review-
ing related work in Section 2 and introduce the iteration bound analysis and
transformations in Section 3. In Section 4, we analyze the iteration bound of
the SHA2 family of hash algorithms and show the procedure to design through-
put optimum architectures. Some comments for implementation and synthesis
results are given in Section 5 followed by the conclusion in Section 6.

2 Related Works

The most common techniques for high throughput hardware implementations of
hash algorithms are pipelining, unrolling and using Carry Save Adder (CSA).
Pipelining techniques are used in [4–7], unrolling techniques are used in [7–10],
and CSA techniques are used in [4–7, 10, 11]. Some other interesting implemen-
tations can be found in [12, 13].

Even though there are many published papers, the mathematical analysis of
the iteration bound has rarely been performed. For example, even though the
iteration bound for SHA2 was achieved in [4], no analysis or proof of optimal-
ity was given. Since there is no proof of theoretical optimality and systematic
approach to achieve the optimality, many architectures seem to count on the
designers’ intuition. Actually the work of [4] achieved the theoretical optimum
after another work [5]. Therefore, this work will not only prevent a futile attempt
to design architecture achieving better throughput than the theoretical optimum
but also will guide designers to achieve the theoretical optimum throughput in
MD4-based hash algorithms.

3 The Iteration Bound Analysis and Transformations

The SHA2 family of hash algorithms are iterative algorithms, which means the
output of one iteration is the input of the next. We use a Data Flow Graph
(DFG) to represent dependencies. We continuously apply the techniques of re-
timing and unfolding to achieve the iteration bound. Even though the optimized
SHA2 family of hash algorithms requires only the retiming transformations, both
transformations are briefly discussed for a better understanding of the analysis
technique. Some of the MD4-based hash algorithms may require the unfolding
transformation. A more detailed discussion of the iteration bound and the trans-
formations can be found in [3].

3.1 DFG Representation

The mathematical expression of our example is given in Eq. 1. A and B are vari-
ables which are stored in registers and the indices of the variables represent the
number of iterations of the algorithm. C1 and C2 are some constants. According
to the equation, the next values of variables are updated using the current values
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of variables and constants. This type of equations is very common in MD4-based
hash algorithms.

A(n + 1) = A(n) + B(n) ∗ C1 ∗ C2 (1)
B(n + 1) = A(n)

The DFG of Eq. 1 is shown in Fig. 1. Box A and B represent registers which
give the output at cycle n, and circles represent some functional nodes which
perform the given functional operations. A D on edges represents an algorithmic
delay, i.e. a delay that cannot be removed from the system. Next to algorithmic
delays, nodes also have functional delays. We express the functional delays, i.e.
the delays to perform the given operations, of + and ∗ as Prop(+) and Prop(∗)
respectively. The binary operators, + and ∗, can be arbitrary operators but we
assume Prop(+) < Prop(∗) in this example. The iteration bound analysis starts
with an assumption that any functional operation is atomic. This means that
a functional operation can not be split or merged into some other functional
operations.

A B

**+

 D
 D

 C2  C1

B(n)

A(n)
Output

Fig. 1. An example of DFG

3.2 The Iteration Bound Analysis

A loop is defined as a path that begins and ends at the same node. In the DFG
in Fig. 1, A−−→ +−−−−→

D
A and A−−−−→

D
B−−→ ∗−−→ ∗−−→ +−−−−→

D
A are the

loops. The loop calculation time is defined as the sum of the functional delays
in a loop. If tl is the loop calculation time and wl is the number of algorithmic
delays in the l-th loop, the l-th loop bound is defined as tl/wl. The iteration
bound is defined as follows:

T∞ = max
l∈L

{
tl
wl

}
(2)
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where L is the set of all possible loops. The iteration bound creates a link between
the arithmetic delay and the functional delay. It is the theoretical limit of a
DFG’s delay bound. Therefore, it defines the maximally attainable throughput.
Please note that every loop needs to have at least one algorithmic delay in the
loop otherwise the system is not causal and cannot be executed.

Since the loop marked with bold line has the maximum loop delay assuming
that Prop(+) < Prop(∗), the iteration bound is as follows:

T∞ = max
{

Prop(+),
P rop(+) + 2× Prop(∗)

2

}
(3)

=
Prop(+) + 2× Prop(∗)

2
This means that a critical path delay in this DFG can not be less than this

iteration bound. The critical path delay is defined as the maximum calculation
delay between any two consecutive algorithmic delays, i.e. D’s. In our example
(Fig. 1), the critical path delay is Prop(+) + 2 × Prop(∗) which is larger than
the iteration bound. The maximum clock frequency (and thus throughput) is
determined by the critical path (the slowest path). The iteration bound is a
theoretical lower bound on the critical path delay of an algorithm. We use the
retiming and unfolding transformations to reach this lower bound.

3.3 The Retiming Transformation

The minimum critical path delay that can be possibly achieved using the retim-
ing transformation is shown in Eq. 4.

dT∞e =
⌈

Prop(+) + 2× Prop(∗)
2

⌉
= Prop(+) + Prop(∗) (4)

Assuming that a functional node can not be split into multiple parts, d·e is the
maximum part when Prop(+) + 2×Prop(∗) is evenly distributed into N parts,
where N is the number of algorithmic delays in a loop. This is denoted by the
2 in our example and sits in the denominator. Since the total delay Prop(+) +
2×Prop(∗) can be partitioned into one delay Prop(+)+Prop(∗) and the other
delay Prop(∗), the attainable delay bound by the retiming transformation is
Prop(+) + Prop(∗).

The retiming transformation modifies a DFG by moving algorithmic delays,
i.e. D’s, through the functional nodes in the graph. Delays of out-going edges
can be replaced with delays from in-coming edges and vice versa. Fig. 2 shows
the retiming transformation steps performed on Fig. 1.

Based on the + node in Fig. 1, the delay of the out-going edge is replaced
with delays of the in-coming edges resulting in Fig. 2(a). Note that the out-going
edges and the in-coming edges must be dealt as a set. By performing one more
retiming transformation based on the left ∗ node in Fig. 2(a), we obtain the
DFG of Fig. 2(b). Therefore, the critical path becomes the path in bold between
the two bolded D’s in Fig. 2(b) and its delay is reduced to Prop(+) + Prop(∗)
which is the same as Eq. 4. However, the iteration bound still has not been met.



Throughput Optimum Architecture of SHA2 5
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**+
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 C2  C1

B(n)

A(n)
Output

(a) Retimed based on +

A B

**+

 D D

 D D

 D

 C2  C1

B(n)

A(n)
Output

(b) Retimed based on ∗

Fig. 2. Retiming Transformation

3.4 The Unfolding Transformation

The unfolding transformation improves performance by calculating several iter-
ations in a single cycle. For the unfolding transformation we expand the Eq. 1
by representing two iterations at a time, which results in Eq. 5.

A(n + 2) = A(n + 1) + B(n + 1) ∗ C1 ∗ C2

= A(n) + B(n) ∗ C1 ∗ C2 + A(n) ∗ C1 ∗ C2 (5)
B(n + 2) = A(n + 1) = A(n) + B(n) ∗ C1 ∗ C2

Note that now A(n + 2) and B(n + 2) are expressed as a function of A(n)
and B(n). By introducing a temporary variable Tmp, Eq. 5 can be simplified
into Eq. 6.

Tmp(n) = A(n) + B(n) ∗ C1 ∗ C2

A(n + 2) = Tmp(n) + A(n) ∗ C1 ∗ C2 (6)
B(n + 2) = Tmp(n)

By doubling the number of functional nodes, we are able to unfold the DFG
by a factor of two (Fig. 3(a)). Box A and B now give the outputs of every
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A B

**+

 D
 D

 C2  C1

**+

 C2  C1

B(2n)

A(2n)
Output

(a) Unfolding Transformation

A B

**+

 D

 D D

 D D

 C2  C1

**+

 C2  C1

B(2n)

A(2n)
Output

(b) Retiming Transformation

Fig. 3. Unfolding and Retiming Transformation

second iteration. By applying the retiming transformation to the unfolded DFG,
the resulting critical path becomes the path in bold between the two bolded
D’s which is D → + → A → ∗ → ∗ → D (Fig. 3(b)). Therefore, the critical
path delay is Prop(+) + 2 × Prop(∗). Due to the unfolding factor of two, the
normalized critical path delay, T̂ , can be calculated by dividing the critical path
delay by two as shown in Eq. 7.

T̂ =
Prop(+) + 2× Prop(∗)

2
= T∞ (7)
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This final transformation results in an architecture that achieves the iteration
bound of the example DFG (Fig. 1).

Now the only remaining step is the implementation of the resulting DFG.
Note that some of the square nodes are not any more paired with an algorithmic
delay, which can be seen in Fig. 3(b). The explanation about how this issue is
dealt with during implementation will be given in Section 5 where we synthesize
the SHA2 family hash algorithms.

4 Iteration Bound Analysis and Throughput Optimum
Architecture of SHA2

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ
{256}
0 (x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x)

Σ
{256}
1 (x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

σ
{256}
0 (x) = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)

σ
{256}
1 (x) = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x)

(a) SHA-256 Functions

Wt =

{
M

(i)
t 0 ≤ t ≤ 15

σ
{256}
1 (Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−16 16 ≤ t ≤ 63

(b) SHA-256 Expend Computation

T1 = h + Σ
{256}
1 (e) + Ch(e, f, g) + K

{256}
t + Wt

T2 = Σ
{256}
0 (a) + Maj(a, b, c)

h = g
g = f
f = e
e = d + T1

d = c
c = b
b = a
a = T1 + T2

(c) SHA-256 Compress Computation

Fig. 4. SHA-256 Hash Computation

The SHA2 family of hash algorithms is composed of three parts: the padding,
expander and compressor [2]. The padding extends an input message to be a
whole number of 512-bit (for SHA-256) or 1024-bit (for SHA-384 and SHA-512)
message blocks. The expander enlarges input messages of 16 words into 64 (for
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SHA-256) or 80 (for SHA-384 or SHA-512) words. The compressor encodes the
expanded message into 256, 384 or 512 bits depending on the algorithm. For one
message block, the required iterations are 64 (for SHA-256) or 80 (for SHA-384
or SHA-512).

In this paper, we consider only the implementation of the expander and
compressor. Though the expander can be performed before the compressor, we
chose to implement it to perform dynamically during compression in order to
increase the overall throughput and minimize the gate area.

Fig. 4 describes the SHA-256 algorithm on which a DFG will be derived
based. Since all the SHA2 family hash algorithms have the same architecture
except for input, output and word sizes, constants, non-linear scrambling func-
tions, i.e. Σ0, Σ1, Maj, Ch, σ0 and σ1, and the number of the iterations, they
can be expressed in the same DFG.

4.1 DFG of SHA2 Compressor

Since within one iteration the order of additions in SHA2 does not affect the
results, there are several possible DFG’s. For example, (a+ b)+ c and (b+ c)+a
are equivalent in mathematics but will have different DFG’s. As a starting point,
the DFG having the minimum iteration bound must be chosen, transformations
are then performed to find the architecture that achieves this bound. In SHA2
compressor, since there are only 7 adders, finding a DFG having the minimum
iteration bound is not difficult as long as we understand how to calculate the
iteration bound.

 D
A

 D
B C

 D
D

 D D E

Σ0 Maj

+

Σ1

.

+

++

+ D
F

 D
G

Ch

 D D H

+

+

Kt

Wt

Fig. 5. Basic SHA2 Compressor DFG

The DFG in Fig. 5 is a straightforward DFG. The shaded loop indicates the
loop having the largest loop bound and gives the following iteration bound.

T ( 5)
∞ = max

l∈L

{
tl
wl

}
= 3× Prop(+) + Prop(Ch) (8)
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However, by reordering the sequence of additions, the DFG of Fig. 6 can be
obtained which has the smallest iteration bound. As we assume that Prop(Σ0)
≈ Prop(Maj) ≈ Prop(Σ1) ≈ Prop(Ch), the two bolded loops have the same
maximum loop bound. Since the loop bound of the left hand side loop can-
not be reduced further, no further reduction in the iteration bound is possible.
Therefore, the iteration bound of Fig. 6 is as follows.

T ( 6)
∞ = max

l∈L

{
tl
wl

}
= 2× Prop(+) + Prop(Ch) (9)

A
 D D D

B C D
 D D E

Σ0 Maj

+

Σ1. .

+

++

++

 D  D
F

 D  D
G

Ch

 D H

+

+

+

Kt

Wt

Fig. 6. Optimized SHA2 Compressor DFG

If we assume that any operation in the DFG cannot be merged or split into
other operations, the iteration bound of SHA2 is Eq. 9. However, if we are allowed
to use a Carrier Save Adder (CSA), we can substitute two consecutive adders
with one CSA and one adder. Since CSA requires less propagation delay than
an adder, we replace adders with CSA’s if it is possible. The resulting DFG is
shown in Fig. 7. Note that some of the adders are not replaced with CSA since
doing so would increase the iteration bound. Therefore, the final iteration bound
is achieved as Eq. 10.

T ( 7)
∞ = max

l∈L

{
tl
wl

}
= Prop(+) + Prop(CSA) + Prop(Ch) (10)

In the next step, we perform transformations. Since there is no fraction in the
iteration bound, we do not need the unfolding transformation. Only the retiming
transformation is necessary to achieve the iteration bound. The retimed DFG
achieving the iteration bound is depicted in Fig. 8. Note that the indexes of Kt+2

and Wt+3 are changed due to the retiming transformation. In order to remove
the ROM access time for Kt+2, which is a constant value from ROM, we place
an algorithmic delay, i.e. D, in front of Kt+2. This does not change the function.
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A
 D D D

B C D
 D D E

Σ0 Maj Σ1 . .

+

+

+

 D  D
F

 D  D
G

Ch

 D H

+

+

Kt

Wt

CSA CSA

CSA

CSA

Fig. 7. Optimized SHA2 Compressor DFG with CSA
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 D D D

 D

 D

B C D
 D D E

Σ0 Maj Σ1 . .

+

+

+

F

 D

 D

 D

 2D

 D

G

Ch

 D H

+

+

Kt+2

Wt+3

CSA CSA

CSA

CSA

Fig. 8. Final SHA2 Compressor DFG with Retiming Transformation

4.2 DFG of SHA2 Expander

A straightforward DFG of the SHA2 expander is given in Fig. 9(a). Even though
the iteration bound of the expander is much less than the compressor, we do not
need to minimize the expander’s critical path delay less than the compressor’s it-
eration bound (the throughput is bounded by the compressor’s iteration bound).
Fig. 9(b) shows a DFG with CSA, and Fig. 9(c) shows a DFG with the retiming
transformation where the critical path delay is Prop(+).

5 Implementation and Synthesis Results

In the DFG of Fig. 8, some of the register values, i.e. A, B, ..., H, are no longer
paired with an algorithmic delay D. For example, there is no algorithmic delay
between registers F and H. Therefore, the values of H will be the same as F
except for the first two cycles: in the first cycle, the value of H should be the
initialized value of H according to the SHA2 algorithm; in the second cycle the
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(c) Retiming Transformed DFG with CSA

Fig. 9. SHA2 Expander DFG

value of H should be the initialized value of G. Therefore, the value of F will be
directly used as an input of the following CSA.

Another register management problem is found in the path from the register
H to the register A which includes four algorithmic delays. Therefore, register
A has to hold its initial value until an effective value of H reaches to the register
A, which means the register A must hold the first three cycles and then it can
update with a new value. This causes overhead of three extra cycles. Therefore
the total number of cycles required for one message block is the number of
iterations plus one cycle for initialization and finalization plus three overhead
cycles due to the retiming transformation, which results in 68 cycles for SHA256
and 84 cycles for SHA384 and SHA512.

We synthesized SHA2 for an ASIC by Synopsys Design Vision using a 0.13µm
standard cell library whose results and a comparison with other works are shown
in Table 1. The throughputs are calculated using the following equation.
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Throughput256 = Frequency
# of Cycles × (512 bits) (11)

Throughput384,512 = Frequency
# of Cycles × (1024 bits)

Table 1. Synthesis Results and Comparison of SHA2 Family Hashes

Algorithm
Technology Area Frequency

Cycles
Throughput

(ASIC) (Gates) (MHz) (Mbps)

[14] SHA256 0.18µm 22,000 200 65 1,575

[13]
SHA256

0.13µm
15,329 333.3 72 2,370

SHA384/512 27,297 250.0 88 2,909

[4] SHA256 0.13µm N/A >1,000 69 >7,420

Our SHA256
0.13µm

22,025 793.6 68 5,975
Results SHA384/512 43,330 746.2 84 9,096

*All our proposals include all the registers and ROM.

Note that our purpose of the synthesis is not to beat the throughput record
but to verify our architecture by checking the correct hash outputs and the ac-
tual critical path. Since our HDL programming is done at register transfer level
and we have mostly concentrated on optimizing micro-architecture rather than
focusing lower-level optimization, some other reported results, e.g. [4], achieve
better performance with the same iteration bound delay. However the iteration
bound analysis still determines the optimum high level architecture of an algo-
rithm.

6 Conclusion

We analyzed the iteration bound of the SHA-256 (384,512) hash algorithms and
showed architectures achieving the iteration bound. Since the iteration bound is
a theoretical limit, there will be no further throughput optimization in micro-
architecture level. We also synthesized our design to verify the correctness of
our architecture design. Moreover, we illustrated detailed steps from a straight-
forward DFG to a throughput optimized architecture. This approach will guide
how to optimize some other iterative hash algorithms in throughput.
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